Hybrid whale optimization algorithm with gathering strategies for high-dimensional problems
•A novel two-stage individual-based Whale Optimization Algorithm is proposed.•Opposition learning and grey wolf optimizer are added to raise solution diversity.•A big parameter value and differential disturbance are adopted in the first stage.•Historical agent best solutions and a global-best way ar...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 179; s. 115032 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
01.10.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A novel two-stage individual-based Whale Optimization Algorithm is proposed.•Opposition learning and grey wolf optimizer are added to raise solution diversity.•A big parameter value and differential disturbance are adopted in the first stage.•Historical agent best solutions and a global-best way are used in the second stage.•Experiments are carried on high-dimensional functions and fuzzy C-means clustering.
In order to solve the problems, such as insufficient search ability and low search efficiency, of Whale Optimization Algorithm (WOA) in solving high-dimensional problems, a novel Hybrid WOA with Gathering strategies (HWOAG) is proposed in this paper. Firstly, an individual-based updating way is used in HWOAG instead of the dimension-based updating one of WOA to reduce the computational complexity and to be more suitable for high-dimensional problems. Secondly, a random opposition learning strategy is embedded into the individual-based WOA to form an opposition learning WOA (OWOA), and Grey Wolf Optimizer (GWO) is integrated into OWOA to form an OWOA with GWO (OWOAG) so as to improve the global search ability of WOA. Finally, two standalone OWOAGs are formulated to balance exploration and exploitation better. The two OWOAGs adopt strategies such as switching parameter tuning, random differential disturbance and global-best spiral operator to get stronger search ability. A lot of experimental results on high-dimensional (i.e. 1000-, 2000-, 4000- and 8000- dimensional) benchmark functions and clustering datasets for Fuzzy C-Means (FCM) optimization show that HWOAG has stronger search ability and higher search efficiency than WOA and quite a few state-of-the-art algorithms and that all the strategies gathered to WOA are effective. The source codes of the proposed algorithm HWOAG are available at https://github.com/kangzhai/HWOAG. |
|---|---|
| AbstractList | •A novel two-stage individual-based Whale Optimization Algorithm is proposed.•Opposition learning and grey wolf optimizer are added to raise solution diversity.•A big parameter value and differential disturbance are adopted in the first stage.•Historical agent best solutions and a global-best way are used in the second stage.•Experiments are carried on high-dimensional functions and fuzzy C-means clustering.
In order to solve the problems, such as insufficient search ability and low search efficiency, of Whale Optimization Algorithm (WOA) in solving high-dimensional problems, a novel Hybrid WOA with Gathering strategies (HWOAG) is proposed in this paper. Firstly, an individual-based updating way is used in HWOAG instead of the dimension-based updating one of WOA to reduce the computational complexity and to be more suitable for high-dimensional problems. Secondly, a random opposition learning strategy is embedded into the individual-based WOA to form an opposition learning WOA (OWOA), and Grey Wolf Optimizer (GWO) is integrated into OWOA to form an OWOA with GWO (OWOAG) so as to improve the global search ability of WOA. Finally, two standalone OWOAGs are formulated to balance exploration and exploitation better. The two OWOAGs adopt strategies such as switching parameter tuning, random differential disturbance and global-best spiral operator to get stronger search ability. A lot of experimental results on high-dimensional (i.e. 1000-, 2000-, 4000- and 8000- dimensional) benchmark functions and clustering datasets for Fuzzy C-Means (FCM) optimization show that HWOAG has stronger search ability and higher search efficiency than WOA and quite a few state-of-the-art algorithms and that all the strategies gathered to WOA are effective. The source codes of the proposed algorithm HWOAG are available at https://github.com/kangzhai/HWOAG. In order to solve the problems, such as insufficient search ability and low search efficiency, of Whale Optimization Algorithm (WOA) in solving high-dimensional problems, a novel Hybrid WOA with Gathering strategies (HWOAG) is proposed in this paper. Firstly, an individual-based updating way is used in HWOAG instead of the dimension-based updating one of WOA to reduce the computational complexity and to be more suitable for high-dimensional problems. Secondly, a random opposition learning strategy is embedded into the individual-based WOA to form an opposition learning WOA (OWOA), and Grey Wolf Optimizer (GWO) is integrated into OWOA to form an OWOA with GWO (OWOAG) so as to improve the global search ability of WOA. Finally, two standalone OWOAGs are formulated to balance exploration and exploitation better. The two OWOAGs adopt strategies such as switching parameter tuning, random differential disturbance and global-best spiral operator to get stronger search ability. A lot of experimental results on high-dimensional (i.e. 1000-, 2000-, 4000- and 8000- dimensional) benchmark functions and clustering datasets for Fuzzy C-Means (FCM) optimization show that HWOAG has stronger search ability and higher search efficiency than WOA and quite a few state-of-the-art algorithms and that all the strategies gathered to WOA are effective. The source codes of the proposed algorithm HWOAG are available at https://github.com/kangzhai/HWOAG. |
| ArticleNumber | 115032 |
| Author | Zhang, Xinming Wen, Shaochen |
| Author_xml | – sequence: 1 givenname: Xinming surname: Zhang fullname: Zhang, Xinming email: xinmingzhang@126.com organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China – sequence: 2 givenname: Shaochen surname: Wen fullname: Wen, Shaochen email: 2929488077@qq.com organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China |
| BookMark | eNp9kL1OwzAURi1UJNrCCzBZYk6wk8ZOJBZUAUWqxAITg-U4N4mjJC62oSpPj0uYGLrcu3zn_pwFmo1mBISuKYkpoey2i8HtZZyQhMaUZiRNztCc5jyNGC_SGZqTIuPRivLVBVo41xFCOSF8jt43h9LqCu9b2QM2O68H_S29NiOWfWOs9u2A96HiRvoWrB4b7LyVHhoNDtfG4lY3bVTpAUYXMNnjnTVlD4O7ROe17B1c_fUlent8eF1vou3L0_P6fhupNMl9lK9qplTNs1TmLAFFaDif1VKlRVUz4CVJCM1LVhWslJSrLC9YpbisJXCmCkiX6GaaGxZ_fILzojOfNlziRJJlJEsJI0VIJVNKWeOchVrsrB6kPQhKxFGi6MRRojhKFJPEAOX_IKX9r57gQPen0bsJhfD6lwYrnNIwKqi0BeVFZfQp_AcAcJE3 |
| CitedBy_id | crossref_primary_10_1007_s10489_022_04132_9 crossref_primary_10_1016_j_knosys_2021_107543 crossref_primary_10_1038_s41598_025_03636_x crossref_primary_10_1007_s10479_022_04849_3 crossref_primary_10_1093_jcde_qwac092 crossref_primary_10_3390_biomimetics10050273 crossref_primary_10_1007_s42235_024_00493_8 crossref_primary_10_1109_TMTT_2023_3236676 crossref_primary_10_1016_j_agwat_2022_107618 crossref_primary_10_1186_s13638_023_02246_3 crossref_primary_10_1007_s11831_023_09928_7 crossref_primary_10_7717_peerj_cs_1729 crossref_primary_10_1155_2022_3618197 crossref_primary_10_3233_JIFS_210842 crossref_primary_10_3390_w15122217 crossref_primary_10_1371_journal_pone_0260725 crossref_primary_10_3934_era_2025248 crossref_primary_10_3390_s24247879 crossref_primary_10_1016_j_asoc_2024_112634 crossref_primary_10_1007_s00500_023_09351_x crossref_primary_10_1007_s42452_023_05367_y crossref_primary_10_1016_j_applthermaleng_2024_123161 crossref_primary_10_1007_s10696_023_09502_0 crossref_primary_10_1016_j_cie_2022_108361 crossref_primary_10_1007_s00158_024_03955_z crossref_primary_10_1016_j_asoc_2021_107854 crossref_primary_10_1177_14727978251371200 crossref_primary_10_1002_cpe_8101 crossref_primary_10_1016_j_matcom_2021_10_003 crossref_primary_10_1016_j_knosys_2023_110368 crossref_primary_10_1016_j_oceaneng_2022_112862 crossref_primary_10_1038_s41598_025_13539_6 crossref_primary_10_1007_s11063_022_10876_9 crossref_primary_10_1007_s11227_022_04755_2 crossref_primary_10_1155_2024_5806437 crossref_primary_10_1007_s00521_023_08917_y crossref_primary_10_1088_2631_8695_ad6d2e crossref_primary_10_1016_j_knosys_2022_108664 crossref_primary_10_4018_IJSIR_378429 crossref_primary_10_1016_j_eswa_2022_119303 crossref_primary_10_1007_s11227_025_07629_5 crossref_primary_10_1016_j_asoc_2024_111979 crossref_primary_10_1093_jcde_qwaf014 |
| Cites_doi | 10.1007/s10489-018-1362-4 10.1016/j.eswa.2018.11.032 10.1016/j.apenergy.2018.09.118 10.1016/j.swevo.2011.02.002 10.1016/j.ins.2014.10.042 10.1108/COMPEL-04-2018-0175 10.1016/j.energy.2018.11.034 10.1007/s12065-013-0102-2 10.1016/j.asoc.2018.02.049 10.1109/ACCESS.2019.2901849 10.1007/s10489-018-1247-6 10.1016/j.asoc.2018.11.033 10.1016/j.advengsoft.2013.12.007 10.1016/j.ins.2019.01.009 10.1016/j.apm.2020.05.016 10.1155/2019/2653512 10.1016/j.enconman.2018.05.062 10.1023/A:1008202821328 10.1016/j.neucom.2015.11.018 10.1016/j.asoc.2018.11.047 10.1023/A:1022602019183 10.1109/ACCESS.2017.2695498 10.1016/j.amc.2007.09.004 10.1016/j.asoc.2016.02.018 10.1016/j.swevo.2017.03.001 10.1016/j.advengsoft.2016.01.008 10.1109/ACCESS.2016.2613940 10.1016/j.neucom.2017.04.053 10.1016/j.engappai.2019.103457 10.1080/15325008.2019.1602687 10.1016/j.asoc.2018.04.027 10.1016/j.asoc.2018.10.032 10.1016/j.enconman.2018.02.006 10.1109/TEVC.2008.919004 10.1007/s00521-019-04483-4 10.1016/j.asoc.2009.12.025 10.1007/s00500-017-2916-9 10.1016/j.engappai.2017.10.024 10.1109/CIMCA.2005.1631345 10.1016/j.ins.2016.11.013 10.1016/j.asoc.2019.105925 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Oct 1, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Oct 1, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2021.115032 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2021_115032 S0957417421004735 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-84f6ccf753a862ec010326fac39df6e7b02018b6d96ba17c5896dc7afae76c9e3 |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663549200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 06:31:03 EDT 2025 Sat Nov 29 07:09:59 EST 2025 Tue Nov 18 21:12:14 EST 2025 Fri Feb 23 02:43:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Optimization algorithm Grey Wolf optimizer Whale optimization algorithm Fuzzy C-means High-dimensional problems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-84f6ccf753a862ec010326fac39df6e7b02018b6d96ba17c5896dc7afae76c9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2550530609 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2550530609 crossref_primary_10_1016_j_eswa_2021_115032 crossref_citationtrail_10_1016_j_eswa_2021_115032 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115032 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Mahdavi, Shiri, Rahnamayan (b0115) 2015; 295 Zhang, Wang, Fu, Liu, Mao, Liu, Jiang, Li (b0210) 2020; 86 Derrac, Garcia, Molina, Herrera (b0015) 2011; 1 Hu, He, Chen (b0045) 2017; 381 Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06) (pp. 695–701). doi: 10.1109/CIMCA.2005.1631345. Gu, Li, Jiang (b0035) 2019; 2019 Guo, Liu, Dai, Xu (b0040) 2020; 86 Omran, Mahdavi (b0135) 2008; 198 Singh, Dhillon (b0155) 2019; 169 Kennedy, Eberhart (b0060) 1995; 4 Zhang, Jiang, Zhou, Xue, Chen (b0195) 2017; 23 Yousri, Allam, Eteiba (b0190) 2018; 74 Mirjalili, Mirjalili, Lewis (b0130) 2014; 69 Storn, Price (b0160) 1997; 11 Simon (b0150) 2008; 12 Fan, Chen, Zhang, Fang (b0025) 2020 Zhang, Kang, Cheng (b0200) 2018; 67 Long, Wu, Liang, Xu (b0100) 2019; 123 Zhang, Wang, Chen (b0205) 2019; 7 Korashy, Kamel, Jurado, Youssef (b0065) 2019; 47 Luo, Shi (b0105) 2018; 49 Ling, Zhou, Luo (b0080) 2017; 5 Goldberg, Holland (b0030) 1988; 3 Abd Elaziz, Oliva (b0005) 2018; 171 Jensi, Jiji (b0050) 2016; 43 De Falco, Della Cioppa, Trunfio (b0010) 2019; 482 Peng, Wu (b0140) 2017; 35 Zhang, Wang, Chen, Wang, Fu (b0215) 2020; 32 Laskar, Guha, Chatterjee, Chanda, Baishnab, Paul (b0070) 2019; 49 Liu, Wu, Li (b0085) 2018; 161 Emary, Zawbaa, Sharawi (b0020) 2018; 75 Long, Jiao, Liang (b0090) 2018; 68 Long, Wu, Jiao, Tang, Xu (b0095) 2020; 89 Sun, Zhang (b0165) 2018; 231 Mafarja, Mirjalili (b0110) 2017; 260 Karaboga, Ozturk (b0055) 2011; 11 Majeed, Patri (b0120) 2019; 38 Mirjalili, Lewis (b0125) 2016; 95 Wang, Deb, Gandomi, Alavi (b0180) 2016; 177 Li, Sun, Kang (b0075) 2016; 4 Santos, Borges, Santos, Silva, Sales, Costa (b0145) 2018; 69 Yang (b0185) 2014; 7 Tu, Chen, Liu (b0175) 2019; 76 Peng (10.1016/j.eswa.2021.115032_b0140) 2017; 35 Luo (10.1016/j.eswa.2021.115032_b0105) 2018; 49 Gu (10.1016/j.eswa.2021.115032_b0035) 2019; 2019 Kennedy (10.1016/j.eswa.2021.115032_b0060) 1995; 4 Li (10.1016/j.eswa.2021.115032_b0075) 2016; 4 Omran (10.1016/j.eswa.2021.115032_b0135) 2008; 198 Singh (10.1016/j.eswa.2021.115032_b0155) 2019; 169 Zhang (10.1016/j.eswa.2021.115032_b0205) 2019; 7 Long (10.1016/j.eswa.2021.115032_b0100) 2019; 123 Yang (10.1016/j.eswa.2021.115032_b0185) 2014; 7 Mirjalili (10.1016/j.eswa.2021.115032_b0130) 2014; 69 Karaboga (10.1016/j.eswa.2021.115032_b0055) 2011; 11 10.1016/j.eswa.2021.115032_b0170 De Falco (10.1016/j.eswa.2021.115032_b0010) 2019; 482 Derrac (10.1016/j.eswa.2021.115032_b0015) 2011; 1 Hu (10.1016/j.eswa.2021.115032_b0045) 2017; 381 Storn (10.1016/j.eswa.2021.115032_b0160) 1997; 11 Guo (10.1016/j.eswa.2021.115032_b0040) 2020; 86 Ling (10.1016/j.eswa.2021.115032_b0080) 2017; 5 Tu (10.1016/j.eswa.2021.115032_b0175) 2019; 76 Emary (10.1016/j.eswa.2021.115032_b0020) 2018; 75 Long (10.1016/j.eswa.2021.115032_b0095) 2020; 89 Wang (10.1016/j.eswa.2021.115032_b0180) 2016; 177 Santos (10.1016/j.eswa.2021.115032_b0145) 2018; 69 Liu (10.1016/j.eswa.2021.115032_b0085) 2018; 161 Zhang (10.1016/j.eswa.2021.115032_b0210) 2020; 86 Goldberg (10.1016/j.eswa.2021.115032_b0030) 1988; 3 Mahdavi (10.1016/j.eswa.2021.115032_b0115) 2015; 295 Korashy (10.1016/j.eswa.2021.115032_b0065) 2019; 47 Mirjalili (10.1016/j.eswa.2021.115032_b0125) 2016; 95 Fan (10.1016/j.eswa.2021.115032_b0025) 2020 Sun (10.1016/j.eswa.2021.115032_b0165) 2018; 231 Yousri (10.1016/j.eswa.2021.115032_b0190) 2018; 74 Mafarja (10.1016/j.eswa.2021.115032_b0110) 2017; 260 Jensi (10.1016/j.eswa.2021.115032_b0050) 2016; 43 Zhang (10.1016/j.eswa.2021.115032_b0215) 2020; 32 Abd Elaziz (10.1016/j.eswa.2021.115032_b0005) 2018; 171 Laskar (10.1016/j.eswa.2021.115032_b0070) 2019; 49 Long (10.1016/j.eswa.2021.115032_b0090) 2018; 68 Majeed (10.1016/j.eswa.2021.115032_b0120) 2019; 38 Simon (10.1016/j.eswa.2021.115032_b0150) 2008; 12 Zhang (10.1016/j.eswa.2021.115032_b0195) 2017; 23 Zhang (10.1016/j.eswa.2021.115032_b0200) 2018; 67 |
| References_xml | – volume: 161 start-page: 266 year: 2018 end-page: 283 ident: b0085 article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction publication-title: Energy Conversion and Management – volume: 86 start-page: 74 year: 2020 end-page: 91 ident: b0210 article-title: Novel biogeography-based optimization algorithm with hybrid migration and global-best gaussian mutation publication-title: Applied Mathematical Modelling – volume: 11 start-page: 652 year: 2011 end-page: 657 ident: b0055 article-title: A novel clustering approach: Artificial bee colony (ABC) algorithm publication-title: Applied Soft Computing – volume: 49 start-page: 1982 year: 2018 end-page: 2000 ident: b0105 article-title: A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems publication-title: Applied Intelligence – volume: 49 start-page: 265 year: 2019 end-page: 291 ident: b0070 article-title: HWPSO: A new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems publication-title: Applied Intelligence – volume: 23 start-page: 2033 year: 2017 end-page: 2046 ident: b0195 article-title: A hybrid biogeography-based optimization and fuzzy c-means algorithm for image segmentation publication-title: Soft Computing – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b0150 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 7 start-page: 17 year: 2014 end-page: 28 ident: b0185 article-title: Swarm intelligence based algorithms: A critical analysis publication-title: Evolutionary Intelligence – volume: 67 start-page: 197 year: 2018 end-page: 214 ident: b0200 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Applied Soft Computing – volume: 7 start-page: 28810 year: 2019 end-page: 28825 ident: b0205 article-title: Improved biogeography-based optimization algorithm and its application to clustering optimization and medical image segmentation publication-title: IEEE Access – reference: Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06) (pp. 695–701). doi: 10.1109/CIMCA.2005.1631345. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0130 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 2019 start-page: 1 year: 2019 end-page: 18 ident: b0035 article-title: Hybrid genetic grey wolf algorithm for large-scale global optimization publication-title: Complexity – volume: 169 start-page: 398 year: 2019 end-page: 419 ident: b0155 article-title: Ameliorated grey wolf optimization for economic load dispatch problem publication-title: Energy – volume: 198 start-page: 643 year: 2008 end-page: 656 ident: b0135 article-title: Global-best harmony search publication-title: Applied Mathematics and Computation – volume: 231 start-page: 1354 year: 2018 end-page: 1371 ident: b0165 article-title: Analysis and forecasting of the carbon price using multi resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm publication-title: Applied Energy – volume: 43 start-page: 248 year: 2016 end-page: 261 ident: b0050 article-title: An enhanced particle swarm optimization with levy flight for global optimization publication-title: Applied Soft Computing – volume: 4 start-page: 6438 year: 2016 end-page: 6450 ident: b0075 article-title: Fuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregation publication-title: IEEE Access – volume: 381 start-page: 142 year: 2017 end-page: 160 ident: b0045 article-title: Cooperation coevolution with fast interdependency identification for large scale optimization publication-title: Information Sciences – year: 2020 ident: b0025 article-title: Essawoa: Enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization publication-title: Engineering with Computers – volume: 295 start-page: 407 year: 2015 end-page: 428 ident: b0115 article-title: Meta-heuristics in large-scale global continuous optimization: A survey publication-title: Information Sciences – volume: 38 start-page: 452 year: 2019 end-page: 476 ident: b0120 article-title: A hybrid of WOA and mGWO algorithms for global optimization and analog circuit design automation publication-title: COMPEL–The International Journal for Computation and Mathematics in Electrical and Electronic Engineering – volume: 69 start-page: 330 year: 2018 end-page: 343 ident: b0145 article-title: A semi-autonomous particle swarm optimizer based on gradient information and diversity control for global optimization publication-title: Applied Soft Computing – volume: 74 start-page: 479 year: 2018 end-page: 503 ident: b0190 article-title: Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in permanent magnet synchronous motor publication-title: Applied Soft Computing – volume: 3 start-page: 95 year: 1988 end-page: 99 ident: b0030 article-title: Genetic algorithms and machine learning publication-title: Machine Learning – volume: 89 year: 2020 ident: b0095 article-title: Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of pv model publication-title: Engineering Applications of Artificial Intelligence – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b0015 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: b0110 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing – volume: 123 start-page: 108 year: 2019 end-page: 126 ident: b0100 article-title: Solving high- dimensional global optimization problems using an improved sine cosine algorithm publication-title: Expert Systems with Applications – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: b0060 article-title: Particle swarm optimization publication-title: IEEE international conference on neural networks – volume: 86 year: 2020 ident: b0040 article-title: An improved whale optimization algorithm for forecasting water resources demand publication-title: Applied Soft Computing – volume: 32 start-page: 1305 year: 2020 end-page: 1325 ident: b0215 article-title: Improved GWO for large-scale function optimization and MLP optimization in cancer identification publication-title: Neural Computing and Applications – volume: 35 start-page: 65 year: 2017 end-page: 77 ident: b0140 article-title: Large-scale cooperative co-evolution using niching-based multi-modal optimization and adaptive fast clustering publication-title: Swarm and Evolutionary Computation – volume: 75 start-page: 775 year: 2018 end-page: 789 ident: b0020 article-title: Impact of Lévy flight on modern meta-heuristic optimizers publication-title: Applied Soft Computing – volume: 68 start-page: 63 year: 2018 end-page: 80 ident: b0090 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Engineering Applications of Artificial Intelligence – volume: 76 start-page: 16 year: 2019 end-page: 30 ident: b0175 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Applied Soft Computing – volume: 482 start-page: 1 year: 2019 end-page: 26 ident: b0010 article-title: Investigating surrogate-assisted cooperative coevolution for large-scale global optimization publication-title: Information Sciences – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0125 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0160 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – volume: 177 start-page: 147 year: 2016 end-page: 157 ident: b0180 article-title: Opposition-based krill herd algorithm with Cauchy mutation and position clamping publication-title: Neurocomputing – volume: 47 start-page: 644 year: 2019 end-page: 658 ident: b0065 article-title: Hybrid whale optimization algorithm and grey wolf optimizer algorithm for optimal coordination of direction overcurrent relays publication-title: Electric Power Components and Systems – volume: 5 start-page: 6168 year: 2017 end-page: 6186 ident: b0080 article-title: Lévy flight trajectory-based whale optimization algorithm for global optimization publication-title: IEEE Access – volume: 171 start-page: 1843 year: 2018 end-page: 1859 ident: b0005 article-title: Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm publication-title: Energy Conversion and Management – volume: 49 start-page: 1982 issue: 5 year: 2018 ident: 10.1016/j.eswa.2021.115032_b0105 article-title: A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems publication-title: Applied Intelligence doi: 10.1007/s10489-018-1362-4 – volume: 123 start-page: 108 year: 2019 ident: 10.1016/j.eswa.2021.115032_b0100 article-title: Solving high- dimensional global optimization problems using an improved sine cosine algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.11.032 – volume: 231 start-page: 1354 year: 2018 ident: 10.1016/j.eswa.2021.115032_b0165 article-title: Analysis and forecasting of the carbon price using multi resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.09.118 – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.eswa.2021.115032_b0015 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – volume: 295 start-page: 407 year: 2015 ident: 10.1016/j.eswa.2021.115032_b0115 article-title: Meta-heuristics in large-scale global continuous optimization: A survey publication-title: Information Sciences doi: 10.1016/j.ins.2014.10.042 – volume: 38 start-page: 452 year: 2019 ident: 10.1016/j.eswa.2021.115032_b0120 article-title: A hybrid of WOA and mGWO algorithms for global optimization and analog circuit design automation publication-title: COMPEL–The International Journal for Computation and Mathematics in Electrical and Electronic Engineering doi: 10.1108/COMPEL-04-2018-0175 – volume: 169 start-page: 398 year: 2019 ident: 10.1016/j.eswa.2021.115032_b0155 article-title: Ameliorated grey wolf optimization for economic load dispatch problem publication-title: Energy doi: 10.1016/j.energy.2018.11.034 – volume: 7 start-page: 17 year: 2014 ident: 10.1016/j.eswa.2021.115032_b0185 article-title: Swarm intelligence based algorithms: A critical analysis publication-title: Evolutionary Intelligence doi: 10.1007/s12065-013-0102-2 – volume: 67 start-page: 197 year: 2018 ident: 10.1016/j.eswa.2021.115032_b0200 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.02.049 – volume: 7 start-page: 28810 year: 2019 ident: 10.1016/j.eswa.2021.115032_b0205 article-title: Improved biogeography-based optimization algorithm and its application to clustering optimization and medical image segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901849 – volume: 49 start-page: 265 year: 2019 ident: 10.1016/j.eswa.2021.115032_b0070 article-title: HWPSO: A new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems publication-title: Applied Intelligence doi: 10.1007/s10489-018-1247-6 – volume: 75 start-page: 775 year: 2018 ident: 10.1016/j.eswa.2021.115032_b0020 article-title: Impact of Lévy flight on modern meta-heuristic optimizers publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.11.033 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2021.115032_b0130 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – year: 2020 ident: 10.1016/j.eswa.2021.115032_b0025 article-title: Essawoa: Enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization publication-title: Engineering with Computers – volume: 482 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.115032_b0010 article-title: Investigating surrogate-assisted cooperative coevolution for large-scale global optimization publication-title: Information Sciences doi: 10.1016/j.ins.2019.01.009 – volume: 86 start-page: 74 year: 2020 ident: 10.1016/j.eswa.2021.115032_b0210 article-title: Novel biogeography-based optimization algorithm with hybrid migration and global-best gaussian mutation publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2020.05.016 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.115032_b0035 article-title: Hybrid genetic grey wolf algorithm for large-scale global optimization publication-title: Complexity doi: 10.1155/2019/2653512 – volume: 171 start-page: 1843 year: 2018 ident: 10.1016/j.eswa.2021.115032_b0005 article-title: Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.05.062 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.eswa.2021.115032_b0160 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 177 start-page: 147 year: 2016 ident: 10.1016/j.eswa.2021.115032_b0180 article-title: Opposition-based krill herd algorithm with Cauchy mutation and position clamping publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.018 – volume: 76 start-page: 16 year: 2019 ident: 10.1016/j.eswa.2021.115032_b0175 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.11.047 – volume: 3 start-page: 95 year: 1988 ident: 10.1016/j.eswa.2021.115032_b0030 article-title: Genetic algorithms and machine learning publication-title: Machine Learning doi: 10.1023/A:1022602019183 – volume: 5 start-page: 6168 year: 2017 ident: 10.1016/j.eswa.2021.115032_b0080 article-title: Lévy flight trajectory-based whale optimization algorithm for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2695498 – volume: 198 start-page: 643 year: 2008 ident: 10.1016/j.eswa.2021.115032_b0135 article-title: Global-best harmony search publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2007.09.004 – volume: 43 start-page: 248 year: 2016 ident: 10.1016/j.eswa.2021.115032_b0050 article-title: An enhanced particle swarm optimization with levy flight for global optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.02.018 – volume: 35 start-page: 65 year: 2017 ident: 10.1016/j.eswa.2021.115032_b0140 article-title: Large-scale cooperative co-evolution using niching-based multi-modal optimization and adaptive fast clustering publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.03.001 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2021.115032_b0125 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 4 start-page: 6438 year: 2016 ident: 10.1016/j.eswa.2021.115032_b0075 article-title: Fuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregation publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2613940 – volume: 260 start-page: 302 year: 2017 ident: 10.1016/j.eswa.2021.115032_b0110 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 89 year: 2020 ident: 10.1016/j.eswa.2021.115032_b0095 article-title: Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of pv model publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2019.103457 – volume: 47 start-page: 644 year: 2019 ident: 10.1016/j.eswa.2021.115032_b0065 article-title: Hybrid whale optimization algorithm and grey wolf optimizer algorithm for optimal coordination of direction overcurrent relays publication-title: Electric Power Components and Systems doi: 10.1080/15325008.2019.1602687 – volume: 69 start-page: 330 year: 2018 ident: 10.1016/j.eswa.2021.115032_b0145 article-title: A semi-autonomous particle swarm optimizer based on gradient information and diversity control for global optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.04.027 – volume: 74 start-page: 479 year: 2018 ident: 10.1016/j.eswa.2021.115032_b0190 article-title: Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in permanent magnet synchronous motor publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.10.032 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.eswa.2021.115032_b0060 article-title: Particle swarm optimization publication-title: IEEE international conference on neural networks – volume: 161 start-page: 266 year: 2018 ident: 10.1016/j.eswa.2021.115032_b0085 article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.02.006 – volume: 12 start-page: 702 year: 2008 ident: 10.1016/j.eswa.2021.115032_b0150 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.919004 – volume: 32 start-page: 1305 year: 2020 ident: 10.1016/j.eswa.2021.115032_b0215 article-title: Improved GWO for large-scale function optimization and MLP optimization in cancer identification publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04483-4 – volume: 11 start-page: 652 year: 2011 ident: 10.1016/j.eswa.2021.115032_b0055 article-title: A novel clustering approach: Artificial bee colony (ABC) algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.12.025 – volume: 23 start-page: 2033 year: 2017 ident: 10.1016/j.eswa.2021.115032_b0195 article-title: A hybrid biogeography-based optimization and fuzzy c-means algorithm for image segmentation publication-title: Soft Computing doi: 10.1007/s00500-017-2916-9 – volume: 68 start-page: 63 year: 2018 ident: 10.1016/j.eswa.2021.115032_b0090 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2017.10.024 – ident: 10.1016/j.eswa.2021.115032_b0170 doi: 10.1109/CIMCA.2005.1631345 – volume: 381 start-page: 142 year: 2017 ident: 10.1016/j.eswa.2021.115032_b0045 article-title: Cooperation coevolution with fast interdependency identification for large scale optimization publication-title: Information Sciences doi: 10.1016/j.ins.2016.11.013 – volume: 86 year: 2020 ident: 10.1016/j.eswa.2021.115032_b0040 article-title: An improved whale optimization algorithm for forecasting water resources demand publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105925 |
| SSID | ssj0017007 |
| Score | 2.553777 |
| Snippet | •A novel two-stage individual-based Whale Optimization Algorithm is proposed.•Opposition learning and grey wolf optimizer are added to raise solution... In order to solve the problems, such as insufficient search ability and low search efficiency, of Whale Optimization Algorithm (WOA) in solving... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115032 |
| SubjectTerms | Algorithms Clustering Fuzzy C-means Fuzzy sets Grey Wolf optimizer High-dimensional problems Learning Operators (mathematics) Optimization Optimization algorithm Optimization algorithms Searching Whale optimization algorithm |
| Title | Hybrid whale optimization algorithm with gathering strategies for high-dimensional problems |
| URI | https://dx.doi.org/10.1016/j.eswa.2021.115032 https://www.proquest.com/docview/2550530609 |
| Volume | 179 |
| WOSCitedRecordID | wos000663549200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZu4e97Hu0XTf0sLegYMsfkh7L6OjKKIN1ENiDkWW5SUncknj9-O93Z0lOmrKyDfZigokto_vpdHe6-x0hH2RSGpnokkW85CwFg5pJIypY7lEV8xqNuo5n9os4OZHjsfo6GByHWpirmWgaeXOjLv-rqOEeCBtLZ_9C3P1L4Qb8BqHDFcQO1z8S_NEtFmENryca8wZBI8x9qeVQz84uFtN2MnfR1zNf_IfxhEAY0WUdIoUxq5D231F2DH3XmeWdMD5yJLeeCTrUyK2dht-LSI-nzTzsk91RkIu8TjT27GrWow887vPYfEgslMWscpBcbFGwNHbtd0bWaVYpEpYL1w6xV72ukcw9Ne4iCucju7xGbigej9Bw9YHQu_TY33AwHIsj951Iskdkm4tMgYbbPvh8OD7uz5RE5Irnw8f5EiqX7bc50u_MlI0Nu7NCTp-Tp959oAdO7C_IwDYvybPQmoN6Tf2K_HAooB0K6DoKaI8CijKjPQroCgUUUEA3UUADCl6T758OTz8eMd9Hg5mEy5bJtM6NqcEx1eC_WoOtPXhea5Ooqs6tKMFliGWZVyovdSxMJlVeGaFrbUVulE3ekK3morE7hKa4Q9goKyNVpZmtS7DutE7jKlJRalW2S-IwbYXxJPPY62RWhGzC8wKnusCpLtxU75Jh_8ylo1h58N9ZkEbhjURn_BUAngef2w-iK_xqXRYc_XNwmiO194-vfUuerJbFPtlqFz_tO_LYXLXT5eK9h-Av_DWZVQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+whale+optimization+algorithm+with+gathering+strategies+for+high-dimensional+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Xinming&rft.au=Wen%2C+Shaochen&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=179&rft_id=info:doi/10.1016%2Fj.eswa.2021.115032&rft.externalDocID=S0957417421004735 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |