Distributed Optimization for Second-Order Discrete-Time Multiagent Systems With Set Constraints

The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents cooperatively search an optimal solution of a global objective function summed by multiple local ones within the intersection of multiple cons...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 34; číslo 9; s. 5629 - 5639
Hlavní autoři: Zou, Yao, Xia, Kewei, Huang, Bomin, Meng, Ziyang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents cooperatively search an optimal solution of a global objective function summed by multiple local ones within the intersection of multiple constrained sets. We also consider that each pair of local objective function and constrained set is exclusively accessible to the respective agent, and each agent just interacts with its local neighbors. By borrowing from the consensus idea, a projection-based distributed optimization algorithm resorting to an auxiliary dynamics is first proposed without interacting the gradient information of local objective functions. Next, by considering the local objective functions being strongly convex, selection criteria of step size and algorithm parameter are built such that the unique solution to the concerned optimization problem is obtained. Moreover, by fixing a unit step size, it is also shown that the optimization result can be relaxed to the case with just convex local objective functions given a properly chosen algorithm parameter. Finally, practical and numerical examples are taken to verify the proposed optimization results.
AbstractList The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents cooperatively search an optimal solution of a global objective function summed by multiple local ones within the intersection of multiple constrained sets. We also consider that each pair of local objective function and constrained set is exclusively accessible to the respective agent, and each agent just interacts with its local neighbors. By borrowing from the consensus idea, a projection-based distributed optimization algorithm resorting to an auxiliary dynamics is first proposed without interacting the gradient information of local objective functions. Next, by considering the local objective functions being strongly convex, selection criteria of step size and algorithm parameter are built such that the unique solution to the concerned optimization problem is obtained. Moreover, by fixing a unit step size, it is also shown that the optimization result can be relaxed to the case with just convex local objective functions given a properly chosen algorithm parameter. Finally, practical and numerical examples are taken to verify the proposed optimization results.The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents cooperatively search an optimal solution of a global objective function summed by multiple local ones within the intersection of multiple constrained sets. We also consider that each pair of local objective function and constrained set is exclusively accessible to the respective agent, and each agent just interacts with its local neighbors. By borrowing from the consensus idea, a projection-based distributed optimization algorithm resorting to an auxiliary dynamics is first proposed without interacting the gradient information of local objective functions. Next, by considering the local objective functions being strongly convex, selection criteria of step size and algorithm parameter are built such that the unique solution to the concerned optimization problem is obtained. Moreover, by fixing a unit step size, it is also shown that the optimization result can be relaxed to the case with just convex local objective functions given a properly chosen algorithm parameter. Finally, practical and numerical examples are taken to verify the proposed optimization results.
The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents cooperatively search an optimal solution of a global objective function summed by multiple local ones within the intersection of multiple constrained sets. We also consider that each pair of local objective function and constrained set is exclusively accessible to the respective agent, and each agent just interacts with its local neighbors. By borrowing from the consensus idea, a projection-based distributed optimization algorithm resorting to an auxiliary dynamics is first proposed without interacting the gradient information of local objective functions. Next, by considering the local objective functions being strongly convex, selection criteria of step size and algorithm parameter are built such that the unique solution to the concerned optimization problem is obtained. Moreover, by fixing a unit step size, it is also shown that the optimization result can be relaxed to the case with just convex local objective functions given a properly chosen algorithm parameter. Finally, practical and numerical examples are taken to verify the proposed optimization results.
Author Huang, Bomin
Meng, Ziyang
Zou, Yao
Xia, Kewei
Author_xml – sequence: 1
  givenname: Yao
  orcidid: 0000-0002-7579-3813
  surname: Zou
  fullname: Zou, Yao
  email: zouyao@ustb.edu.cn
  organization: School of Automation and Electrical Engineering and the Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Kewei
  orcidid: 0000-0002-9526-1101
  surname: Xia
  fullname: Xia, Kewei
  email: kwxia134@gmail.com
  organization: Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Bomin
  orcidid: 0000-0003-2397-6738
  surname: Huang
  fullname: Huang, Bomin
  email: huangbomin01@hotmail.com
  organization: School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
– sequence: 4
  givenname: Ziyang
  orcidid: 0000-0002-3742-0039
  surname: Meng
  fullname: Meng, Ziyang
  email: ziyangmeng@mail.tsinghua.edu.cn
  organization: Department of Precision Instrument, Tsinghua University, Beijing, China
BookMark eNp9kUtP4zAURi3EaHhM_wBsIrFhk45fSZwlKk-p0y7a0czOSpxrMErsYjuL8utxKWLBAutK9uKcq-v7naBD6ywgdEbwlBBc_14vFvPVlGJKpowwTCp2gI4pKWlOmRCHn-_q_xGahPCM0ylxUfL6JzpiXFSpimMkr02I3rRjhC5bbqIZzGsTjbOZdj5bgXK2y5e-A58lUnmIkK_NANmfsY-meQQbs9U2RBhC9s_Ep6TEbOZsatoYG8Mv9EM3fYDJx32K_t7erGf3-Xx59zC7mueKURHzSrUtdKXWGoSoAEgjSqWV4hwXjGqsmaoUFh0UNdUlFVAApwniXLct7Qg7RZf7vhvvXkYIUQ5pXOj7xoIbg6QlFoTRqsAJvfiCPrvR2zSdpKKoK0JxvaPEnlLeheBBS2Xi-2Z2P-slwXKXg3zPQe5ykB85JJV-UTfeDI3ffi-d7yUDAJ9CXXLMRc3eAJ2SlT4
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3326177
crossref_primary_10_1080_00207721_2025_2507841
crossref_primary_10_1016_j_isatra_2025_04_004
crossref_primary_10_1080_00207721_2022_2097332
crossref_primary_10_1002_rnc_7730
crossref_primary_10_1002_oca_3128
crossref_primary_10_1109_TCNS_2024_3371550
crossref_primary_10_1016_j_automatica_2024_111727
crossref_primary_10_1109_TCYB_2024_3440349
Cites_doi 10.1109/TAC.2020.2972824
10.1016/j.automatica.2015.05.014
10.1142/S230138501640001X
10.1109/TNNLS.2019.2951790
10.1016/j.arcontrol.2019.05.006
10.1109/ACCESS.2019.2905874
10.1109/TAC.2017.2737959
10.1109/LCSYS.2020.3001998
10.1109/TCNS.2021.3092832
10.1137/1.9781611970432
10.1109/TWC.2015.2402672
10.1109/TAC.2016.2593899
10.1109/TAC.2020.3021011
10.1109/TAC.2017.2681200
10.1109/TAC.2010.2041686
10.1109/TCYB.2019.2948424
10.1109/TAC.2014.2364096
10.1109/TAC.2013.2278132
10.1049/iet-cta.2015.1051
10.1016/j.automatica.2017.01.004
10.1109/TAC.2008.2009515
10.1109/TNNLS.2020.2984584
10.1109/ACCESS.2019.2925414
10.1016/j.neucom.2018.01.082
10.1109/TAC.2017.2750103
10.1109/MSP.2020.2975210
10.1016/j.automatica.2015.11.015
10.1016/j.automatica.2020.109289
10.1109/TAC.2012.2184199
10.1109/TAC.2018.2884998
10.1002/rnc.4289
10.1109/TSMC.2019.2960541
10.1016/j.automatica.2017.07.010
10.1109/TAC.2014.2308612
10.1109/TAC.2017.2672698
10.1109/TAC.2015.2416927
10.1109/TNNLS.2013.2244908
10.1109/TSMC.2019.2905253
10.1016/j.automatica.2020.109060
10.1109/TAC.2019.2917023
10.1109/TCYB.2020.2988490
10.1016/j.jfranklin.2018.02.009
10.1109/TAC.2020.2979274
10.1016/j.automatica.2018.10.048
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3130173
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 5639
ExternalDocumentID 10_1109_TNNLS_2021_3130173
9640489
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62073028; 61873140; 61833009; U19B2029
  funderid: 10.13039/501100001809
– fundername: Interdisciplinary Research Project for Young Teachers of University of Science and Technology Beijing (Fundamental Research Funds for the Central Universities)
  grantid: FRF-IDRY-20-027
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c328t-7cbbed6fffe887ee1a86cfcc440532f0f3c7c08de592f628e5e421a844fbb2d13
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732219000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 20:19:37 EDT 2025
Mon Jun 30 05:04:36 EDT 2025
Sat Nov 29 01:40:17 EST 2025
Tue Nov 18 21:49:20 EST 2025
Wed Aug 27 02:51:09 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-7cbbed6fffe887ee1a86cfcc440532f0f3c7c08de592f628e5e421a844fbb2d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9526-1101
0000-0003-2397-6738
0000-0002-3742-0039
0000-0002-7579-3813
PMID 34874875
PQID 2859712090
PQPubID 85436
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2021_3130173
proquest_journals_2859712090
crossref_primary_10_1109_TNNLS_2021_3130173
ieee_primary_9640489
proquest_miscellaneous_2608132750
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
kinderlehrer (ref40) 1980
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref42
ref41
ref22
ref21
ref43
bazaraa (ref44) 1993
ref28
ref27
ref29
ref8
ref7
lee (ref20) 2017
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1109/TAC.2020.2972824
– ident: ref4
  doi: 10.1016/j.automatica.2015.05.014
– ident: ref35
  doi: 10.1142/S230138501640001X
– ident: ref28
  doi: 10.1109/TNNLS.2019.2951790
– ident: ref1
  doi: 10.1016/j.arcontrol.2019.05.006
– ident: ref38
  doi: 10.1109/ACCESS.2019.2905874
– ident: ref24
  doi: 10.1109/TAC.2017.2737959
– ident: ref17
  doi: 10.1109/LCSYS.2020.3001998
– ident: ref27
  doi: 10.1109/TCNS.2021.3092832
– ident: ref45
  doi: 10.1137/1.9781611970432
– ident: ref23
  doi: 10.1109/TWC.2015.2402672
– ident: ref30
  doi: 10.1109/TAC.2016.2593899
– ident: ref22
  doi: 10.1109/TAC.2020.3021011
– ident: ref42
  doi: 10.1109/TAC.2017.2681200
– ident: ref13
  doi: 10.1109/TAC.2010.2041686
– ident: ref3
  doi: 10.1109/TCYB.2019.2948424
– ident: ref21
  doi: 10.1109/TAC.2014.2364096
– year: 1980
  ident: ref40
  publication-title: An Introduction to Variational Inequalities and Their Applications
– ident: ref41
  doi: 10.1109/TAC.2013.2278132
– ident: ref8
  doi: 10.1049/iet-cta.2015.1051
– ident: ref36
  doi: 10.1016/j.automatica.2017.01.004
– year: 2017
  ident: ref20
  article-title: On the sublinear regret of distributed primal-dual algorithms for online constrained optimization
  publication-title: arXiv 1705 11128
– ident: ref12
  doi: 10.1109/TAC.2008.2009515
– ident: ref18
  doi: 10.1109/TNNLS.2020.2984584
– ident: ref39
  doi: 10.1109/ACCESS.2019.2925414
– ident: ref31
  doi: 10.1016/j.neucom.2018.01.082
– ident: ref11
  doi: 10.1109/TAC.2017.2750103
– ident: ref2
  doi: 10.1109/MSP.2020.2975210
– ident: ref10
  doi: 10.1016/j.automatica.2015.11.015
– ident: ref9
  doi: 10.1016/j.automatica.2020.109289
– ident: ref6
  doi: 10.1109/TAC.2012.2184199
– ident: ref14
  doi: 10.1109/TAC.2018.2884998
– ident: ref7
  doi: 10.1002/rnc.4289
– year: 1993
  ident: ref44
  publication-title: Nonlinear Programming Theory and Algorithms
– ident: ref46
  doi: 10.1109/TSMC.2019.2960541
– ident: ref34
  doi: 10.1016/j.automatica.2017.07.010
– ident: ref15
  doi: 10.1109/TAC.2014.2308612
– ident: ref19
  doi: 10.1109/TAC.2017.2672698
– ident: ref5
  doi: 10.1109/TAC.2015.2416927
– ident: ref43
  doi: 10.1109/TNNLS.2013.2244908
– ident: ref47
  doi: 10.1109/TSMC.2019.2905253
– ident: ref37
  doi: 10.1016/j.automatica.2020.109060
– ident: ref32
  doi: 10.1109/TAC.2019.2917023
– ident: ref29
  doi: 10.1109/TCYB.2020.2988490
– ident: ref26
  doi: 10.1016/j.jfranklin.2018.02.009
– ident: ref25
  doi: 10.1109/TAC.2020.2979274
– ident: ref33
  doi: 10.1016/j.automatica.2018.10.048
SSID ssj0000605649
Score 2.5121105
Snippet The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5629
SubjectTerms Algorithms
Consensus
Constraints
Convergence
convex functions
Discrete time systems
Distributed algorithms
distributed optimization
Heuristic algorithms
Linear programming
Multi-agent systems
Multiagent systems
Objective function
Optimization
Parameters
Topology
Title Distributed Optimization for Second-Order Discrete-Time Multiagent Systems With Set Constraints
URI https://ieeexplore.ieee.org/document/9640489
https://www.proquest.com/docview/2859712090
https://www.proquest.com/docview/2608132750
Volume 34
WOSCitedRecordID wos000732219000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RaxQxEB7a4oMvVq3i2Voi-Kax2Wwu2X0UtfggV6EV723ZJBMs1Dvp7fn7O5PNLYIi-LawkyXsTJKZJN_3AbyiVdRH3feybo2XzD8i-zCvpWcY49x769UoNuEWi2a5bL_swZsJC4OI-fIZvuXHfJYf12HLW2VnrTUUcO0-7DtnR6zWtJ-iKC-3OdvVldVS1265w8io9uxqsfh8SdWgrqhIpZh2rJ9TU7Ju8g3D35akrLHyx8ScV5vzw__r50N4ULJK8W4Mg0ewh6vHcLhTbBBlAB9B94F5clniCqO4oNniR4FhCspdxSUXx1FeMBunIEtKKAeUDBIRGafbMwxLFI5z8e16-E5NBsGan1lpYtg8ga_nH6_ef5JFYkGGWjeDdMF7jDalhDTbIFZ9Y0MKwRhWjEgq1cEF1USctzpZ3eAcjSYjY5L3Olb1UzhYrVf4DARSnY0-UYlko6mi6ZPyPc8fyrhk0M6g2v3lLhT-ce7cTZfrENV22UkdO6krTprB66nNz5F945_WR-yLybK4YQYnO2d2ZYBuOubtc4wbVjN4Ob2mocXnJf0K11uysZQv1UyA__zvXz6G-6w-P145O4GD4XaLL-Be-DVcb25PKUqXzWmO0juV1OLR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ri9QwEB7OU9AXTz0PV0-N4JvGS9M0bR9FPU5ce8KtuG-lSSZ4oLty2_X3O5N2i6AIvhU6KaEzSWaSfN8H8JxWURd018m8Nk4y_4jsfJFLxzDGwjnr1CA2UTZNtVzWn_bg5YSFQcR0-Qxf8WM6yw9rv-WtspPaGgq4-hpcL4zRakBrTTsqijJzm_JdnVktdV4udygZVZ8smmZ-QfWgzqhMpaguWUEnp3TdpDuGvy1KSWXlj6k5rTenB__X0ztwe8wrxeshEO7CHq7uwcFOs0GMQ_gQ2rfMlMsiVxjEOc0X30cgpqDsVVxweRzkOfNxCrKklLJHyTARkZC6HQOxxMhyLr5c9l-pSS9Y9TNpTfSb-_D59N3izZkcRRakz3XVy9I7h8HGGJHmG8Ssq6yP3hvDmhFRxdyXXlUBi1pHqyss0GgyMiY6p0OWH8H-ar3CByCQKm10kYokG0wWTBeV63gGUaaMBu0Mst1fbv3IQM6d-9amSkTVbXJSy05qRyfN4MXU5sfAv_FP60P2xWQ5umEGxztntuMQ3bTM3FcycljN4Nn0mgYXn5h0K1xvycZSxpQzBf7Dv3_5Kdw8W3yct_P3zYdHcIu16IcLaMew319t8THc8D_7y83VkxSrvwAtvuUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Optimization+for+Second-Order+Discrete-Time+Multiagent+Systems+With+Set+Constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zou%2C+Yao&rft.au=Xia%2C+Kewei&rft.au=Huang%2C+Bomin&rft.au=Meng%2C+Ziyang&rft.date=2023-09-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=34&rft.issue=9&rft.spage=5629&rft.epage=5639&rft_id=info:doi/10.1109%2FTNNLS.2021.3130173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2021_3130173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon