Distributed Optimization for Second-Order Discrete-Time Multiagent Systems With Set Constraints
The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents cooperatively search an optimal solution of a global objective function summed by multiple local ones within the intersection of multiple cons...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 34; číslo 9; s. 5629 - 5639 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents cooperatively search an optimal solution of a global objective function summed by multiple local ones within the intersection of multiple constrained sets. We also consider that each pair of local objective function and constrained set is exclusively accessible to the respective agent, and each agent just interacts with its local neighbors. By borrowing from the consensus idea, a projection-based distributed optimization algorithm resorting to an auxiliary dynamics is first proposed without interacting the gradient information of local objective functions. Next, by considering the local objective functions being strongly convex, selection criteria of step size and algorithm parameter are built such that the unique solution to the concerned optimization problem is obtained. Moreover, by fixing a unit step size, it is also shown that the optimization result can be relaxed to the case with just convex local objective functions given a properly chosen algorithm parameter. Finally, practical and numerical examples are taken to verify the proposed optimization results. |
|---|---|
| AbstractList | The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents cooperatively search an optimal solution of a global objective function summed by multiple local ones within the intersection of multiple constrained sets. We also consider that each pair of local objective function and constrained set is exclusively accessible to the respective agent, and each agent just interacts with its local neighbors. By borrowing from the consensus idea, a projection-based distributed optimization algorithm resorting to an auxiliary dynamics is first proposed without interacting the gradient information of local objective functions. Next, by considering the local objective functions being strongly convex, selection criteria of step size and algorithm parameter are built such that the unique solution to the concerned optimization problem is obtained. Moreover, by fixing a unit step size, it is also shown that the optimization result can be relaxed to the case with just convex local objective functions given a properly chosen algorithm parameter. Finally, practical and numerical examples are taken to verify the proposed optimization results.The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents cooperatively search an optimal solution of a global objective function summed by multiple local ones within the intersection of multiple constrained sets. We also consider that each pair of local objective function and constrained set is exclusively accessible to the respective agent, and each agent just interacts with its local neighbors. By borrowing from the consensus idea, a projection-based distributed optimization algorithm resorting to an auxiliary dynamics is first proposed without interacting the gradient information of local objective functions. Next, by considering the local objective functions being strongly convex, selection criteria of step size and algorithm parameter are built such that the unique solution to the concerned optimization problem is obtained. Moreover, by fixing a unit step size, it is also shown that the optimization result can be relaxed to the case with just convex local objective functions given a properly chosen algorithm parameter. Finally, practical and numerical examples are taken to verify the proposed optimization results. The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents cooperatively search an optimal solution of a global objective function summed by multiple local ones within the intersection of multiple constrained sets. We also consider that each pair of local objective function and constrained set is exclusively accessible to the respective agent, and each agent just interacts with its local neighbors. By borrowing from the consensus idea, a projection-based distributed optimization algorithm resorting to an auxiliary dynamics is first proposed without interacting the gradient information of local objective functions. Next, by considering the local objective functions being strongly convex, selection criteria of step size and algorithm parameter are built such that the unique solution to the concerned optimization problem is obtained. Moreover, by fixing a unit step size, it is also shown that the optimization result can be relaxed to the case with just convex local objective functions given a properly chosen algorithm parameter. Finally, practical and numerical examples are taken to verify the proposed optimization results. |
| Author | Huang, Bomin Meng, Ziyang Zou, Yao Xia, Kewei |
| Author_xml | – sequence: 1 givenname: Yao orcidid: 0000-0002-7579-3813 surname: Zou fullname: Zou, Yao email: zouyao@ustb.edu.cn organization: School of Automation and Electrical Engineering and the Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Kewei orcidid: 0000-0002-9526-1101 surname: Xia fullname: Xia, Kewei email: kwxia134@gmail.com organization: Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Bomin orcidid: 0000-0003-2397-6738 surname: Huang fullname: Huang, Bomin email: huangbomin01@hotmail.com organization: School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China – sequence: 4 givenname: Ziyang orcidid: 0000-0002-3742-0039 surname: Meng fullname: Meng, Ziyang email: ziyangmeng@mail.tsinghua.edu.cn organization: Department of Precision Instrument, Tsinghua University, Beijing, China |
| BookMark | eNp9kUtP4zAURi3EaHhM_wBsIrFhk45fSZwlKk-p0y7a0czOSpxrMErsYjuL8utxKWLBAutK9uKcq-v7naBD6ywgdEbwlBBc_14vFvPVlGJKpowwTCp2gI4pKWlOmRCHn-_q_xGahPCM0ylxUfL6JzpiXFSpimMkr02I3rRjhC5bbqIZzGsTjbOZdj5bgXK2y5e-A58lUnmIkK_NANmfsY-meQQbs9U2RBhC9s_Ep6TEbOZsatoYG8Mv9EM3fYDJx32K_t7erGf3-Xx59zC7mueKURHzSrUtdKXWGoSoAEgjSqWV4hwXjGqsmaoUFh0UNdUlFVAApwniXLct7Qg7RZf7vhvvXkYIUQ5pXOj7xoIbg6QlFoTRqsAJvfiCPrvR2zSdpKKoK0JxvaPEnlLeheBBS2Xi-2Z2P-slwXKXg3zPQe5ykB85JJV-UTfeDI3ffi-d7yUDAJ9CXXLMRc3eAJ2SlT4 |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3326177 crossref_primary_10_1080_00207721_2025_2507841 crossref_primary_10_1016_j_isatra_2025_04_004 crossref_primary_10_1080_00207721_2022_2097332 crossref_primary_10_1002_rnc_7730 crossref_primary_10_1002_oca_3128 crossref_primary_10_1109_TCNS_2024_3371550 crossref_primary_10_1016_j_automatica_2024_111727 crossref_primary_10_1109_TCYB_2024_3440349 |
| Cites_doi | 10.1109/TAC.2020.2972824 10.1016/j.automatica.2015.05.014 10.1142/S230138501640001X 10.1109/TNNLS.2019.2951790 10.1016/j.arcontrol.2019.05.006 10.1109/ACCESS.2019.2905874 10.1109/TAC.2017.2737959 10.1109/LCSYS.2020.3001998 10.1109/TCNS.2021.3092832 10.1137/1.9781611970432 10.1109/TWC.2015.2402672 10.1109/TAC.2016.2593899 10.1109/TAC.2020.3021011 10.1109/TAC.2017.2681200 10.1109/TAC.2010.2041686 10.1109/TCYB.2019.2948424 10.1109/TAC.2014.2364096 10.1109/TAC.2013.2278132 10.1049/iet-cta.2015.1051 10.1016/j.automatica.2017.01.004 10.1109/TAC.2008.2009515 10.1109/TNNLS.2020.2984584 10.1109/ACCESS.2019.2925414 10.1016/j.neucom.2018.01.082 10.1109/TAC.2017.2750103 10.1109/MSP.2020.2975210 10.1016/j.automatica.2015.11.015 10.1016/j.automatica.2020.109289 10.1109/TAC.2012.2184199 10.1109/TAC.2018.2884998 10.1002/rnc.4289 10.1109/TSMC.2019.2960541 10.1016/j.automatica.2017.07.010 10.1109/TAC.2014.2308612 10.1109/TAC.2017.2672698 10.1109/TAC.2015.2416927 10.1109/TNNLS.2013.2244908 10.1109/TSMC.2019.2905253 10.1016/j.automatica.2020.109060 10.1109/TAC.2019.2917023 10.1109/TCYB.2020.2988490 10.1016/j.jfranklin.2018.02.009 10.1109/TAC.2020.2979274 10.1016/j.automatica.2018.10.048 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2021.3130173 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 5639 |
| ExternalDocumentID | 10_1109_TNNLS_2021_3130173 9640489 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62073028; 61873140; 61833009; U19B2029 funderid: 10.13039/501100001809 – fundername: Interdisciplinary Research Project for Young Teachers of University of Science and Technology Beijing (Fundamental Research Funds for the Central Universities) grantid: FRF-IDRY-20-027 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c328t-7cbbed6fffe887ee1a86cfcc440532f0f3c7c08de592f628e5e421a844fbb2d13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732219000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Sep 27 20:19:37 EDT 2025 Mon Jun 30 05:04:36 EDT 2025 Sat Nov 29 01:40:17 EST 2025 Tue Nov 18 21:49:20 EST 2025 Wed Aug 27 02:51:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-7cbbed6fffe887ee1a86cfcc440532f0f3c7c08de592f628e5e421a844fbb2d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9526-1101 0000-0003-2397-6738 0000-0002-3742-0039 0000-0002-7579-3813 |
| PMID | 34874875 |
| PQID | 2859712090 |
| PQPubID | 85436 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2021_3130173 proquest_journals_2859712090 crossref_primary_10_1109_TNNLS_2021_3130173 ieee_primary_9640489 proquest_miscellaneous_2608132750 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 kinderlehrer (ref40) 1980 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref42 ref41 ref22 ref21 ref43 bazaraa (ref44) 1993 ref28 ref27 ref29 ref8 ref7 lee (ref20) 2017 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref16 doi: 10.1109/TAC.2020.2972824 – ident: ref4 doi: 10.1016/j.automatica.2015.05.014 – ident: ref35 doi: 10.1142/S230138501640001X – ident: ref28 doi: 10.1109/TNNLS.2019.2951790 – ident: ref1 doi: 10.1016/j.arcontrol.2019.05.006 – ident: ref38 doi: 10.1109/ACCESS.2019.2905874 – ident: ref24 doi: 10.1109/TAC.2017.2737959 – ident: ref17 doi: 10.1109/LCSYS.2020.3001998 – ident: ref27 doi: 10.1109/TCNS.2021.3092832 – ident: ref45 doi: 10.1137/1.9781611970432 – ident: ref23 doi: 10.1109/TWC.2015.2402672 – ident: ref30 doi: 10.1109/TAC.2016.2593899 – ident: ref22 doi: 10.1109/TAC.2020.3021011 – ident: ref42 doi: 10.1109/TAC.2017.2681200 – ident: ref13 doi: 10.1109/TAC.2010.2041686 – ident: ref3 doi: 10.1109/TCYB.2019.2948424 – ident: ref21 doi: 10.1109/TAC.2014.2364096 – year: 1980 ident: ref40 publication-title: An Introduction to Variational Inequalities and Their Applications – ident: ref41 doi: 10.1109/TAC.2013.2278132 – ident: ref8 doi: 10.1049/iet-cta.2015.1051 – ident: ref36 doi: 10.1016/j.automatica.2017.01.004 – year: 2017 ident: ref20 article-title: On the sublinear regret of distributed primal-dual algorithms for online constrained optimization publication-title: arXiv 1705 11128 – ident: ref12 doi: 10.1109/TAC.2008.2009515 – ident: ref18 doi: 10.1109/TNNLS.2020.2984584 – ident: ref39 doi: 10.1109/ACCESS.2019.2925414 – ident: ref31 doi: 10.1016/j.neucom.2018.01.082 – ident: ref11 doi: 10.1109/TAC.2017.2750103 – ident: ref2 doi: 10.1109/MSP.2020.2975210 – ident: ref10 doi: 10.1016/j.automatica.2015.11.015 – ident: ref9 doi: 10.1016/j.automatica.2020.109289 – ident: ref6 doi: 10.1109/TAC.2012.2184199 – ident: ref14 doi: 10.1109/TAC.2018.2884998 – ident: ref7 doi: 10.1002/rnc.4289 – year: 1993 ident: ref44 publication-title: Nonlinear Programming Theory and Algorithms – ident: ref46 doi: 10.1109/TSMC.2019.2960541 – ident: ref34 doi: 10.1016/j.automatica.2017.07.010 – ident: ref15 doi: 10.1109/TAC.2014.2308612 – ident: ref19 doi: 10.1109/TAC.2017.2672698 – ident: ref5 doi: 10.1109/TAC.2015.2416927 – ident: ref43 doi: 10.1109/TNNLS.2013.2244908 – ident: ref47 doi: 10.1109/TSMC.2019.2905253 – ident: ref37 doi: 10.1016/j.automatica.2020.109060 – ident: ref32 doi: 10.1109/TAC.2019.2917023 – ident: ref29 doi: 10.1109/TCYB.2020.2988490 – ident: ref26 doi: 10.1016/j.jfranklin.2018.02.009 – ident: ref25 doi: 10.1109/TAC.2020.2979274 – ident: ref33 doi: 10.1016/j.automatica.2018.10.048 |
| SSID | ssj0000605649 |
| Score | 2.5121105 |
| Snippet | The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5629 |
| SubjectTerms | Algorithms Consensus Constraints Convergence convex functions Discrete time systems Distributed algorithms distributed optimization Heuristic algorithms Linear programming Multi-agent systems Multiagent systems Objective function Optimization Parameters Topology |
| Title | Distributed Optimization for Second-Order Discrete-Time Multiagent Systems With Set Constraints |
| URI | https://ieeexplore.ieee.org/document/9640489 https://www.proquest.com/docview/2859712090 https://www.proquest.com/docview/2608132750 |
| Volume | 34 |
| WOSCitedRecordID | wos000732219000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RaxQxEB7a4oMvVq3i2Voi-Kax2Wwu2X0UtfggV6EV723ZJBMs1Dvp7fn7O5PNLYIi-LawkyXsTJKZJN_3AbyiVdRH3feybo2XzD8i-zCvpWcY49x769UoNuEWi2a5bL_swZsJC4OI-fIZvuXHfJYf12HLW2VnrTUUcO0-7DtnR6zWtJ-iKC-3OdvVldVS1265w8io9uxqsfh8SdWgrqhIpZh2rJ9TU7Ju8g3D35akrLHyx8ScV5vzw__r50N4ULJK8W4Mg0ewh6vHcLhTbBBlAB9B94F5clniCqO4oNniR4FhCspdxSUXx1FeMBunIEtKKAeUDBIRGafbMwxLFI5z8e16-E5NBsGan1lpYtg8ga_nH6_ef5JFYkGGWjeDdMF7jDalhDTbIFZ9Y0MKwRhWjEgq1cEF1USctzpZ3eAcjSYjY5L3Olb1UzhYrVf4DARSnY0-UYlko6mi6ZPyPc8fyrhk0M6g2v3lLhT-ce7cTZfrENV22UkdO6krTprB66nNz5F945_WR-yLybK4YQYnO2d2ZYBuOubtc4wbVjN4Ob2mocXnJf0K11uysZQv1UyA__zvXz6G-6w-P145O4GD4XaLL-Be-DVcb25PKUqXzWmO0juV1OLR |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ri9QwEB7OU9AXTz0PV0-N4JvGS9M0bR9FPU5ce8KtuG-lSSZ4oLty2_X3O5N2i6AIvhU6KaEzSWaSfN8H8JxWURd018m8Nk4y_4jsfJFLxzDGwjnr1CA2UTZNtVzWn_bg5YSFQcR0-Qxf8WM6yw9rv-WtspPaGgq4-hpcL4zRakBrTTsqijJzm_JdnVktdV4udygZVZ8smmZ-QfWgzqhMpaguWUEnp3TdpDuGvy1KSWXlj6k5rTenB__X0ztwe8wrxeshEO7CHq7uwcFOs0GMQ_gQ2rfMlMsiVxjEOc0X30cgpqDsVVxweRzkOfNxCrKklLJHyTARkZC6HQOxxMhyLr5c9l-pSS9Y9TNpTfSb-_D59N3izZkcRRakz3XVy9I7h8HGGJHmG8Ssq6yP3hvDmhFRxdyXXlUBi1pHqyss0GgyMiY6p0OWH8H-ar3CByCQKm10kYokG0wWTBeV63gGUaaMBu0Mst1fbv3IQM6d-9amSkTVbXJSy05qRyfN4MXU5sfAv_FP60P2xWQ5umEGxztntuMQ3bTM3FcycljN4Nn0mgYXn5h0K1xvycZSxpQzBf7Dv3_5Kdw8W3yct_P3zYdHcIu16IcLaMew319t8THc8D_7y83VkxSrvwAtvuUw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Optimization+for+Second-Order+Discrete-Time+Multiagent+Systems+With+Set+Constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zou%2C+Yao&rft.au=Xia%2C+Kewei&rft.au=Huang%2C+Bomin&rft.au=Meng%2C+Ziyang&rft.date=2023-09-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=34&rft.issue=9&rft.spage=5629&rft.epage=5639&rft_id=info:doi/10.1109%2FTNNLS.2021.3130173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2021_3130173 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |