Red fox optimization algorithm
Fox is very popular in various regions of the Globe, where representatives of this kind can be found in Europe, Asia, North America, and even in some arctic regions. The way this predator lives and hunts is very peculiar. It is active all year round, traversing the lands in hunting both for differen...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 166; S. 114107 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
15.03.2021
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Fox is very popular in various regions of the Globe, where representatives of this kind can be found in Europe, Asia, North America, and even in some arctic regions. The way this predator lives and hunts is very peculiar. It is active all year round, traversing the lands in hunting both for different domestic and wild animals. In his strategy fox is using various tricks to distract prey while creeping what makes him a very efficient predator. The territorial habits and family relations between young and adult made the fox easily adaptable to various conditions and therefore helped him to survive in a changing environment.
In this article we propose a mathematical model of red fox habits, searching for food, hunting, and developing population while escaping from hunters. Described model is based on local and global optimization method with a reproduction mechanism. The novel model developed for optimization purposes we name the Red Fox Optimization Algorithm (RFO). The proposed method was subjected to benchmark tests using 22 test functions and 7 classic engineering optimization problems. Experimental results are compared to other meta-heuristic algorithms to show potential advantages.
•Optimization paradigm based on mathematical model of red fox live and hunting behavior.•Efficient mechanisms of movement, hunting and developing population.•Fast convergence to the optimum and high efficiency in various optimization problems. |
|---|---|
| AbstractList | Fox is very popular in various regions of the Globe, where representatives of this kind can be found in Europe, Asia, North America, and even in some arctic regions. The way this predator lives and hunts is very peculiar. It is active all year round, traversing the lands in hunting both for different domestic and wild animals. In his strategy fox is using various tricks to distract prey while creeping what makes him a very efficient predator. The territorial habits and family relations between young and adult made the fox easily adaptable to various conditions and therefore helped him to survive in a changing environment.
In this article we propose a mathematical model of red fox habits, searching for food, hunting, and developing population while escaping from hunters. Described model is based on local and global optimization method with a reproduction mechanism. The novel model developed for optimization purposes we name the Red Fox Optimization Algorithm (RFO). The proposed method was subjected to benchmark tests using 22 test functions and 7 classic engineering optimization problems. Experimental results are compared to other meta-heuristic algorithms to show potential advantages.
•Optimization paradigm based on mathematical model of red fox live and hunting behavior.•Efficient mechanisms of movement, hunting and developing population.•Fast convergence to the optimum and high efficiency in various optimization problems. Fox is very popular in various regions of the Globe, where representatives of this kind can be found in Europe, Asia, North America, and even in some arctic regions. The way this predator lives and hunts is very peculiar. It is active all year round, traversing the lands in hunting both for different domestic and wild animals. In his strategy fox is using various tricks to distract prey while creeping what makes him a very efficient predator. The territorial habits and family relations between young and adult made the fox easily adaptable to various conditions and therefore helped him to survive in a changing environment. In this article we propose a mathematical model of red fox habits, searching for food, hunting, and developing population while escaping from hunters. Described model is based on local and global optimization method with a reproduction mechanism. The novel model developed for optimization purposes we name the Red Fox Optimization Algorithm (RFO). The proposed method was subjected to benchmark tests using 22 test functions and 7 classic engineering optimization problems. Experimental results are compared to other meta-heuristic algorithms to show potential advantages. |
| ArticleNumber | 114107 |
| Author | Woźniak, Marcin Połap, Dawid |
| Author_xml | – sequence: 1 givenname: Dawid surname: Połap fullname: Połap, Dawid email: Dawid.Polap@polsl.pl – sequence: 2 givenname: Marcin surname: Woźniak fullname: Woźniak, Marcin email: Marcin.Wozniak@polsl.pl |
| BookMark | eNp9kE1LAzEQhoMo2Fb_gAcpeN46-XCzC16k-AUFQfQcsslEs7SbmqR-_Xq3ricPPQ0M88zM-4zJfhc6JOSEwowCLc_bGaYPPWPA-gYVFOQeGdFK8qKUNd8nI6gvZCGoFIdknFILQCWAHJHTR7RTFz6nYZ39yn_r7EM31cuXEH1-XR2RA6eXCY__6oQ831w_ze-KxcPt_fxqURjOqlxI7QyjziFYVgrT1FTrqnSN1txZyWsDtXUNpdAAF6UF60pjapQSBTpNBZ-Qs2HvOoa3Daas2rCJXX9SMVEB9Ln6MBNSDVMmhpQiOmV8_v04R-2XioLa2lCt2tpQWxtqsNGj7B-6jn6l49du6HKAsI_-7jGqZDx2Bq2PaLKywe_CfwBd0HpG |
| CitedBy_id | crossref_primary_10_3390_pr9122276 crossref_primary_10_1007_s10462_022_10340_z crossref_primary_10_3390_biomimetics10050257 crossref_primary_10_1016_j_eswa_2023_121707 crossref_primary_10_1007_s11831_022_09800_0 crossref_primary_10_1016_j_eswa_2023_119992 crossref_primary_10_1038_s41598_024_77240_w crossref_primary_10_1007_s10462_025_11269_9 crossref_primary_10_3390_pr9071155 crossref_primary_10_1007_s00500_023_08205_w crossref_primary_10_1016_j_ins_2022_01_075 crossref_primary_10_1007_s12145_025_01801_4 crossref_primary_10_1016_j_swevo_2024_101754 crossref_primary_10_1016_j_ceramint_2021_11_322 crossref_primary_10_32604_cmc_2024_057431 crossref_primary_10_1016_j_asoc_2021_108126 crossref_primary_10_3390_e23081065 crossref_primary_10_1007_s11277_022_09765_0 crossref_primary_10_1016_j_ins_2024_120924 crossref_primary_10_1016_j_egyr_2021_04_052 crossref_primary_10_1088_2515_7620_ad9087 crossref_primary_10_3390_sym13122388 crossref_primary_10_1016_j_bspc_2023_105870 crossref_primary_10_1109_TCE_2024_3370505 crossref_primary_10_1007_s12065_022_00788_x crossref_primary_10_1007_s12065_025_01044_8 crossref_primary_10_1007_s12652_022_04342_6 crossref_primary_10_1080_15623599_2024_2400818 crossref_primary_10_3390_drones9040246 crossref_primary_10_1016_j_heliyon_2024_e31629 crossref_primary_10_46810_tdfd_1570735 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1007_s00500_023_08630_x crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_1007_s40435_021_00892_3 crossref_primary_10_1007_s11831_025_10234_7 crossref_primary_10_1016_j_asoc_2022_109722 crossref_primary_10_3390_app11031339 crossref_primary_10_1016_j_jer_2025_02_010 crossref_primary_10_33889_IJMEMS_2025_10_4_051 crossref_primary_10_3390_app13085102 crossref_primary_10_1177_14727978251352157 crossref_primary_10_3390_math10193466 crossref_primary_10_1007_s00202_024_02402_y crossref_primary_10_3390_biomimetics8060468 crossref_primary_10_1016_j_bspc_2024_106558 crossref_primary_10_1016_j_jnca_2024_104048 crossref_primary_10_1007_s10586_024_04725_8 crossref_primary_10_1007_s12145_025_01774_4 crossref_primary_10_1016_j_eswa_2021_116026 crossref_primary_10_1007_s10586_024_04328_3 crossref_primary_10_1016_j_asoc_2024_112433 crossref_primary_10_1080_23080477_2024_2370210 crossref_primary_10_3390_s25133875 crossref_primary_10_1016_j_eswa_2022_116625 crossref_primary_10_1080_23080477_2023_2229173 crossref_primary_10_1016_j_cma_2024_117718 crossref_primary_10_1186_s44147_024_00386_x crossref_primary_10_1007_s42979_023_02049_9 crossref_primary_10_1007_s12083_025_01951_8 crossref_primary_10_1016_j_knosys_2024_111850 crossref_primary_10_1007_s12652_022_03819_8 crossref_primary_10_1063_5_0108340 crossref_primary_10_1109_ACCESS_2025_3566163 crossref_primary_10_1007_s10586_024_04447_x crossref_primary_10_3390_s22103761 crossref_primary_10_1007_s10661_023_11544_8 crossref_primary_10_1016_j_cobeha_2022_101173 crossref_primary_10_1016_j_neucom_2023_02_010 crossref_primary_10_3390_math10081303 crossref_primary_10_1038_s41598_025_12816_8 crossref_primary_10_3390_biomimetics9100602 crossref_primary_10_1007_s00521_022_07369_0 crossref_primary_10_32604_cmc_2024_051336 crossref_primary_10_1080_03081079_2024_2339471 crossref_primary_10_1016_j_eswa_2022_116971 crossref_primary_10_1016_j_knosys_2025_113420 crossref_primary_10_1016_j_eswa_2021_116158 crossref_primary_10_1007_s12652_022_03751_x crossref_primary_10_1007_s10586_024_04680_4 crossref_primary_10_1016_j_isatra_2023_05_024 crossref_primary_10_1016_j_eswa_2022_116858 crossref_primary_10_3390_s22051795 crossref_primary_10_1016_j_eswa_2024_123184 crossref_primary_10_1016_j_knosys_2023_110472 crossref_primary_10_3390_a14120358 crossref_primary_10_1016_j_energy_2025_137964 crossref_primary_10_1007_s00500_025_10611_1 crossref_primary_10_1016_j_asoc_2024_111694 crossref_primary_10_1007_s10586_025_05378_x crossref_primary_10_1016_j_asoc_2023_110483 crossref_primary_10_3390_math10132329 crossref_primary_10_1038_s41598_025_01255_0 crossref_primary_10_1016_j_engappai_2024_109202 crossref_primary_10_1016_j_ins_2024_121495 crossref_primary_10_1007_s11220_024_00533_x crossref_primary_10_1007_s42235_024_00510_w crossref_primary_10_1016_j_jclepro_2022_133385 crossref_primary_10_1080_19942060_2023_2244558 crossref_primary_10_1016_j_engappai_2025_111358 crossref_primary_10_1016_j_asoc_2021_107872 crossref_primary_10_1016_j_asoc_2022_109774 crossref_primary_10_1109_ACCESS_2024_3453488 crossref_primary_10_1016_j_advengsoft_2021_103031 crossref_primary_10_1016_j_knosys_2022_109215 crossref_primary_10_32604_cmc_2023_030379 crossref_primary_10_1007_s00521_022_07530_9 crossref_primary_10_1016_j_ins_2021_08_038 crossref_primary_10_1080_03610918_2025_2523861 crossref_primary_10_1038_s41598_025_88135_9 crossref_primary_10_1007_s12065_024_00997_6 crossref_primary_10_3390_app13053206 crossref_primary_10_1016_j_eswa_2021_115178 crossref_primary_10_1038_s41598_025_08517_x crossref_primary_10_1016_j_asoc_2023_110252 crossref_primary_10_1016_j_bspc_2022_104245 crossref_primary_10_1007_s42979_023_02558_7 crossref_primary_10_1038_s41598_025_98721_6 crossref_primary_10_3390_biomimetics9090561 crossref_primary_10_1016_j_asoc_2025_112704 crossref_primary_10_1007_s12065_022_00762_7 crossref_primary_10_3390_math13071140 crossref_primary_10_1016_j_cmpb_2025_108838 crossref_primary_10_7717_peerj_cs_2031 crossref_primary_10_3390_a18070375 crossref_primary_10_3390_en15072566 crossref_primary_10_1038_s41598_025_99207_1 crossref_primary_10_3233_JIFS_224559 crossref_primary_10_1002_ett_4561 crossref_primary_10_3390_biomimetics7030084 crossref_primary_10_1016_j_jksuci_2024_102261 crossref_primary_10_1007_s12065_022_00726_x crossref_primary_10_1007_s10462_023_10446_y crossref_primary_10_1142_S0129183125500780 crossref_primary_10_3390_math12182918 crossref_primary_10_1038_s41598_024_63746_w crossref_primary_10_1155_2022_4494139 crossref_primary_10_1007_s42235_024_00579_3 crossref_primary_10_1016_j_eswa_2021_116468 crossref_primary_10_1038_s41598_024_54384_3 crossref_primary_10_1016_j_asoc_2024_111427 crossref_primary_10_1016_j_eswa_2022_118967 crossref_primary_10_1016_j_asoc_2021_107295 crossref_primary_10_1016_j_eswa_2023_122025 crossref_primary_10_1007_s10462_023_10680_4 crossref_primary_10_1155_2021_7788491 crossref_primary_10_1016_j_asoc_2022_109793 crossref_primary_10_1007_s12065_023_00866_8 crossref_primary_10_1016_j_swevo_2025_102089 crossref_primary_10_1007_s11235_024_01125_6 crossref_primary_10_3390_s24227303 crossref_primary_10_1016_j_cie_2022_107974 crossref_primary_10_1016_j_dajour_2023_100251 crossref_primary_10_1109_TBME_2021_3129459 crossref_primary_10_1016_j_eswa_2022_116895 crossref_primary_10_7717_peerj_cs_2930 crossref_primary_10_1016_j_eswa_2023_122711 crossref_primary_10_1080_23311916_2024_2432548 crossref_primary_10_1007_s00521_024_10346_4 crossref_primary_10_1007_s10489_023_04594_5 crossref_primary_10_1002_cpe_7860 crossref_primary_10_3390_math10030464 crossref_primary_10_1016_j_bspc_2024_106732 crossref_primary_10_1007_s10462_025_11351_2 crossref_primary_10_1016_j_dajour_2022_100125 crossref_primary_10_1007_s00521_023_08229_1 crossref_primary_10_1109_JSTARS_2025_3586324 crossref_primary_10_3390_app14146093 crossref_primary_10_1016_j_cossms_2023_101091 crossref_primary_10_1016_j_jmapro_2023_07_045 crossref_primary_10_3390_sym14112383 crossref_primary_10_1007_s12065_025_01052_8 crossref_primary_10_1016_j_knosys_2022_110146 crossref_primary_10_1007_s40747_023_01069_5 crossref_primary_10_1007_s10586_024_04673_3 crossref_primary_10_1007_s12293_025_00467_1 crossref_primary_10_1080_03772063_2025_2521681 crossref_primary_10_1007_s11227_024_06291_7 crossref_primary_10_1016_j_asoc_2021_108096 crossref_primary_10_1109_ACCESS_2024_3404825 crossref_primary_10_3389_fenrg_2022_1011887 crossref_primary_10_3390_electronics10172079 crossref_primary_10_1016_j_asoc_2021_108094 crossref_primary_10_1016_j_compbiomed_2023_107212 crossref_primary_10_1016_j_eswa_2023_122413 crossref_primary_10_1007_s10462_022_10233_1 crossref_primary_10_1007_s42235_023_00336_y crossref_primary_10_1007_s40808_025_02541_6 crossref_primary_10_1016_j_asr_2022_01_043 crossref_primary_10_1016_j_cma_2022_114616 crossref_primary_10_1016_j_isatra_2022_09_046 crossref_primary_10_32604_cmes_2023_029404 crossref_primary_10_3390_biomimetics8050386 crossref_primary_10_1016_j_eswa_2022_118642 crossref_primary_10_1016_j_jksus_2022_102463 crossref_primary_10_1016_j_asoc_2025_113527 crossref_primary_10_1109_TASE_2023_3238349 crossref_primary_10_1016_j_eswa_2023_121898 crossref_primary_10_1007_s10462_023_10542_z crossref_primary_10_1007_s10489_021_03155_y crossref_primary_10_1002_dac_70180 crossref_primary_10_1016_j_matcom_2022_12_022 crossref_primary_10_1016_j_cma_2023_116200 crossref_primary_10_1016_j_eswa_2025_127206 crossref_primary_10_1007_s41207_025_00893_0 crossref_primary_10_1016_j_cma_2023_116446 crossref_primary_10_1016_j_eswa_2023_122070 crossref_primary_10_1515_mt_2022_0048 crossref_primary_10_1007_s10586_025_05141_2 crossref_primary_10_1007_s12652_021_03183_z crossref_primary_10_1016_j_eswa_2024_124558 crossref_primary_10_1109_ACCESS_2022_3153493 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_1016_j_jnca_2023_103617 crossref_primary_10_1016_j_heliyon_2023_e21599 crossref_primary_10_1109_ACCESS_2022_3152160 crossref_primary_10_1007_s12065_024_00945_4 crossref_primary_10_1016_j_eswa_2021_116432 crossref_primary_10_1016_j_iot_2024_101135 crossref_primary_10_1007_s00500_022_07645_0 crossref_primary_10_1007_s12065_021_00688_6 crossref_primary_10_1016_j_eswa_2024_124343 crossref_primary_10_1016_j_ins_2022_11_164 crossref_primary_10_3390_s22155659 crossref_primary_10_1007_s10586_024_05024_y crossref_primary_10_1007_s44174_025_00398_y crossref_primary_10_1007_s10878_024_01233_8 crossref_primary_10_1038_s41598_022_08875_w crossref_primary_10_1016_j_eswa_2022_118460 crossref_primary_10_1016_j_eswa_2022_117255 crossref_primary_10_3390_pr9071194 crossref_primary_10_1007_s00521_024_09565_6 crossref_primary_10_1016_j_asoc_2023_110513 crossref_primary_10_1016_j_asoc_2024_111602 crossref_primary_10_1007_s10462_023_10683_1 crossref_primary_10_1080_19942060_2022_2098826 crossref_primary_10_3390_biomimetics7040144 crossref_primary_10_1016_j_asoc_2021_107598 crossref_primary_10_1016_j_eswa_2025_127575 crossref_primary_10_3390_systems10060201 crossref_primary_10_1038_s41598_024_61434_3 crossref_primary_10_1016_j_cma_2023_116582 crossref_primary_10_1016_j_measurement_2022_112230 crossref_primary_10_1007_s10489_022_03533_0 crossref_primary_10_32604_cmc_2023_034695 crossref_primary_10_1007_s00202_023_01944_x crossref_primary_10_1016_j_rineng_2025_104215 crossref_primary_10_1007_s10044_022_01107_x crossref_primary_10_1016_j_solener_2024_113038 crossref_primary_10_1007_s00521_024_09928_z crossref_primary_10_1007_s42835_021_00884_5 crossref_primary_10_1016_j_knosys_2025_113169 crossref_primary_10_1108_IJPCC_09_2021_0239 crossref_primary_10_1007_s10489_024_05505_y crossref_primary_10_1016_j_jestch_2023_101408 crossref_primary_10_1016_j_asoc_2022_108711 crossref_primary_10_1109_ACCESS_2023_3322205 crossref_primary_10_3233_JIFS_240283 crossref_primary_10_1109_TCE_2023_3321783 crossref_primary_10_1016_j_bspc_2021_103160 crossref_primary_10_1016_j_jer_2024_01_008 crossref_primary_10_1038_s41598_022_06737_z crossref_primary_10_1007_s12065_021_00664_0 crossref_primary_10_1155_2022_7674421 crossref_primary_10_1007_s10489_021_02865_7 crossref_primary_10_1038_s41598_024_51154_z crossref_primary_10_1007_s10489_025_06609_9 crossref_primary_10_1007_s00500_023_08033_y crossref_primary_10_1109_ACCESS_2025_3537407 crossref_primary_10_1016_j_asoc_2023_110658 crossref_primary_10_1016_j_jobe_2021_102969 crossref_primary_10_3390_computation9100102 crossref_primary_10_1002_cnm_3560 crossref_primary_10_1007_s12065_022_00804_0 crossref_primary_10_1007_s42235_022_00316_8 crossref_primary_10_1016_j_fluid_2022_113682 crossref_primary_10_1016_j_knosys_2022_110248 crossref_primary_10_1007_s12652_025_04969_1 crossref_primary_10_3390_math13071077 crossref_primary_10_3390_math11061503 crossref_primary_10_1016_j_bspc_2022_104543 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1093_comjnl_bxad059 crossref_primary_10_1177_09544119221135714 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1007_s10462_023_10696_w crossref_primary_10_3390_genes13111966 crossref_primary_10_1109_TAI_2021_3117491 crossref_primary_10_1016_j_compbiomed_2023_107277 crossref_primary_10_1007_s44174_025_00458_3 crossref_primary_10_1038_s41598_024_70663_5 crossref_primary_10_1007_s00521_024_10694_1 crossref_primary_10_1016_j_matcom_2023_10_021 crossref_primary_10_3390_axioms13050335 crossref_primary_10_1007_s42235_025_00716_6 crossref_primary_10_1016_j_eswa_2023_122792 |
| Cites_doi | 10.1016/j.advengsoft.2013.03.004 10.1016/j.future.2020.03.055 10.1016/j.eswa.2019.04.050 10.1093/bioinformatics/btv580 10.1016/j.advengsoft.2015.01.010 10.1007/s10479-013-1448-7 10.1016/j.eswa.2019.06.031 10.1038/scientificamerican0792-66 10.1016/j.knosys.2011.07.001 10.1016/j.amc.2005.09.043 10.1115/1.2912596 10.1016/j.amc.2015.11.073 10.1016/j.eswa.2019.05.030 10.1016/j.swevo.2016.01.002 10.1016/j.camwa.2010.07.049 10.1007/s10898-007-9149-x 10.1007/s00521-015-1920-1 10.1016/j.eswa.2019.06.065 10.1016/j.advengsoft.2017.07.002 10.1115/1.3438995 10.1016/j.swevo.2016.01.004 10.1016/j.swevo.2015.09.006 10.1016/j.eswa.2019.06.006 10.1016/j.advengsoft.2013.12.007 10.1016/j.future.2019.02.028 10.1504/IJBIC.2010.032124 10.1007/s12064-016-0224-z 10.1016/j.advengsoft.2016.01.008 10.1016/j.apm.2015.10.040 10.1023/A:1008202821328 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U 10.2307/3504236 10.1115/1.2919393 10.1109/TAP.2011.2122290 10.1016/j.amc.2016.03.035 10.1016/j.swevo.2015.05.003 10.1016/j.cnsns.2012.05.010 10.1016/j.jcde.2015.06.003 10.1007/s00500-016-2186-y 10.1002/er.2915 10.1109/ICNN.1995.488968 10.1016/j.knosys.2015.07.006 10.1016/j.cor.2014.10.008 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Mar 15, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Mar 15, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.114107 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_114107 S0957417420308599 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-7afc21ffe0d264cb91aa86fbaa3fd739c09dfb110b0346d0df6cc9e77e4efa143 |
| ISICitedReferencesCount | 342 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598519700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 09 06:48:50 EST 2025 Sat Nov 29 07:06:59 EST 2025 Tue Nov 18 21:07:07 EST 2025 Fri Feb 23 02:47:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 90C59 Meta-heuristic 80M50 Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-7afc21ffe0d264cb91aa86fbaa3fd739c09dfb110b0346d0df6cc9e77e4efa143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2480002087 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2480002087 crossref_citationtrail_10_1016_j_eswa_2020_114107 crossref_primary_10_1016_j_eswa_2020_114107 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114107 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-15 |
| PublicationDateYYYYMMDD | 2021-03-15 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Kaveh, Farhoudi (b23) 2013; 59 Ogiela, Krzyworzeka (b41) 2016; 20 Das, Mullick, Suganthan (b9) 2016; 27 Yazdani, Jolai (b57) 2016; 3 Biswas, Acharyya (b5) 2016; 135 Pinto, Runkler, Sousa (b43) 2007 Siddall (b49) 1972 Mirjalili (b31) 2015; 83 Askarzadeh, Rezazadeh (b3) 2013; 37 Jain, Singh, Rani (b18) 2018 Lu, Zhou (b28) 2008 Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Kalantzis, Shang, Lei, Leventouri (b20) 2016; 26 Oftadeh, Mahjoob, Shariatpanahi (b40) 2010; 60 Yang (b55) 2012 Holm, Tedgren, Larsson (b17) 2016; 236 Yang (b54) 2010 Janani, Vijayarani (b19) 2019; 134 Van Laarhoven, Aarts (b52) 1987 Shiqin, Jianjun, Guangxing (b48) 2009 Karaboga, Basturk (b22) 2007; 39 Zheng (b59) 2015; 55 Chickermane, Gea (b8) 1996; 39 Sandgren (b45) 1990; 112 Zhang, Wang, Chen (b58) 2019 Mirjalili, Lewis (b35) 2016; 95 Gandomi, Alavi (b12) 2012; 17 Yang (b53) 2010; 2 Davari, Kilic, Naderi (b10) 2016; 276 Brown, Pullan, Yang, Zhou (b6) 2016; 32 Mirjalili, Mirjalili, Lewis (b36) 2014; 69 Gao, Wang, Cheng, Inazumi, Tang (b13) 2016; 285 Toksari (b51) 2006; 176 Sharma, Sharma, Panigrahi, Kiran, Kumar (b47) 2016; 28 (pp. 1942–1948). Martin, Stephen (b29) 2006 Mirghasemi, Andreae, Zhang (b30) 2019; 133 Mirjalili (b32) 2015; 89 Larivière, Pasitschniak-Arts (b25) 1996; 537 Yang, Deb (b56) 2009 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b15) 2019; 97 Li (b26) 2003 Chamaani, Mirtaheri, Abrishamian (b7) 2011; 59 Holland (b16) 1992; 267 Mosa (b38) 2019; 137 Dorigo, Di Caro (b11) 1999 Abbass (b1) 2001 Kannan, Kramer (b21) 1994; 116 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b34) 2017; 114 Ragsdell, Phillips (b44) 1976; 98 Storn, Price (b50) 1997; 11 Mirjalili (b33) 2016; 27 Gonzalez-Sanchez, Vega-Rodríguez, Santander-Jiménez (b14) 2019 Mohapatra, Chakravarty, Dash (b37) 2015; 24 Savsani, Savsani (b46) 2016; 40 Pan (b42) 2012; 26 Arora (b2) 2004 Mucherino, Seref (b39) 2007 Belegundu (b4) 1983 Li, Chen, Wang, Heidari, Mirjalili (b27) 2020 Karaboga (10.1016/j.eswa.2020.114107_b22) 2007; 39 Gandomi (10.1016/j.eswa.2020.114107_b12) 2012; 17 Kaveh (10.1016/j.eswa.2020.114107_b23) 2013; 59 10.1016/j.eswa.2020.114107_b24 Sharma (10.1016/j.eswa.2020.114107_b47) 2016; 28 Mirjalili (10.1016/j.eswa.2020.114107_b34) 2017; 114 Heidari (10.1016/j.eswa.2020.114107_b15) 2019; 97 Yang (10.1016/j.eswa.2020.114107_b56) 2009 Zhang (10.1016/j.eswa.2020.114107_b58) 2019 Oftadeh (10.1016/j.eswa.2020.114107_b40) 2010; 60 Siddall (10.1016/j.eswa.2020.114107_b49) 1972 Jain (10.1016/j.eswa.2020.114107_b18) 2018 Pan (10.1016/j.eswa.2020.114107_b42) 2012; 26 Gao (10.1016/j.eswa.2020.114107_b13) 2016; 285 Askarzadeh (10.1016/j.eswa.2020.114107_b3) 2013; 37 Ogiela (10.1016/j.eswa.2020.114107_b41) 2016; 20 Yang (10.1016/j.eswa.2020.114107_b54) 2010 Sandgren (10.1016/j.eswa.2020.114107_b45) 1990; 112 Kalantzis (10.1016/j.eswa.2020.114107_b20) 2016; 26 Li (10.1016/j.eswa.2020.114107_b26) 2003 Mirjalili (10.1016/j.eswa.2020.114107_b32) 2015; 89 Holland (10.1016/j.eswa.2020.114107_b16) 1992; 267 Holm (10.1016/j.eswa.2020.114107_b17) 2016; 236 Abbass (10.1016/j.eswa.2020.114107_b1) 2001 Ragsdell (10.1016/j.eswa.2020.114107_b44) 1976; 98 Mucherino (10.1016/j.eswa.2020.114107_b39) 2007 Toksari (10.1016/j.eswa.2020.114107_b51) 2006; 176 Mirjalili (10.1016/j.eswa.2020.114107_b33) 2016; 27 Shiqin (10.1016/j.eswa.2020.114107_b48) 2009 Das (10.1016/j.eswa.2020.114107_b9) 2016; 27 Mohapatra (10.1016/j.eswa.2020.114107_b37) 2015; 24 Yang (10.1016/j.eswa.2020.114107_b55) 2012 Belegundu (10.1016/j.eswa.2020.114107_b4) 1983 Yang (10.1016/j.eswa.2020.114107_b53) 2010; 2 Van Laarhoven (10.1016/j.eswa.2020.114107_b52) 1987 Biswas (10.1016/j.eswa.2020.114107_b5) 2016; 135 Mirghasemi (10.1016/j.eswa.2020.114107_b30) 2019; 133 Chickermane (10.1016/j.eswa.2020.114107_b8) 1996; 39 Mosa (10.1016/j.eswa.2020.114107_b38) 2019; 137 Mirjalili (10.1016/j.eswa.2020.114107_b31) 2015; 83 Li (10.1016/j.eswa.2020.114107_b27) 2020 Janani (10.1016/j.eswa.2020.114107_b19) 2019; 134 Lu (10.1016/j.eswa.2020.114107_b28) 2008 Mirjalili (10.1016/j.eswa.2020.114107_b36) 2014; 69 Mirjalili (10.1016/j.eswa.2020.114107_b35) 2016; 95 Larivière (10.1016/j.eswa.2020.114107_b25) 1996; 537 Martin (10.1016/j.eswa.2020.114107_b29) 2006 Gonzalez-Sanchez (10.1016/j.eswa.2020.114107_b14) 2019 Davari (10.1016/j.eswa.2020.114107_b10) 2016; 276 Pinto (10.1016/j.eswa.2020.114107_b43) 2007 Brown (10.1016/j.eswa.2020.114107_b6) 2016; 32 Yazdani (10.1016/j.eswa.2020.114107_b57) 2016; 3 Storn (10.1016/j.eswa.2020.114107_b50) 1997; 11 Kannan (10.1016/j.eswa.2020.114107_b21) 1994; 116 Savsani (10.1016/j.eswa.2020.114107_b46) 2016; 40 Arora (10.1016/j.eswa.2020.114107_b2) 2004 Chamaani (10.1016/j.eswa.2020.114107_b7) 2011; 59 Dorigo (10.1016/j.eswa.2020.114107_b11) 1999 Zheng (10.1016/j.eswa.2020.114107_b59) 2015; 55 |
| References_xml | – start-page: 518 year: 2008 end-page: 525 ident: b28 article-title: A novel global convergence algorithm: bee collecting pollen algorithm publication-title: International conference on intelligent computing – volume: 27 start-page: 1 year: 2016 end-page: 30 ident: b9 article-title: Recent advances in differential evolution - An updated survey publication-title: Swarm and Evolutionary Computation – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b32 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems – volume: 176 start-page: 308 year: 2006 end-page: 316 ident: b51 article-title: Ant colony optimization for finding the global minimum publication-title: Applied Mathematics and Computation – year: 1972 ident: b49 article-title: Analytical decision-making in engineering design – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: b21 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: Journal of Mechanical Design – start-page: 207 year: 2001 end-page: 214 ident: b1 article-title: MBO: Marriage in honey bees optimization-a haplometrosis polygynous swarming approach publication-title: Evolutionary computation, 2001. proceedings of the 2001 congress on (vol. 1) – volume: 3 start-page: 24 year: 2016 end-page: 36 ident: b57 article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm publication-title: Journal of Computational Design and Engineering – volume: 55 start-page: 1 year: 2015 end-page: 11 ident: b59 article-title: Water wave optimization: a new nature-inspired metaheuristic publication-title: Computers & Operations Research – volume: 236 start-page: 319 year: 2016 end-page: 339 ident: b17 article-title: Heuristics for integrated optimization of catheter positioning and dwell time distribution in prostate HDR brachytherapy publication-title: Annals of Operations Research – reference: (pp. 1942–1948). – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b34 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b36 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: b16 article-title: Genetic algorithms publication-title: Scientific American – volume: 40 start-page: 3951 year: 2016 end-page: 3978 ident: b46 article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm publication-title: Applied Mathematical Modelling – volume: 133 start-page: 126 year: 2019 end-page: 150 ident: b30 article-title: Domain-independent severely noisy image segmentation via adaptive wavelet shrinkage using particle swarm optimization and fuzzy C-means publication-title: Expert Systems with Applications – volume: 39 start-page: 829 year: 1996 end-page: 846 ident: b8 article-title: Structural optimization using a new local approximation method publication-title: International Journal for Numerical Methods in Engineering – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: b12 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation – year: 2018 ident: b18 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm and Evolutionary Computation – volume: 285 start-page: 149 year: 2016 end-page: 173 ident: b13 article-title: Ant colony optimization with clustering for solving the dynamic location routing problem publication-title: Applied Mathematics and Computation – volume: 26 start-page: 69 year: 2012 end-page: 74 ident: b42 article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example publication-title: Knowledge-Based Systems – start-page: 65 year: 2010 end-page: 74 ident: b54 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nature inspired cooperative strategies for optimization – volume: 37 start-page: 1196 year: 2013 end-page: 1204 ident: b3 article-title: A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer publication-title: International Journal of Energy Research – volume: 60 start-page: 2087 year: 2010 end-page: 2098 ident: b40 article-title: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search publication-title: Computers & Mathematics with Applications – start-page: 210 year: 2009 end-page: 214 ident: b56 article-title: Cuckoo search via Lévy flights publication-title: Nature & biologically inspired computing, 2009. NaBIC 2009. World congress on – year: 2020 ident: b27 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Generation Computer Systems – volume: 2 start-page: 78 year: 2010 end-page: 84 ident: b53 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: International Journal of Bio-Inspired Computation – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b35 article-title: The Whale Optimization Algorithm publication-title: Advances in Engineering Software – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b22 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b33 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b31 article-title: The ant lion optimizer publication-title: Advances in Engineering Software – volume: 59 start-page: 53 year: 2013 end-page: 70 ident: b23 article-title: A new optimization method: dolphin echolocation publication-title: Advances in Engineering Software – volume: 98 start-page: 1021 year: 1976 end-page: 1025 ident: b44 article-title: Optimal design of a class of welded structures using geometric programming publication-title: Journal of Engineering for Industry – year: 2019 ident: b14 article-title: Multi-objective memetic meta-heuristic algorithm for encoding the same protein with multiple genes publication-title: Expert Systems with Applications – year: 2004 ident: b2 article-title: Introduction to optimum design – volume: 28 start-page: 58 year: 2016 end-page: 77 ident: b47 article-title: Ageist spider monkey optimization algorithm publication-title: Swarm and Evolutionary Computation – start-page: 240 year: 2012 end-page: 249 ident: b55 article-title: Flower pollination algorithm for global optimization publication-title: International conference on unconventional computing and natural computation – start-page: 1470 year: 1999 end-page: 1477 ident: b11 article-title: Ant colony optimization: a new meta-heuristic publication-title: Evolutionary computation, 1999. CEC 99. proceedings of the 1999 congress on (vol. 2) – year: 2019 ident: b58 article-title: An improved particle filter for mobile robot localization based on particle swarm optimization publication-title: Expert Systems with Applications – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b15 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems – start-page: 350 year: 2007 end-page: 357 ident: b43 article-title: Wasp swarm algorithm for dynamic MAX-sat problems publication-title: International conference on adaptive and natural computing algorithms – year: 2003 ident: b26 article-title: A new intelligent optimization-artificial fish swarm algorithm – start-page: 162 year: 2007 end-page: 173 ident: b39 article-title: Monkey search: a novel metaheuristic search for global optimization publication-title: AIP conference proceedings (vol. 953) (no. 1) – volume: 137 start-page: 117 year: 2019 end-page: 129 ident: b38 article-title: Real-time data text mining based on Gravitational Search Algorithm publication-title: Expert Systems with Applications – volume: 276 start-page: 442 year: 2016 end-page: 453 ident: b10 article-title: A heuristic approach to solve the preventive health care problem with budget and congestion constraints publication-title: Applied Mathematics and Computation – volume: 26 start-page: 191 year: 2016 end-page: 201 ident: b20 article-title: Investigations of a GPU-based levy-firefly algorithm for constrained optimization of radiation therapy treatment planning publication-title: Swarm and Evolutionary Computation – volume: 24 start-page: 25 year: 2015 end-page: 49 ident: b37 article-title: An improved cuckoo search based extreme learning machine for medical data classification publication-title: Swarm and Evolutionary Computation – volume: 134 start-page: 192 year: 2019 end-page: 200 ident: b19 article-title: Text document clustering using spectral clustering algorithm with particle swarm optimization publication-title: Expert Systems with Applications – start-page: 124 year: 2009 end-page: 128 ident: b48 article-title: A dolphin partner optimization publication-title: Intelligent systems, 2009. GCIS’09. WRI global congress on (vol. 1) – volume: 32 start-page: 370 year: 2016 end-page: 377 ident: b6 article-title: Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic publication-title: Bioinformatics – volume: 112 start-page: 223 year: 1990 end-page: 229 ident: b45 article-title: Nonlinear integer and discrete programming in mechanical design optimization publication-title: Journal of Mechanical Design – start-page: 7 year: 1987 end-page: 15 ident: b52 article-title: Simulated annealing publication-title: Simulated annealing: theory and applications – volume: 20 start-page: 4193 year: 2016 end-page: 4202 ident: b41 article-title: Heuristic approach for computer-aided lesion detection in mammograms publication-title: Soft Computing – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b50 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – start-page: 155 year: 2006 end-page: 184 ident: b29 article-title: Termite: A swarm intelligent routing algorithm for mobilewireless Ad-Hoc networks publication-title: Stigmergic optimization – volume: 537 start-page: 1 year: 1996 end-page: 11 ident: b25 article-title: Vulpes vulpes publication-title: Mammalian Species – year: 1983 ident: b4 article-title: A study of mathematical programming methods for structural optimization – volume: 135 start-page: 1 year: 2016 end-page: 19 ident: b5 article-title: Neural model of gene regulatory network: a survey on supportive meta-heuristics publication-title: Theory in Biosciences – volume: 59 start-page: 1738 year: 2011 end-page: 1742 ident: b7 article-title: Improvement of time and frequency domain performance of antipodal vivaldi antenna using multi-objective particle swarm optimization publication-title: IEEE Transactions on Antennas and Propagation – volume: 59 start-page: 53 year: 2013 ident: 10.1016/j.eswa.2020.114107_b23 article-title: A new optimization method: dolphin echolocation publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.03.004 – year: 2020 ident: 10.1016/j.eswa.2020.114107_b27 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2020.03.055 – volume: 133 start-page: 126 year: 2019 ident: 10.1016/j.eswa.2020.114107_b30 article-title: Domain-independent severely noisy image segmentation via adaptive wavelet shrinkage using particle swarm optimization and fuzzy C-means publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.04.050 – volume: 32 start-page: 370 issue: 3 year: 2016 ident: 10.1016/j.eswa.2020.114107_b6 article-title: Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv580 – start-page: 124 year: 2009 ident: 10.1016/j.eswa.2020.114107_b48 article-title: A dolphin partner optimization – year: 2003 ident: 10.1016/j.eswa.2020.114107_b26 – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.eswa.2020.114107_b31 article-title: The ant lion optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.01.010 – start-page: 65 year: 2010 ident: 10.1016/j.eswa.2020.114107_b54 article-title: A new metaheuristic bat-inspired algorithm – volume: 236 start-page: 319 issue: 2 year: 2016 ident: 10.1016/j.eswa.2020.114107_b17 article-title: Heuristics for integrated optimization of catheter positioning and dwell time distribution in prostate HDR brachytherapy publication-title: Annals of Operations Research doi: 10.1007/s10479-013-1448-7 – start-page: 207 year: 2001 ident: 10.1016/j.eswa.2020.114107_b1 article-title: MBO: Marriage in honey bees optimization-a haplometrosis polygynous swarming approach – start-page: 1470 year: 1999 ident: 10.1016/j.eswa.2020.114107_b11 article-title: Ant colony optimization: a new meta-heuristic – year: 2019 ident: 10.1016/j.eswa.2020.114107_b14 article-title: Multi-objective memetic meta-heuristic algorithm for encoding the same protein with multiple genes publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.06.031 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.eswa.2020.114107_b16 article-title: Genetic algorithms publication-title: Scientific American doi: 10.1038/scientificamerican0792-66 – start-page: 240 year: 2012 ident: 10.1016/j.eswa.2020.114107_b55 article-title: Flower pollination algorithm for global optimization – volume: 26 start-page: 69 year: 2012 ident: 10.1016/j.eswa.2020.114107_b42 article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2011.07.001 – volume: 176 start-page: 308 issue: 1 year: 2006 ident: 10.1016/j.eswa.2020.114107_b51 article-title: Ant colony optimization for finding the global minimum publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2005.09.043 – volume: 112 start-page: 223 issue: 2 year: 1990 ident: 10.1016/j.eswa.2020.114107_b45 article-title: Nonlinear integer and discrete programming in mechanical design optimization publication-title: Journal of Mechanical Design doi: 10.1115/1.2912596 – volume: 276 start-page: 442 year: 2016 ident: 10.1016/j.eswa.2020.114107_b10 article-title: A heuristic approach to solve the preventive health care problem with budget and congestion constraints publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2015.11.073 – year: 1972 ident: 10.1016/j.eswa.2020.114107_b49 – volume: 134 start-page: 192 year: 2019 ident: 10.1016/j.eswa.2020.114107_b19 article-title: Text document clustering using spectral clustering algorithm with particle swarm optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.05.030 – volume: 28 start-page: 58 year: 2016 ident: 10.1016/j.eswa.2020.114107_b47 article-title: Ageist spider monkey optimization algorithm publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2016.01.002 – start-page: 210 year: 2009 ident: 10.1016/j.eswa.2020.114107_b56 article-title: Cuckoo search via Lévy flights – volume: 60 start-page: 2087 issue: 7 year: 2010 ident: 10.1016/j.eswa.2020.114107_b40 article-title: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2010.07.049 – start-page: 162 year: 2007 ident: 10.1016/j.eswa.2020.114107_b39 article-title: Monkey search: a novel metaheuristic search for global optimization – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.eswa.2020.114107_b22 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization doi: 10.1007/s10898-007-9149-x – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 10.1016/j.eswa.2020.114107_b33 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1920-1 – volume: 137 start-page: 117 year: 2019 ident: 10.1016/j.eswa.2020.114107_b38 article-title: Real-time data text mining based on Gravitational Search Algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.06.065 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.eswa.2020.114107_b34 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 98 start-page: 1021 issue: 3 year: 1976 ident: 10.1016/j.eswa.2020.114107_b44 article-title: Optimal design of a class of welded structures using geometric programming publication-title: Journal of Engineering for Industry doi: 10.1115/1.3438995 – year: 1983 ident: 10.1016/j.eswa.2020.114107_b4 – start-page: 155 year: 2006 ident: 10.1016/j.eswa.2020.114107_b29 article-title: Termite: A swarm intelligent routing algorithm for mobilewireless Ad-Hoc networks – volume: 27 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2020.114107_b9 article-title: Recent advances in differential evolution - An updated survey publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2016.01.004 – volume: 26 start-page: 191 year: 2016 ident: 10.1016/j.eswa.2020.114107_b20 article-title: Investigations of a GPU-based levy-firefly algorithm for constrained optimization of radiation therapy treatment planning publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2015.09.006 – year: 2004 ident: 10.1016/j.eswa.2020.114107_b2 – year: 2019 ident: 10.1016/j.eswa.2020.114107_b58 article-title: An improved particle filter for mobile robot localization based on particle swarm optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.06.006 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2020.114107_b36 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.eswa.2020.114107_b15 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 10.1016/j.eswa.2020.114107_b53 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2010.032124 – volume: 135 start-page: 1 issue: 1–2 year: 2016 ident: 10.1016/j.eswa.2020.114107_b5 article-title: Neural model of gene regulatory network: a survey on supportive meta-heuristics publication-title: Theory in Biosciences doi: 10.1007/s12064-016-0224-z – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2020.114107_b35 article-title: The Whale Optimization Algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 40 start-page: 3951 issue: 5–6 year: 2016 ident: 10.1016/j.eswa.2020.114107_b46 article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2015.10.040 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.eswa.2020.114107_b50 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 39 start-page: 829 issue: 5 year: 1996 ident: 10.1016/j.eswa.2020.114107_b8 article-title: Structural optimization using a new local approximation method publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U – year: 2018 ident: 10.1016/j.eswa.2020.114107_b18 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm and Evolutionary Computation – volume: 537 start-page: 1 year: 1996 ident: 10.1016/j.eswa.2020.114107_b25 article-title: Vulpes vulpes publication-title: Mammalian Species doi: 10.2307/3504236 – volume: 116 start-page: 405 issue: 2 year: 1994 ident: 10.1016/j.eswa.2020.114107_b21 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: Journal of Mechanical Design doi: 10.1115/1.2919393 – start-page: 7 year: 1987 ident: 10.1016/j.eswa.2020.114107_b52 article-title: Simulated annealing – volume: 59 start-page: 1738 issue: 5 year: 2011 ident: 10.1016/j.eswa.2020.114107_b7 article-title: Improvement of time and frequency domain performance of antipodal vivaldi antenna using multi-objective particle swarm optimization publication-title: IEEE Transactions on Antennas and Propagation doi: 10.1109/TAP.2011.2122290 – volume: 285 start-page: 149 year: 2016 ident: 10.1016/j.eswa.2020.114107_b13 article-title: Ant colony optimization with clustering for solving the dynamic location routing problem publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2016.03.035 – volume: 24 start-page: 25 year: 2015 ident: 10.1016/j.eswa.2020.114107_b37 article-title: An improved cuckoo search based extreme learning machine for medical data classification publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2015.05.003 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 10.1016/j.eswa.2020.114107_b12 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2012.05.010 – volume: 3 start-page: 24 issue: 1 year: 2016 ident: 10.1016/j.eswa.2020.114107_b57 article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm publication-title: Journal of Computational Design and Engineering doi: 10.1016/j.jcde.2015.06.003 – volume: 20 start-page: 4193 issue: 10 year: 2016 ident: 10.1016/j.eswa.2020.114107_b41 article-title: Heuristic approach for computer-aided lesion detection in mammograms publication-title: Soft Computing doi: 10.1007/s00500-016-2186-y – start-page: 350 year: 2007 ident: 10.1016/j.eswa.2020.114107_b43 article-title: Wasp swarm algorithm for dynamic MAX-sat problems – volume: 37 start-page: 1196 issue: 10 year: 2013 ident: 10.1016/j.eswa.2020.114107_b3 article-title: A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer publication-title: International Journal of Energy Research doi: 10.1002/er.2915 – ident: 10.1016/j.eswa.2020.114107_b24 doi: 10.1109/ICNN.1995.488968 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.eswa.2020.114107_b32 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.07.006 – start-page: 518 year: 2008 ident: 10.1016/j.eswa.2020.114107_b28 article-title: A novel global convergence algorithm: bee collecting pollen algorithm – volume: 55 start-page: 1 year: 2015 ident: 10.1016/j.eswa.2020.114107_b59 article-title: Water wave optimization: a new nature-inspired metaheuristic publication-title: Computers & Operations Research doi: 10.1016/j.cor.2014.10.008 |
| SSID | ssj0017007 |
| Score | 2.7000203 |
| Snippet | Fox is very popular in various regions of the Globe, where representatives of this kind can be found in Europe, Asia, North America, and even in some arctic... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114107 |
| SubjectTerms | Algorithms Changing environments Foxes Global optimization Heuristic methods Hunting Ice environments Meta-heuristic Optimization Optimization algorithms Wild animals |
| Title | Red fox optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.114107 https://www.proquest.com/docview/2480002087 |
| Volume | 166 |
| WOSCitedRecordID | wos000598519700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLZG2YELYwMEDFAO41RlSpw0Lz52CAQTQtPEUG-W49hQfiRVG2j__D3HTigVoHHYJarS-Mnx57y82N_7HiHfVCBYL4pjP9OS-bFmzM8o1X4ipQZItc7q9OjLMzg_TwcD9stVb5vU5QSgKNLZjI3-K9R4DsE2qbPvgLs1iifwN4KOR4Qdj_8E_G8MIXU565boDO5dlmVX3F2V42F1ff9sJd7IHFdOzLlJc5vb0G7dZnlw2DtIqRhZFvy0YcEbRq_560e_GIpbl_ojnZa3W0qgNZfKJlO2a4Lgx6Etm9O6x2TewYWGFwov-l67DHDzXU2mRtCJ1jrE7uLnQtcLL6CWFtgwzm64scGNDW5tLJFlCj2Gbmu5f3o0-NluFEFgM-Kbnru8KEvhW-zJa7HHwlu4Di0u1siq-ybw-hbLz-SDKr6QT029Dc-533Wyj9B6CK03D63XQrtB_hwfXRye-K6-hS8jmlY-CC1pqLUKcgxLZcZCIdJEZ0JEOoeIyYDlOsP4LAuiOMmDXOMTxBSAipUWGOhukk5RFmqLeAl-90kKaCCCWILhBmMjBnmtzhOKbRI2d86lE383NUju-Otjvk26bZuRlT558-peM6DcBW82KOM4P95st9uMPndP0YTTOK33yFPYeVcnvpKVp3m9SzrV-EHtkY_ysRpOxvtu7vwFAvZreA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Red+fox+optimization+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Po%C5%82ap%2C+Dawid&rft.au=Wo%C5%BAniak%2C+Marcin&rft.date=2021-03-15&rft.issn=0957-4174&rft.volume=166&rft.spage=114107&rft_id=info:doi/10.1016%2Fj.eswa.2020.114107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2020_114107 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |