Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost

•An anomaly detection and diagnosis method for wind turbines.•Abnormal data recognition algorithm based on LOF and adaptive K-means.•Normal behavior model based on LSTM-SDAE.•Anomaly location by contribution analysis and XGBoost. An anomaly detection and diagnosis method for wind turbines using long...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety Jg. 222; S. 108445
Hauptverfasser: Zhang, Chen, Hu, Di, Yang, Tao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Barking Elsevier Ltd 01.06.2022
Elsevier BV
Schlagworte:
ISSN:0951-8320, 1879-0836
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •An anomaly detection and diagnosis method for wind turbines.•Abnormal data recognition algorithm based on LOF and adaptive K-means.•Normal behavior model based on LSTM-SDAE.•Anomaly location by contribution analysis and XGBoost. An anomaly detection and diagnosis method for wind turbines using long short-term memory-based stacked denoising autoencoders (LSTM-SDAE) and extreme gradient boosting (XGBoost) is proposed in this paper. First, an abnormal data recognition algorithm based on the local outlier factor and adaptive K-means was developed to implement data preprocessing and noise extraction. The LSTM-SDAE model was then established to obtain the nonlinear temporal relationship among multivariate variables in normal behavior modes. The Mahalanobis distance was calculated based on reconstruction errors and the threshold for anomaly detection was set with a 99.7% confidence interval for the distribution curve fitted by kernel density estimation. An alarm mechanism based on the sliding window technique was set up to detect abnormalities in real time. Finally, contribution analysis was conducted to extract the parameter features under different abnormal modes, and the XGBoost was trained by extended data from wind turbines of the same type in the same wind farm to realize anomaly location and diagnosis. To verify the proposed method, real SCADA data from a wind farm located in northeastern China were applied. The results show the capability of the proposed method in anomaly detection and diagnosis for wind turbines.
AbstractList An anomaly detection and diagnosis method for wind turbines using long short-term memory-based stacked denoising autoencoders (LSTM-SDAE) and extreme gradient boosting (XGBoost) is proposed in this paper. First, an abnormal data recognition algorithm based on the local outlier factor and adaptive K-means was developed to implement data preprocessing and noise extraction. The LSTM-SDAE model was then established to obtain the nonlinear temporal relationship among multivariate variables in normal behavior modes. The Mahalanobis distance was calculated based on reconstruction errors and the threshold for anomaly detection was set with a 99.7% confidence interval for the distribution curve fitted by kernel density estimation. An alarm mechanism based on the sliding window technique was set up to detect abnormalities in real time. Finally, contribution analysis was conducted to extract the parameter features under different abnormal modes, and the XGBoost was trained by extended data from wind turbines of the same type in the same wind farm to realize anomaly location and diagnosis. To verify the proposed method, real SCADA data from a wind farm located in northeastern China were applied. The results show the capability of the proposed method in anomaly detection and diagnosis for wind turbines.
•An anomaly detection and diagnosis method for wind turbines.•Abnormal data recognition algorithm based on LOF and adaptive K-means.•Normal behavior model based on LSTM-SDAE.•Anomaly location by contribution analysis and XGBoost. An anomaly detection and diagnosis method for wind turbines using long short-term memory-based stacked denoising autoencoders (LSTM-SDAE) and extreme gradient boosting (XGBoost) is proposed in this paper. First, an abnormal data recognition algorithm based on the local outlier factor and adaptive K-means was developed to implement data preprocessing and noise extraction. The LSTM-SDAE model was then established to obtain the nonlinear temporal relationship among multivariate variables in normal behavior modes. The Mahalanobis distance was calculated based on reconstruction errors and the threshold for anomaly detection was set with a 99.7% confidence interval for the distribution curve fitted by kernel density estimation. An alarm mechanism based on the sliding window technique was set up to detect abnormalities in real time. Finally, contribution analysis was conducted to extract the parameter features under different abnormal modes, and the XGBoost was trained by extended data from wind turbines of the same type in the same wind farm to realize anomaly location and diagnosis. To verify the proposed method, real SCADA data from a wind farm located in northeastern China were applied. The results show the capability of the proposed method in anomaly detection and diagnosis for wind turbines.
ArticleNumber 108445
Author Hu, Di
Yang, Tao
Zhang, Chen
Author_xml – sequence: 1
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
– sequence: 2
  givenname: Di
  surname: Hu
  fullname: Hu, Di
– sequence: 3
  givenname: Tao
  orcidid: 0000-0002-5096-1171
  surname: Yang
  fullname: Yang, Tao
  email: hust_yt@hust.edu.cn
BookMark eNp9kT1rHDEQhkVwIGfHfyCVIPWe9bEfEqRxTOwEDGkScCe00qyjy63kaLQxV-WvW-tL5cKNBob30TDPnJKTmCIQ8oGzLWe8v9htMyBuBROiNlTbdm_IhqtBN0zJ_oRsmO54o6Rg78gp4o4x1upu2JB_lzHNdn-gHgq4ElKkNnrqg72PCQPSKWX6GGqrLHkMEZAuGOI93af64K-US1Mgz3SGOeVDM1oET7FY97tWDzGF57hdSoLokoeMzxPubj6nhOU9eTvZPcL5_3pGfl5_-XH1tbn9fvPt6vK2cVKo0gx26rXwzI2940z2XLfOa9-307qI6jh0gwfpJhi0Z5470Uk1Kq2ZEwxGKc_Ix-O_Dzn9WQCL2aUlxzrSiL6TUvbD0NaUOKZcTogZJvOQw2zzwXBmVtFmZ1bRZhVtjqIrpF5ALhS7qizZhv3r6KcjCnX1vwGyQReqJvAh12sYn8Jr-BNnmZ29
CitedBy_id crossref_primary_10_1016_j_ress_2023_109092
crossref_primary_10_3390_s23125695
crossref_primary_10_1016_j_oceaneng_2025_121507
crossref_primary_10_1016_j_ress_2022_109008
crossref_primary_10_1016_j_renene_2023_118965
crossref_primary_10_1016_j_cma_2024_117219
crossref_primary_10_1016_j_ress_2024_110252
crossref_primary_10_1049_rpg2_13104
crossref_primary_10_3390_en16197008
crossref_primary_10_1016_j_aei_2025_103620
crossref_primary_10_1109_TIM_2023_3302346
crossref_primary_10_1016_j_ress_2022_108827
crossref_primary_10_1016_j_isatra_2024_01_008
crossref_primary_10_1016_j_ress_2023_109258
crossref_primary_10_1016_j_apenergy_2024_122814
crossref_primary_10_1016_j_ress_2024_110653
crossref_primary_10_1016_j_ress_2025_110910
crossref_primary_10_1016_j_ress_2025_110998
crossref_primary_10_1080_15435075_2025_2545497
crossref_primary_10_1016_j_ress_2025_110995
crossref_primary_10_1016_j_ins_2023_119496
crossref_primary_10_1016_j_ress_2023_109410
crossref_primary_10_1016_j_ress_2025_111110
crossref_primary_10_1016_j_ress_2025_111199
crossref_primary_10_1016_j_epsr_2025_111953
crossref_primary_10_1016_j_enconman_2023_117341
crossref_primary_10_3390_en16196786
crossref_primary_10_1016_j_simpat_2024_102989
crossref_primary_10_1016_j_ress_2023_109107
crossref_primary_10_1016_j_ress_2023_109188
crossref_primary_10_1038_s41598_022_16576_7
crossref_primary_10_3390_s25020590
crossref_primary_10_1016_j_jmsy_2023_10_010
crossref_primary_10_1016_j_engappai_2023_106757
crossref_primary_10_1109_TII_2025_3558342
crossref_primary_10_1016_j_measurement_2025_118538
crossref_primary_10_1016_j_conengprac_2022_105404
crossref_primary_10_1016_j_engstruct_2024_117848
crossref_primary_10_1016_j_ress_2025_111060
crossref_primary_10_1016_j_rser_2023_114039
crossref_primary_10_1038_s41598_025_94703_w
crossref_primary_10_1016_j_engappai_2024_108046
crossref_primary_10_1016_j_eswa_2024_126171
crossref_primary_10_1016_j_ress_2023_109634
crossref_primary_10_1088_1361_6501_ad6f33
crossref_primary_10_1016_j_ress_2023_109235
crossref_primary_10_1109_TPWRS_2022_3204176
crossref_primary_10_3390_rs16111870
crossref_primary_10_1016_j_measurement_2025_118905
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1080_15435075_2024_2315445
crossref_primary_10_3390_math13091371
crossref_primary_10_1016_j_ress_2023_109171
crossref_primary_10_3390_machines11040495
crossref_primary_10_1088_1361_6501_ac9f5d
crossref_primary_10_1016_j_engfailanal_2023_107209
crossref_primary_10_1016_j_engappai_2024_109716
crossref_primary_10_1109_TIM_2025_3551875
crossref_primary_10_1007_s12206_024_0616_9
crossref_primary_10_1109_TNNLS_2024_3472456
crossref_primary_10_3390_app12178661
crossref_primary_10_3390_s22176358
crossref_primary_10_3390_s25071972
crossref_primary_10_1016_j_dajour_2023_100164
crossref_primary_10_1016_j_measurement_2022_111318
crossref_primary_10_1016_j_ress_2023_109846
crossref_primary_10_1016_j_eswa_2025_128381
crossref_primary_10_1016_j_ress_2024_109966
crossref_primary_10_1016_j_engstruct_2025_120619
crossref_primary_10_1016_j_neucom_2025_129830
crossref_primary_10_3390_en18143696
crossref_primary_10_1088_1361_6501_ad98b1
crossref_primary_10_1016_j_istruc_2025_109092
crossref_primary_10_1016_j_ress_2023_109162
crossref_primary_10_1016_j_ress_2024_110208
crossref_primary_10_1109_TITS_2025_3580960
crossref_primary_10_1177_16878132231215184
crossref_primary_10_7717_peerj_cs_2040
crossref_primary_10_1080_00223131_2024_2434566
crossref_primary_10_3390_ma16155381
crossref_primary_10_3390_su16104099
crossref_primary_10_1016_j_engappai_2024_108856
crossref_primary_10_1016_j_knosys_2022_110070
crossref_primary_10_1016_j_ress_2024_109957
crossref_primary_10_1016_j_ress_2022_108587
crossref_primary_10_1049_esi2_12144
crossref_primary_10_1016_j_ress_2022_108622
crossref_primary_10_1080_23789689_2022_2134648
crossref_primary_10_1088_1361_6501_ad366a
crossref_primary_10_1007_s11227_023_05283_3
crossref_primary_10_3390_en16134965
crossref_primary_10_1007_s10845_024_02511_2
crossref_primary_10_1016_j_knosys_2024_111404
crossref_primary_10_1016_j_ress_2024_110421
crossref_primary_10_1016_j_ress_2025_111036
crossref_primary_10_1109_ACCESS_2024_3364395
crossref_primary_10_1016_j_egyr_2023_10_076
crossref_primary_10_1177_09576509241296585
crossref_primary_10_1109_TASE_2025_3593296
crossref_primary_10_1007_s12598_024_02766_x
crossref_primary_10_1016_j_aei_2023_102139
crossref_primary_10_3390_app14167256
crossref_primary_10_1016_j_ress_2023_109306
crossref_primary_10_1016_j_compstruct_2023_117792
crossref_primary_10_1016_j_ress_2022_109025
crossref_primary_10_1109_ACCESS_2024_3514747
crossref_primary_10_1080_23080477_2024_2364537
crossref_primary_10_1038_s41598_025_99488_6
crossref_primary_10_1109_TII_2023_3331766
crossref_primary_10_1109_TIM_2023_3329105
crossref_primary_10_1016_j_engappai_2024_109601
crossref_primary_10_1016_j_ress_2023_109717
crossref_primary_10_1016_j_psep_2024_05_143
crossref_primary_10_3390_rs15030653
crossref_primary_10_1016_j_engappai_2024_108363
crossref_primary_10_3390_machines10090759
crossref_primary_10_1016_j_ress_2022_108560
crossref_primary_10_1016_j_engappai_2025_111945
crossref_primary_10_1016_j_ymssp_2025_112573
Cites_doi 10.1016/j.ress.2017.10.001
10.1016/j.renene.2018.12.045
10.1016/j.ress.2020.107062
10.1109/TSG.2017.2753802
10.3390/app11073186
10.1002/we.2102
10.1016/j.renene.2018.07.110
10.1049/iet-rpg.2016.0247
10.1016/j.ress.2012.10.010
10.1016/j.renene.2017.03.097
10.1016/j.renene.2018.10.076
10.1109/TSTE.2018.2822682
10.1016/j.jmsy.2019.11.004
10.1109/TSTE.2018.2866543
10.1016/j.ress.2020.107404
10.3390/en13051063
10.1016/j.renene.2019.07.033
10.1016/j.ress.2021.107451
10.1007/s10827-009-0180-4
10.1016/j.ress.2020.106994
10.1016/j.renene.2015.06.041
10.1109/TSTE.2019.2920386
10.1109/TSTE.2019.2914089
10.1016/j.renene.2017.06.089
10.1109/TSTE.2014.2355837
10.1016/j.renene.2019.09.041
10.1016/j.renene.2018.10.031
10.1016/j.renene.2018.12.066
10.1016/j.renene.2018.07.068
10.1002/we.1852
10.1016/j.renene.2016.07.037
10.1016/j.ress.2020.107284
10.1016/j.ress.2019.106512
10.1016/j.renene.2019.06.103
10.1016/j.ress.2017.10.025
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2022
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2022.108445
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2022_108445
S0951832022001107
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-7af692d0cb6c1036194cd9d64f0049851e57de3cfe79d0d1c2538b8990c20eb33
ISICitedReferencesCount 146
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771562000051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 08:01:01 EDT 2025
Sat Nov 29 07:08:58 EST 2025
Tue Nov 18 20:44:26 EST 2025
Fri Feb 23 02:39:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stacked denoising autoencoders (SDAE)
Mahalanobis distance (MD)
Anomaly detection and diagnosis
Wind turbine
Long short-term memory (LSTM)
XGBoost
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-7af692d0cb6c1036194cd9d64f0049851e57de3cfe79d0d1c2538b8990c20eb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5096-1171
PQID 2653336774
PQPubID 2045406
ParticipantIDs proquest_journals_2653336774
crossref_primary_10_1016_j_ress_2022_108445
crossref_citationtrail_10_1016_j_ress_2022_108445
elsevier_sciencedirect_doi_10_1016_j_ress_2022_108445
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Feng, Qin, Liang (bib0023) 2016; 85
Wang, Liu, Liu (bib0030) 2019; 40
Bangalore, Letzgus, Karlsson (bib0031) 2017; 20
Qian, Zhang, Tian (bib0006) 2019; 135
Liu, Pan, Lei (bib0036) 2021; 214
Zhang, Gao, Yang (bib0009) 2019; 133
Shen, Fu, Zhou (bib0039) 2019; 10
Sahal R., Alsamhi S.H., Breslin J.G., et al. Digital Twins Collaboration for Automatic Erratic Operational Data Detection in Industry 4.0. Applied Sciences, 11(2021), pp. 3186.
Kong, Tang, Deng (bib0038) 2020; 146
Lei, Liu, Jiang (bib0035) 2019; 133
Long, Sang, Wu (bib0042) 2020; 11
Zheng, Hu, Min (bib0041) 2015; 6
Zhu, Castanier, Bettayeb (bib0008) 2019; 190
Yürüen, Rowley, Watson (bib0014) 2020; 200
Kong, Dong, Jia (bib0045) 2019; 10
Shafiee, Srensen (bib0012) 2019; 192
Chen, Yu, Chen (bib0027) 2017; 11
Dao, Staszewski, Barszcz (bib0028) 2018; 116
Yang, Baraldi, Zio (bib0037) 2021
Shimazaki, Shinomoto (bib0047) 2010; 29
Dai, Yang, Cao (bib0024) 2017; 116
GWEC. Global Wind Report 2020. Global Wind Energy Council, 2021.
Saeed, Jan, Lee (bib0034) 2021; 205
Tautz-Weinert, Yurusen, Melero (bib0013) 2019; 132
Koukoura, Scheu, Kolios (bib0005) 2021; 208
Habibi, Howard, Simani (bib0003) 2019; 135
Yeter, Garbatov, Soares (bib0011) 2020; 202
Uit, Teunter, Jonge (bib0015) 2021; 214
Chen, Li, Chen (bib0033) 2020; 147
Gonzalez, Stephen, Infield (bib0043) 2019; 131
Hu, Qiao, Liu (bib0029) 2019; 10
Tao, Siqi, Zhang (bib0026) 2019; 2019
Marugan, Chacon, Marquez (bib0025) 2019; 191
Wang, Hu, Pei (bib0040) 2020; 11
Li, Ouelhadj, Song (bib0016) 2016; 99
Zhang, Liao, Zeng (bib0019) 2021; 209
Ghamlouch, Fouladirad, Grail (bib0010) 2019; 188
Wang, Liang, Zheng (bib0002) 2019; 145
Yan, Lei, Wang (bib0018) 2020; 202
Lutz, Vogt, Berkhout (bib0032) 2020; 13
Jiang, Yang, Cheng (bib0046) 2019
Horenbeek, Ostaeyen, Duflou (bib0004) 2013; 111
Borchersen, Kinnaert (bib0022) 2016; 19
Sahal, Breslin, Ali (bib0020) 2020; 54
Bhatt, Sharma, Ram (bib0044) 2013
Yeter, Garbatov, Soares (bib0007) 2020; 202
Zhang, Yang (bib0017) 2021; 164
Tautz-Weinert (10.1016/j.ress.2022.108445_bib0013) 2019; 132
Borchersen (10.1016/j.ress.2022.108445_bib0022) 2016; 19
Yürüen (10.1016/j.ress.2022.108445_bib0014) 2020; 200
Feng (10.1016/j.ress.2022.108445_bib0023) 2016; 85
Yeter (10.1016/j.ress.2022.108445_bib0011) 2020; 202
Wang (10.1016/j.ress.2022.108445_bib0002) 2019; 145
Li (10.1016/j.ress.2022.108445_bib0016) 2016; 99
Qian (10.1016/j.ress.2022.108445_bib0006) 2019; 135
Liu (10.1016/j.ress.2022.108445_bib0036) 2021; 214
Zhang (10.1016/j.ress.2022.108445_bib0017) 2021; 164
Zhu (10.1016/j.ress.2022.108445_bib0008) 2019; 190
Zheng (10.1016/j.ress.2022.108445_bib0041) 2015; 6
Horenbeek (10.1016/j.ress.2022.108445_bib0004) 2013; 111
Koukoura (10.1016/j.ress.2022.108445_bib0005) 2021; 208
Zhang (10.1016/j.ress.2022.108445_bib0009) 2019; 133
Dao (10.1016/j.ress.2022.108445_bib0028) 2018; 116
Jiang (10.1016/j.ress.2022.108445_bib0046) 2019
Yang (10.1016/j.ress.2022.108445_bib0037) 2021
Shafiee (10.1016/j.ress.2022.108445_bib0012) 2019; 192
Kong (10.1016/j.ress.2022.108445_bib0045) 2019; 10
Habibi (10.1016/j.ress.2022.108445_bib0003) 2019; 135
Lei (10.1016/j.ress.2022.108445_bib0035) 2019; 133
Dai (10.1016/j.ress.2022.108445_bib0024) 2017; 116
Chen (10.1016/j.ress.2022.108445_bib0033) 2020; 147
Sahal (10.1016/j.ress.2022.108445_bib0020) 2020; 54
Zhang (10.1016/j.ress.2022.108445_bib0019) 2021; 209
Lutz (10.1016/j.ress.2022.108445_bib0032) 2020; 13
Bangalore (10.1016/j.ress.2022.108445_bib0031) 2017; 20
Shimazaki (10.1016/j.ress.2022.108445_bib0047) 2010; 29
Gonzalez (10.1016/j.ress.2022.108445_bib0043) 2019; 131
Saeed (10.1016/j.ress.2022.108445_bib0034) 2021; 205
Chen (10.1016/j.ress.2022.108445_bib0027) 2017; 11
Yeter (10.1016/j.ress.2022.108445_bib0007) 2020; 202
Yan (10.1016/j.ress.2022.108445_bib0018) 2020; 202
Ghamlouch (10.1016/j.ress.2022.108445_bib0010) 2019; 188
Marugan (10.1016/j.ress.2022.108445_bib0025) 2019; 191
Shen (10.1016/j.ress.2022.108445_bib0039) 2019; 10
Uit (10.1016/j.ress.2022.108445_bib0015) 2021; 214
Tao (10.1016/j.ress.2022.108445_bib0026) 2019; 2019
Kong (10.1016/j.ress.2022.108445_bib0038) 2020; 146
Bhatt (10.1016/j.ress.2022.108445_bib0044) 2013
Wang (10.1016/j.ress.2022.108445_bib0040) 2020; 11
10.1016/j.ress.2022.108445_bib0021
Hu (10.1016/j.ress.2022.108445_bib0029) 2019; 10
Long (10.1016/j.ress.2022.108445_bib0042) 2020; 11
Wang (10.1016/j.ress.2022.108445_bib0030) 2019; 40
10.1016/j.ress.2022.108445_bib0001
References_xml – volume: 11
  start-page: 403
  year: 2017
  end-page: 410
  ident: bib0027
  article-title: Hierarchical method for wind turbine prognosis using SCADA data
  publication-title: Iet Renewable Power Generation
– volume: 11
  start-page: 1199
  year: 2020
  end-page: 1209
  ident: bib0040
  article-title: Wind power curve modeling with asymmetric error distribution
  publication-title: IEEE Transactions on Sustainable Energy
– reference: GWEC. Global Wind Report 2020. Global Wind Energy Council, 2021.
– volume: 200
  year: 2020
  ident: bib0014
  article-title: Automated wind turbine maintenance scheduling
  publication-title: Reliability Engineering & System Safety
– volume: 85
  start-page: 45
  year: 2016
  end-page: 56
  ident: bib0023
  article-title: Time-frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions
  publication-title: Renew Energy
– volume: 164
  start-page: 1540
  year: 2021
  end-page: 1549
  ident: bib0017
  article-title: Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ
  publication-title: Renew Energy
– volume: 214
  year: 2021
  ident: bib0036
  article-title: Fault prediction of bearings based on LSTM and statistical process analysis
  publication-title: Reliability Engineering & System Safety
– volume: 116
  start-page: 107
  year: 2018
  end-page: 122
  ident: bib0028
  article-title: Condition monitoring and fault detection in wind turbines based on cointegration analysis of SCADA data
  publication-title: Renew Energy
– volume: 116
  start-page: 199
  year: 2017
  end-page: 208
  ident: bib0024
  article-title: Ageing assessment of a wind turbine over time by interpreting wind farm SCADA data
  publication-title: Renew Energy
– volume: 146
  start-page: 760
  year: 2020
  end-page: 768
  ident: bib0038
  article-title: Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units
  publication-title: Renew Energy
– volume: 135
  start-page: 877
  year: 2019
  end-page: 896
  ident: bib0003
  article-title: Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: a review
  publication-title: Renew Energy
– volume: 190
  year: 2019
  ident: bib0008
  article-title: A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition
  publication-title: Reliability Engineering & System Safety
– year: 2019
  ident: bib0046
  article-title: An Aging-Aware SOC Estimation Method for Lithium-Ion Batteries using XGBoost Algorithm
  publication-title: 2019 IEEE International Conference on Prognostics and Health Management (ICPHM)
– volume: 29
  start-page: 171
  year: 2010
  end-page: 782
  ident: bib0047
  article-title: Kernel bandwidth optimization in spike rate estimation
  publication-title: J. Comput. Neurosci.
– year: 2021
  ident: bib0037
  article-title: A Method for Fault Detection in Multi-Component Systems Based on Sparse Autoencoder-Based Deep Neural Networks
  publication-title: Reliability Engineering & System Safety
– volume: 192
  year: 2019
  ident: bib0012
  article-title: Maintenance optimization and inspection planning of wind energy assets: models, methods and strategies
  publication-title: Reliability Engineering & System Safety
– volume: 13
  start-page: 1063
  year: 2020
  ident: bib0032
  article-title: Evaluation of Anomaly Detection of an Autoencoder Based on Maintenance Information and Scada-Data
  publication-title: Energies
– volume: 147
  start-page: 1469
  year: 2020
  end-page: 1480
  ident: bib0033
  article-title: Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders
  publication-title: Renew Energy
– volume: 202
  year: 2020
  ident: bib0007
  article-title: Risk-based maintenance planning of offshore wind turbine farms
  publication-title: Reliability Engineering & System Safety
– volume: 11
  start-page: 938
  year: 2020
  end-page: 946
  ident: bib0042
  article-title: Image-based abnormal data detection and cleaning algorithm via wind power curve
  publication-title: IEEE Transactions on Sustainable Energy
– volume: 6
  start-page: 11
  year: 2015
  end-page: 19
  ident: bib0041
  article-title: Raw wind data preprocessing: a data-mining approach
  publication-title: IEEE Transactions on Sustainable Energy
– volume: 209
  year: 2021
  ident: bib0019
  article-title: Optimal Condition-based Opportunistic Maintenance and Spare Parts Provisioning for a Two-unit System using a State Space Partitioning Approach
  publication-title: Reliability Engineering & System Safety
– volume: 188
  start-page: 614
  year: 2019
  end-page: 623
  ident: bib0010
  article-title: The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties
  publication-title: Reliability Engineering & System Safety
– volume: 99
  start-page: 784
  year: 2016
  end-page: 799
  ident: bib0016
  article-title: A decision support system for strategic maintenance planning in offshore wind farms
  publication-title: Renew Energy
– volume: 191
  year: 2019
  ident: bib0025
  article-title: Reliability analysis of detecting false alarms that employ neural networks: a real case study on wind turbines
  publication-title: Reliability Engineering & System Safety
– volume: 145
  start-page: 642
  year: 2019
  end-page: 650
  ident: bib0002
  article-title: An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples
  publication-title: Renew Energy
– volume: 133
  start-page: 703
  year: 2019
  end-page: 711
  ident: bib0009
  article-title: Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management
  publication-title: Renew Energy
– volume: 132
  start-page: 93
  year: 2019
  end-page: 105
  ident: bib0013
  article-title: Sensitivity study of a wind farm maintenance decision-A performance and revenue analysis
  publication-title: Renew Energy
– volume: 202
  year: 2020
  ident: bib0011
  article-title: Risk-based maintenance planning of offshore wind turbine farms
  publication-title: Reliability Engineering & System Safety
– volume: 10
  start-page: 841
  year: 2019
  end-page: 851
  ident: bib0045
  article-title: Short-term residential load forecasting based on LSTM recurrent neural network
  publication-title: IEEE Trans Smart Grid
– volume: 208
  year: 2021
  ident: bib0005
  article-title: Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability
  publication-title: Reliability Engineering & System Safety
– volume: 20
  start-page: 1421
  year: 2017
  end-page: 1438
  ident: bib0031
  article-title: An artificial neural network-based condition monitoring method for wind turbines, with application to the monitoring of the gearbox
  publication-title: Wind Energy
– volume: 214
  year: 2021
  ident: bib0015
  article-title: Joint condition-based maintenance and condition-based production optimization
  publication-title: Reliability Engineering & System Safety
– reference: Sahal R., Alsamhi S.H., Breslin J.G., et al. Digital Twins Collaboration for Automatic Erratic Operational Data Detection in Industry 4.0. Applied Sciences, 11(2021), pp. 3186.
– volume: 111
  start-page: 45
  year: 2013
  end-page: 57
  ident: bib0004
  article-title: Quantifying the added value of an imperfectly performing condition monitoring system-Application to a wind turbine gearbox
  publication-title: Reliability Engineering & System Safety
– volume: 133
  start-page: 422
  year: 2019
  end-page: 432
  ident: bib0035
  article-title: Fault diagnosis of wind turbine based on Long Short-Term memory networks
  publication-title: Renew Energy
– volume: 10
  start-page: 46
  year: 2019
  end-page: 54
  ident: bib0039
  article-title: A combined algorithm for cleaning abnormal data of wind turbine power curve based on change point grouping algorithm and quartile algorithm
  publication-title: IEEE Transactions on Sustainable Energy
– volume: 54
  start-page: 138
  year: 2020
  end-page: 151
  ident: bib0020
  article-title: Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case
  publication-title: Journal of Manufacturing Systems
– volume: 205
  year: 2021
  ident: bib0034
  article-title: Fault diagnosis based on extremely randomized trees in wireless sensor networks
  publication-title: Reliability Engineering & System Safety
– volume: 135
  start-page: 390
  year: 2019
  end-page: 398
  ident: bib0006
  article-title: A novel wind turbine condition monitoring method based on cloud computing
  publication-title: Renew Energy
– volume: 40
  start-page: 141
  year: 2019
  end-page: 149
  ident: bib0030
  article-title: Condition monitoring of wind turbine gearbox based on ensemble nonlinear state estimation technique and soft fuzzy clustering
  publication-title: Chinese Journal of Scientific Instrument
– volume: 131
  start-page: 841
  year: 2019
  end-page: 853
  ident: bib0043
  article-title: Using high-frequency SCADA data for wind turbine performance monitoring: a sensitivity study
  publication-title: Renew Energy
– volume: 10
  start-page: 1330
  year: 2019
  end-page: 1341
  ident: bib0029
  article-title: Adaptive Confidence Boundary Modeling of Wind Turbine Power Curve using SCADA Data and Its Application
  publication-title: IEEE Transactions on Sustainable Energy
– volume: 19
  start-page: 593
  year: 2016
  end-page: 606
  ident: bib0022
  article-title: Model-based fault detection for generator cooling system in wind turbines using SCADA data
  publication-title: Wind Energy
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0026
  article-title: Abnormal Detection of Wind Turbine Based on SCADA Data Mining
  publication-title: Mathematical Problems in Engineering
– start-page: 1
  year: 2013
  end-page: 3
  ident: bib0044
  article-title: An enhanced approach for LOF in data mining
  publication-title: 2013 IEEE International Conference on Green High Performance Computing
– volume: 202
  year: 2020
  ident: bib0018
  article-title: Joint maintenance and spare parts inventory optimization for multi-unit systems considering imperfect maintenance actions
  publication-title: Reliability Engineering & System Safety
– volume: 188
  start-page: 614
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0010
  article-title: The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2017.10.001
– volume: 135
  start-page: 390
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0006
  article-title: A novel wind turbine condition monitoring method based on cloud computing
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.12.045
– volume: 202
  year: 2020
  ident: 10.1016/j.ress.2022.108445_bib0011
  article-title: Risk-based maintenance planning of offshore wind turbine farms
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2020.107062
– volume: 10
  start-page: 841
  issue: 1
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0045
  article-title: Short-term residential load forecasting based on LSTM recurrent neural network
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2753802
– ident: 10.1016/j.ress.2022.108445_bib0021
  doi: 10.3390/app11073186
– year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0046
  article-title: An Aging-Aware SOC Estimation Method for Lithium-Ion Batteries using XGBoost Algorithm
– ident: 10.1016/j.ress.2022.108445_bib0001
– volume: 20
  start-page: 1421
  issue: 8
  year: 2017
  ident: 10.1016/j.ress.2022.108445_bib0031
  article-title: An artificial neural network-based condition monitoring method for wind turbines, with application to the monitoring of the gearbox
  publication-title: Wind Energy
  doi: 10.1002/we.2102
– volume: 202
  year: 2020
  ident: 10.1016/j.ress.2022.108445_bib0007
  article-title: Risk-based maintenance planning of offshore wind turbine farms
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2020.107062
– volume: 132
  start-page: 93
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0013
  article-title: Sensitivity study of a wind farm maintenance decision-A performance and revenue analysis
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.07.110
– volume: 11
  start-page: 403
  issue: 4
  year: 2017
  ident: 10.1016/j.ress.2022.108445_bib0027
  article-title: Hierarchical method for wind turbine prognosis using SCADA data
  publication-title: Iet Renewable Power Generation
  doi: 10.1049/iet-rpg.2016.0247
– volume: 214
  issue: 4
  year: 2021
  ident: 10.1016/j.ress.2022.108445_bib0036
  article-title: Fault prediction of bearings based on LSTM and statistical process analysis
  publication-title: Reliability Engineering & System Safety
– year: 2021
  ident: 10.1016/j.ress.2022.108445_bib0037
  article-title: A Method for Fault Detection in Multi-Component Systems Based on Sparse Autoencoder-Based Deep Neural Networks
  publication-title: Reliability Engineering & System Safety
– volume: 111
  start-page: 45
  year: 2013
  ident: 10.1016/j.ress.2022.108445_bib0004
  article-title: Quantifying the added value of an imperfectly performing condition monitoring system-Application to a wind turbine gearbox
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2012.10.010
– volume: 116
  start-page: 199
  year: 2017
  ident: 10.1016/j.ress.2022.108445_bib0024
  article-title: Ageing assessment of a wind turbine over time by interpreting wind farm SCADA data
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.03.097
– volume: 133
  start-page: 703
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0009
  article-title: Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.10.076
– volume: 40
  start-page: 141
  issue: 7
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0030
  article-title: Condition monitoring of wind turbine gearbox based on ensemble nonlinear state estimation technique and soft fuzzy clustering
  publication-title: Chinese Journal of Scientific Instrument
– volume: 214
  year: 2021
  ident: 10.1016/j.ress.2022.108445_bib0015
  article-title: Joint condition-based maintenance and condition-based production optimization
  publication-title: Reliability Engineering & System Safety
– volume: 10
  start-page: 46
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0039
  article-title: A combined algorithm for cleaning abnormal data of wind turbine power curve based on change point grouping algorithm and quartile algorithm
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2018.2822682
– volume: 54
  start-page: 138
  year: 2020
  ident: 10.1016/j.ress.2022.108445_bib0020
  article-title: Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2019.11.004
– volume: 10
  start-page: 1330
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0029
  article-title: Adaptive Confidence Boundary Modeling of Wind Turbine Power Curve using SCADA Data and Its Application
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2018.2866543
– volume: 208
  year: 2021
  ident: 10.1016/j.ress.2022.108445_bib0005
  article-title: Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2020.107404
– volume: 13
  start-page: 1063
  issue: 5
  year: 2020
  ident: 10.1016/j.ress.2022.108445_bib0032
  article-title: Evaluation of Anomaly Detection of an Autoencoder Based on Maintenance Information and Scada-Data
  publication-title: Energies
  doi: 10.3390/en13051063
– volume: 146
  start-page: 760
  year: 2020
  ident: 10.1016/j.ress.2022.108445_bib0038
  article-title: Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.07.033
– volume: 209
  year: 2021
  ident: 10.1016/j.ress.2022.108445_bib0019
  article-title: Optimal Condition-based Opportunistic Maintenance and Spare Parts Provisioning for a Two-unit System using a State Space Partitioning Approach
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2021.107451
– volume: 29
  start-page: 171
  year: 2010
  ident: 10.1016/j.ress.2022.108445_bib0047
  article-title: Kernel bandwidth optimization in spike rate estimation
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-009-0180-4
– start-page: 1
  year: 2013
  ident: 10.1016/j.ress.2022.108445_bib0044
  article-title: An enhanced approach for LOF in data mining
– volume: 202
  year: 2020
  ident: 10.1016/j.ress.2022.108445_bib0018
  article-title: Joint maintenance and spare parts inventory optimization for multi-unit systems considering imperfect maintenance actions
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2020.106994
– volume: 85
  start-page: 45
  year: 2016
  ident: 10.1016/j.ress.2022.108445_bib0023
  article-title: Time-frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.06.041
– volume: 11
  start-page: 1199
  year: 2020
  ident: 10.1016/j.ress.2022.108445_bib0040
  article-title: Wind power curve modeling with asymmetric error distribution
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2019.2920386
– volume: 11
  start-page: 938
  year: 2020
  ident: 10.1016/j.ress.2022.108445_bib0042
  article-title: Image-based abnormal data detection and cleaning algorithm via wind power curve
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2019.2914089
– volume: 116
  start-page: 107
  year: 2018
  ident: 10.1016/j.ress.2022.108445_bib0028
  article-title: Condition monitoring and fault detection in wind turbines based on cointegration analysis of SCADA data
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.06.089
– volume: 191
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0025
  article-title: Reliability analysis of detecting false alarms that employ neural networks: a real case study on wind turbines
  publication-title: Reliability Engineering & System Safety
– volume: 6
  start-page: 11
  year: 2015
  ident: 10.1016/j.ress.2022.108445_bib0041
  article-title: Raw wind data preprocessing: a data-mining approach
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2014.2355837
– volume: 147
  start-page: 1469
  year: 2020
  ident: 10.1016/j.ress.2022.108445_bib0033
  article-title: Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.09.041
– volume: 164
  start-page: 1540
  year: 2021
  ident: 10.1016/j.ress.2022.108445_bib0017
  article-title: Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ
– volume: 133
  start-page: 422
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0035
  article-title: Fault diagnosis of wind turbine based on Long Short-Term memory networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.10.031
– volume: 135
  start-page: 877
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0003
  article-title: Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: a review
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.12.066
– volume: 131
  start-page: 841
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0043
  article-title: Using high-frequency SCADA data for wind turbine performance monitoring: a sensitivity study
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.07.068
– volume: 19
  start-page: 593
  issue: 4
  year: 2016
  ident: 10.1016/j.ress.2022.108445_bib0022
  article-title: Model-based fault detection for generator cooling system in wind turbines using SCADA data
  publication-title: Wind Energy
  doi: 10.1002/we.1852
– volume: 99
  start-page: 784
  year: 2016
  ident: 10.1016/j.ress.2022.108445_bib0016
  article-title: A decision support system for strategic maintenance planning in offshore wind farms
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.07.037
– volume: 205
  year: 2021
  ident: 10.1016/j.ress.2022.108445_bib0034
  article-title: Fault diagnosis based on extremely randomized trees in wireless sensor networks
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2020.107284
– volume: 190
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0008
  article-title: A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2019.106512
– volume: 145
  start-page: 642
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0002
  article-title: An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.06.103
– volume: 192
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0012
  article-title: Maintenance optimization and inspection planning of wind energy assets: models, methods and strategies
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2017.10.025
– volume: 200
  year: 2020
  ident: 10.1016/j.ress.2022.108445_bib0014
  article-title: Automated wind turbine maintenance scheduling
  publication-title: Reliability Engineering & System Safety
– volume: 2019
  start-page: 1
  issue: 11
  year: 2019
  ident: 10.1016/j.ress.2022.108445_bib0026
  article-title: Abnormal Detection of Wind Turbine Based on SCADA Data Mining
  publication-title: Mathematical Problems in Engineering
SSID ssj0004957
Score 2.6631773
Snippet •An anomaly detection and diagnosis method for wind turbines.•Abnormal data recognition algorithm based on LOF and adaptive K-means.•Normal behavior model...
An anomaly detection and diagnosis method for wind turbines using long short-term memory-based stacked denoising autoencoders (LSTM-SDAE) and extreme gradient...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108445
SubjectTerms Abnormalities
Algorithms
Anomalies
Anomaly detection and diagnosis
Confidence intervals
Diagnosis
Feature extraction
Long short-term memory
Long short-term memory (LSTM)
Mahalanobis distance (MD)
Noise reduction
Outliers (statistics)
Reliability engineering
Stacked denoising autoencoders (SDAE)
Statistical analysis
Turbines
Wind farms
Wind power
Wind turbine
Wind turbines
XGBoost
Title Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost
URI https://dx.doi.org/10.1016/j.ress.2022.108445
https://www.proquest.com/docview/2653336774
Volume 222
WOSCitedRecordID wos000771562000051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE-1paA90JO1lb12_DiWklBQFTikKDfL3l2rrlI75NE2J_4IP5aZ3bWTVBDBgYtl-bXWzud5eeZbQt5xxXOhYslCkbsMLRZLZBgwrhK_CDOZqSDXi01Eg0E8GiVfO52fTS_MzTiqqvjuLpn8V1HDMRA2ts7-g7jbh8IB2AehwxbEDtu_EjwE9NfZeOlINVd2HfBKYo4VS-pKTb_g3JZYN7mY5lj07ix0vmCMqw7NLsEdZ6iunWuswV0yNHMSMw7wucNjVFWX-vJsMa-RBBMLofUIo4_v63q2kerHemfDA7501Ir4UMPNUEg7s6ywTCQb6evTy1WL2tlCK8ayVVD2mmFWr-csINxta6tMIq1tpvm2kZD0GOgX85dGGXUcR4nmz17X19w0MluN6_3WDpiUxNUxpiyO8Q2wljIwxJWbpNuDL2n_4vw8HfZGwyO_P_nOcEUy_HN_5H8w6HhAdnnUTUBn7p586o0-r_puE8Mk27y5bcoy9YP3h_6T43PPBdB-zfApeWIDEnpigPSMdFT1nDxeo6l8QX5YSNEWUhQETltIUYAURUjRBlJUQ4oipOgKUnQdUtRCiraQouuQ0iNYSL0kF_3e8PSM2YU7mPB5PGdRVoQJl67IQ-GBi-QlgZCoAgqcM_DxVTeSyheFihLpSk9wMLs5RP6u4K7Kff8V2anqSu0R6npgk2TAhStgDguwHhmXIZiZIPBlKON94jWzmgrLao-Lq4zTpnzxKkVJpCiJ1EhinzjtPRPD6bL16m4jrNR6pcbbTAFsW-87bCSbWvUA50MIr_wQYq6D7adfk0erD-eQ7MynC_WGPBQ383I2fWuB-AusDLnr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+and+diagnosis+for+wind+turbines+using+long+short-term+memory-based+stacked+denoising+autoencoders+and+XGBoost&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zhang%2C+Chen&rft.au=Hu%2C+Di&rft.au=Yang%2C+Tao&rft.date=2022-06-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=222&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2022.108445&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon