Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost
•An anomaly detection and diagnosis method for wind turbines.•Abnormal data recognition algorithm based on LOF and adaptive K-means.•Normal behavior model based on LSTM-SDAE.•Anomaly location by contribution analysis and XGBoost. An anomaly detection and diagnosis method for wind turbines using long...
Saved in:
| Published in: | Reliability engineering & system safety Vol. 222; p. 108445 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Barking
Elsevier Ltd
01.06.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0951-8320, 1879-0836 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •An anomaly detection and diagnosis method for wind turbines.•Abnormal data recognition algorithm based on LOF and adaptive K-means.•Normal behavior model based on LSTM-SDAE.•Anomaly location by contribution analysis and XGBoost.
An anomaly detection and diagnosis method for wind turbines using long short-term memory-based stacked denoising autoencoders (LSTM-SDAE) and extreme gradient boosting (XGBoost) is proposed in this paper. First, an abnormal data recognition algorithm based on the local outlier factor and adaptive K-means was developed to implement data preprocessing and noise extraction. The LSTM-SDAE model was then established to obtain the nonlinear temporal relationship among multivariate variables in normal behavior modes. The Mahalanobis distance was calculated based on reconstruction errors and the threshold for anomaly detection was set with a 99.7% confidence interval for the distribution curve fitted by kernel density estimation. An alarm mechanism based on the sliding window technique was set up to detect abnormalities in real time. Finally, contribution analysis was conducted to extract the parameter features under different abnormal modes, and the XGBoost was trained by extended data from wind turbines of the same type in the same wind farm to realize anomaly location and diagnosis. To verify the proposed method, real SCADA data from a wind farm located in northeastern China were applied. The results show the capability of the proposed method in anomaly detection and diagnosis for wind turbines. |
|---|---|
| AbstractList | An anomaly detection and diagnosis method for wind turbines using long short-term memory-based stacked denoising autoencoders (LSTM-SDAE) and extreme gradient boosting (XGBoost) is proposed in this paper. First, an abnormal data recognition algorithm based on the local outlier factor and adaptive K-means was developed to implement data preprocessing and noise extraction. The LSTM-SDAE model was then established to obtain the nonlinear temporal relationship among multivariate variables in normal behavior modes. The Mahalanobis distance was calculated based on reconstruction errors and the threshold for anomaly detection was set with a 99.7% confidence interval for the distribution curve fitted by kernel density estimation. An alarm mechanism based on the sliding window technique was set up to detect abnormalities in real time. Finally, contribution analysis was conducted to extract the parameter features under different abnormal modes, and the XGBoost was trained by extended data from wind turbines of the same type in the same wind farm to realize anomaly location and diagnosis. To verify the proposed method, real SCADA data from a wind farm located in northeastern China were applied. The results show the capability of the proposed method in anomaly detection and diagnosis for wind turbines. •An anomaly detection and diagnosis method for wind turbines.•Abnormal data recognition algorithm based on LOF and adaptive K-means.•Normal behavior model based on LSTM-SDAE.•Anomaly location by contribution analysis and XGBoost. An anomaly detection and diagnosis method for wind turbines using long short-term memory-based stacked denoising autoencoders (LSTM-SDAE) and extreme gradient boosting (XGBoost) is proposed in this paper. First, an abnormal data recognition algorithm based on the local outlier factor and adaptive K-means was developed to implement data preprocessing and noise extraction. The LSTM-SDAE model was then established to obtain the nonlinear temporal relationship among multivariate variables in normal behavior modes. The Mahalanobis distance was calculated based on reconstruction errors and the threshold for anomaly detection was set with a 99.7% confidence interval for the distribution curve fitted by kernel density estimation. An alarm mechanism based on the sliding window technique was set up to detect abnormalities in real time. Finally, contribution analysis was conducted to extract the parameter features under different abnormal modes, and the XGBoost was trained by extended data from wind turbines of the same type in the same wind farm to realize anomaly location and diagnosis. To verify the proposed method, real SCADA data from a wind farm located in northeastern China were applied. The results show the capability of the proposed method in anomaly detection and diagnosis for wind turbines. |
| ArticleNumber | 108445 |
| Author | Hu, Di Yang, Tao Zhang, Chen |
| Author_xml | – sequence: 1 givenname: Chen surname: Zhang fullname: Zhang, Chen – sequence: 2 givenname: Di surname: Hu fullname: Hu, Di – sequence: 3 givenname: Tao orcidid: 0000-0002-5096-1171 surname: Yang fullname: Yang, Tao email: hust_yt@hust.edu.cn |
| BookMark | eNp9kT1rHDEQhkVwIGfHfyCVIPWe9bEfEqRxTOwEDGkScCe00qyjy63kaLQxV-WvW-tL5cKNBob30TDPnJKTmCIQ8oGzLWe8v9htMyBuBROiNlTbdm_IhqtBN0zJ_oRsmO54o6Rg78gp4o4x1upu2JB_lzHNdn-gHgq4ElKkNnrqg72PCQPSKWX6GGqrLHkMEZAuGOI93af64K-US1Mgz3SGOeVDM1oET7FY97tWDzGF57hdSoLokoeMzxPubj6nhOU9eTvZPcL5_3pGfl5_-XH1tbn9fvPt6vK2cVKo0gx26rXwzI2940z2XLfOa9-307qI6jh0gwfpJhi0Z5470Uk1Kq2ZEwxGKc_Ix-O_Dzn9WQCL2aUlxzrSiL6TUvbD0NaUOKZcTogZJvOQw2zzwXBmVtFmZ1bRZhVtjqIrpF5ALhS7qizZhv3r6KcjCnX1vwGyQReqJvAh12sYn8Jr-BNnmZ29 |
| CitedBy_id | crossref_primary_10_1016_j_ress_2023_109092 crossref_primary_10_3390_s23125695 crossref_primary_10_1016_j_oceaneng_2025_121507 crossref_primary_10_1016_j_ress_2022_109008 crossref_primary_10_1016_j_renene_2023_118965 crossref_primary_10_1016_j_cma_2024_117219 crossref_primary_10_1016_j_ress_2024_110252 crossref_primary_10_1049_rpg2_13104 crossref_primary_10_3390_en16197008 crossref_primary_10_1016_j_aei_2025_103620 crossref_primary_10_1109_TIM_2023_3302346 crossref_primary_10_1016_j_ress_2022_108827 crossref_primary_10_1016_j_isatra_2024_01_008 crossref_primary_10_1016_j_ress_2023_109258 crossref_primary_10_1016_j_apenergy_2024_122814 crossref_primary_10_1016_j_ress_2024_110653 crossref_primary_10_1016_j_ress_2025_110910 crossref_primary_10_1016_j_ress_2025_110998 crossref_primary_10_1080_15435075_2025_2545497 crossref_primary_10_1016_j_ress_2025_110995 crossref_primary_10_1016_j_ins_2023_119496 crossref_primary_10_1016_j_ress_2023_109410 crossref_primary_10_1016_j_ress_2025_111110 crossref_primary_10_1016_j_ress_2025_111199 crossref_primary_10_1016_j_epsr_2025_111953 crossref_primary_10_1016_j_enconman_2023_117341 crossref_primary_10_3390_en16196786 crossref_primary_10_1016_j_simpat_2024_102989 crossref_primary_10_1016_j_ress_2023_109107 crossref_primary_10_1016_j_ress_2023_109188 crossref_primary_10_1038_s41598_022_16576_7 crossref_primary_10_3390_s25020590 crossref_primary_10_1016_j_jmsy_2023_10_010 crossref_primary_10_1016_j_engappai_2023_106757 crossref_primary_10_1109_TII_2025_3558342 crossref_primary_10_1016_j_measurement_2025_118538 crossref_primary_10_1016_j_conengprac_2022_105404 crossref_primary_10_1016_j_engstruct_2024_117848 crossref_primary_10_1016_j_ress_2025_111060 crossref_primary_10_1016_j_rser_2023_114039 crossref_primary_10_1038_s41598_025_94703_w crossref_primary_10_1016_j_engappai_2024_108046 crossref_primary_10_1016_j_eswa_2024_126171 crossref_primary_10_1016_j_ress_2023_109634 crossref_primary_10_1088_1361_6501_ad6f33 crossref_primary_10_1016_j_ress_2023_109235 crossref_primary_10_1109_TPWRS_2022_3204176 crossref_primary_10_3390_rs16111870 crossref_primary_10_1016_j_measurement_2025_118905 crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_1080_15435075_2024_2315445 crossref_primary_10_3390_math13091371 crossref_primary_10_1016_j_ress_2023_109171 crossref_primary_10_3390_machines11040495 crossref_primary_10_1088_1361_6501_ac9f5d crossref_primary_10_1016_j_engfailanal_2023_107209 crossref_primary_10_1016_j_engappai_2024_109716 crossref_primary_10_1109_TIM_2025_3551875 crossref_primary_10_1007_s12206_024_0616_9 crossref_primary_10_1109_TNNLS_2024_3472456 crossref_primary_10_3390_app12178661 crossref_primary_10_3390_s22176358 crossref_primary_10_3390_s25071972 crossref_primary_10_1016_j_dajour_2023_100164 crossref_primary_10_1016_j_measurement_2022_111318 crossref_primary_10_1016_j_ress_2023_109846 crossref_primary_10_1016_j_eswa_2025_128381 crossref_primary_10_1016_j_ress_2024_109966 crossref_primary_10_1016_j_engstruct_2025_120619 crossref_primary_10_1016_j_neucom_2025_129830 crossref_primary_10_3390_en18143696 crossref_primary_10_1088_1361_6501_ad98b1 crossref_primary_10_1016_j_istruc_2025_109092 crossref_primary_10_1016_j_ress_2023_109162 crossref_primary_10_1016_j_ress_2024_110208 crossref_primary_10_1109_TITS_2025_3580960 crossref_primary_10_1177_16878132231215184 crossref_primary_10_7717_peerj_cs_2040 crossref_primary_10_1080_00223131_2024_2434566 crossref_primary_10_3390_ma16155381 crossref_primary_10_3390_su16104099 crossref_primary_10_1016_j_engappai_2024_108856 crossref_primary_10_1016_j_knosys_2022_110070 crossref_primary_10_1016_j_ress_2024_109957 crossref_primary_10_1016_j_ress_2022_108587 crossref_primary_10_1049_esi2_12144 crossref_primary_10_1016_j_ress_2022_108622 crossref_primary_10_1080_23789689_2022_2134648 crossref_primary_10_1088_1361_6501_ad366a crossref_primary_10_1007_s11227_023_05283_3 crossref_primary_10_3390_en16134965 crossref_primary_10_1007_s10845_024_02511_2 crossref_primary_10_1016_j_knosys_2024_111404 crossref_primary_10_1016_j_ress_2024_110421 crossref_primary_10_1016_j_ress_2025_111036 crossref_primary_10_1109_ACCESS_2024_3364395 crossref_primary_10_1016_j_egyr_2023_10_076 crossref_primary_10_1177_09576509241296585 crossref_primary_10_1109_TASE_2025_3593296 crossref_primary_10_1007_s12598_024_02766_x crossref_primary_10_1016_j_aei_2023_102139 crossref_primary_10_3390_app14167256 crossref_primary_10_1016_j_ress_2023_109306 crossref_primary_10_1016_j_compstruct_2023_117792 crossref_primary_10_1016_j_ress_2022_109025 crossref_primary_10_1109_ACCESS_2024_3514747 crossref_primary_10_1080_23080477_2024_2364537 crossref_primary_10_1038_s41598_025_99488_6 crossref_primary_10_1109_TII_2023_3331766 crossref_primary_10_1109_TIM_2023_3329105 crossref_primary_10_1016_j_engappai_2024_109601 crossref_primary_10_1016_j_ress_2023_109717 crossref_primary_10_1016_j_psep_2024_05_143 crossref_primary_10_3390_rs15030653 crossref_primary_10_1016_j_engappai_2024_108363 crossref_primary_10_3390_machines10090759 crossref_primary_10_1016_j_ress_2022_108560 crossref_primary_10_1016_j_engappai_2025_111945 crossref_primary_10_1016_j_ymssp_2025_112573 |
| Cites_doi | 10.1016/j.ress.2017.10.001 10.1016/j.renene.2018.12.045 10.1016/j.ress.2020.107062 10.1109/TSG.2017.2753802 10.3390/app11073186 10.1002/we.2102 10.1016/j.renene.2018.07.110 10.1049/iet-rpg.2016.0247 10.1016/j.ress.2012.10.010 10.1016/j.renene.2017.03.097 10.1016/j.renene.2018.10.076 10.1109/TSTE.2018.2822682 10.1016/j.jmsy.2019.11.004 10.1109/TSTE.2018.2866543 10.1016/j.ress.2020.107404 10.3390/en13051063 10.1016/j.renene.2019.07.033 10.1016/j.ress.2021.107451 10.1007/s10827-009-0180-4 10.1016/j.ress.2020.106994 10.1016/j.renene.2015.06.041 10.1109/TSTE.2019.2920386 10.1109/TSTE.2019.2914089 10.1016/j.renene.2017.06.089 10.1109/TSTE.2014.2355837 10.1016/j.renene.2019.09.041 10.1016/j.renene.2018.10.031 10.1016/j.renene.2018.12.066 10.1016/j.renene.2018.07.068 10.1002/we.1852 10.1016/j.renene.2016.07.037 10.1016/j.ress.2020.107284 10.1016/j.ress.2019.106512 10.1016/j.renene.2019.06.103 10.1016/j.ress.2017.10.025 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2022 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
| DOI | 10.1016/j.ress.2022.108445 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| ExternalDocumentID | 10_1016_j_ress_2022_108445 S0951832022001107 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TB 8FD AGCQF C1K FR3 SOI |
| ID | FETCH-LOGICAL-c328t-7af692d0cb6c1036194cd9d64f0049851e57de3cfe79d0d1c2538b8990c20eb33 |
| ISICitedReferencesCount | 146 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771562000051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Wed Aug 13 08:01:01 EDT 2025 Sat Nov 29 07:08:58 EST 2025 Tue Nov 18 20:44:26 EST 2025 Fri Feb 23 02:39:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stacked denoising autoencoders (SDAE) Mahalanobis distance (MD) Anomaly detection and diagnosis Wind turbine Long short-term memory (LSTM) XGBoost |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-7af692d0cb6c1036194cd9d64f0049851e57de3cfe79d0d1c2538b8990c20eb33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5096-1171 |
| PQID | 2653336774 |
| PQPubID | 2045406 |
| ParticipantIDs | proquest_journals_2653336774 crossref_primary_10_1016_j_ress_2022_108445 crossref_citationtrail_10_1016_j_ress_2022_108445 elsevier_sciencedirect_doi_10_1016_j_ress_2022_108445 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Feng, Qin, Liang (bib0023) 2016; 85 Wang, Liu, Liu (bib0030) 2019; 40 Bangalore, Letzgus, Karlsson (bib0031) 2017; 20 Qian, Zhang, Tian (bib0006) 2019; 135 Liu, Pan, Lei (bib0036) 2021; 214 Zhang, Gao, Yang (bib0009) 2019; 133 Shen, Fu, Zhou (bib0039) 2019; 10 Sahal R., Alsamhi S.H., Breslin J.G., et al. Digital Twins Collaboration for Automatic Erratic Operational Data Detection in Industry 4.0. Applied Sciences, 11(2021), pp. 3186. Kong, Tang, Deng (bib0038) 2020; 146 Lei, Liu, Jiang (bib0035) 2019; 133 Long, Sang, Wu (bib0042) 2020; 11 Zheng, Hu, Min (bib0041) 2015; 6 Zhu, Castanier, Bettayeb (bib0008) 2019; 190 Yürüen, Rowley, Watson (bib0014) 2020; 200 Kong, Dong, Jia (bib0045) 2019; 10 Shafiee, Srensen (bib0012) 2019; 192 Chen, Yu, Chen (bib0027) 2017; 11 Dao, Staszewski, Barszcz (bib0028) 2018; 116 Yang, Baraldi, Zio (bib0037) 2021 Shimazaki, Shinomoto (bib0047) 2010; 29 Dai, Yang, Cao (bib0024) 2017; 116 GWEC. Global Wind Report 2020. Global Wind Energy Council, 2021. Saeed, Jan, Lee (bib0034) 2021; 205 Tautz-Weinert, Yurusen, Melero (bib0013) 2019; 132 Koukoura, Scheu, Kolios (bib0005) 2021; 208 Habibi, Howard, Simani (bib0003) 2019; 135 Yeter, Garbatov, Soares (bib0011) 2020; 202 Uit, Teunter, Jonge (bib0015) 2021; 214 Chen, Li, Chen (bib0033) 2020; 147 Gonzalez, Stephen, Infield (bib0043) 2019; 131 Hu, Qiao, Liu (bib0029) 2019; 10 Tao, Siqi, Zhang (bib0026) 2019; 2019 Marugan, Chacon, Marquez (bib0025) 2019; 191 Wang, Hu, Pei (bib0040) 2020; 11 Li, Ouelhadj, Song (bib0016) 2016; 99 Zhang, Liao, Zeng (bib0019) 2021; 209 Ghamlouch, Fouladirad, Grail (bib0010) 2019; 188 Wang, Liang, Zheng (bib0002) 2019; 145 Yan, Lei, Wang (bib0018) 2020; 202 Lutz, Vogt, Berkhout (bib0032) 2020; 13 Jiang, Yang, Cheng (bib0046) 2019 Horenbeek, Ostaeyen, Duflou (bib0004) 2013; 111 Borchersen, Kinnaert (bib0022) 2016; 19 Sahal, Breslin, Ali (bib0020) 2020; 54 Bhatt, Sharma, Ram (bib0044) 2013 Yeter, Garbatov, Soares (bib0007) 2020; 202 Zhang, Yang (bib0017) 2021; 164 Tautz-Weinert (10.1016/j.ress.2022.108445_bib0013) 2019; 132 Borchersen (10.1016/j.ress.2022.108445_bib0022) 2016; 19 Yürüen (10.1016/j.ress.2022.108445_bib0014) 2020; 200 Feng (10.1016/j.ress.2022.108445_bib0023) 2016; 85 Yeter (10.1016/j.ress.2022.108445_bib0011) 2020; 202 Wang (10.1016/j.ress.2022.108445_bib0002) 2019; 145 Li (10.1016/j.ress.2022.108445_bib0016) 2016; 99 Qian (10.1016/j.ress.2022.108445_bib0006) 2019; 135 Liu (10.1016/j.ress.2022.108445_bib0036) 2021; 214 Zhang (10.1016/j.ress.2022.108445_bib0017) 2021; 164 Zhu (10.1016/j.ress.2022.108445_bib0008) 2019; 190 Zheng (10.1016/j.ress.2022.108445_bib0041) 2015; 6 Horenbeek (10.1016/j.ress.2022.108445_bib0004) 2013; 111 Koukoura (10.1016/j.ress.2022.108445_bib0005) 2021; 208 Zhang (10.1016/j.ress.2022.108445_bib0009) 2019; 133 Dao (10.1016/j.ress.2022.108445_bib0028) 2018; 116 Jiang (10.1016/j.ress.2022.108445_bib0046) 2019 Yang (10.1016/j.ress.2022.108445_bib0037) 2021 Shafiee (10.1016/j.ress.2022.108445_bib0012) 2019; 192 Kong (10.1016/j.ress.2022.108445_bib0045) 2019; 10 Habibi (10.1016/j.ress.2022.108445_bib0003) 2019; 135 Lei (10.1016/j.ress.2022.108445_bib0035) 2019; 133 Dai (10.1016/j.ress.2022.108445_bib0024) 2017; 116 Chen (10.1016/j.ress.2022.108445_bib0033) 2020; 147 Sahal (10.1016/j.ress.2022.108445_bib0020) 2020; 54 Zhang (10.1016/j.ress.2022.108445_bib0019) 2021; 209 Lutz (10.1016/j.ress.2022.108445_bib0032) 2020; 13 Bangalore (10.1016/j.ress.2022.108445_bib0031) 2017; 20 Shimazaki (10.1016/j.ress.2022.108445_bib0047) 2010; 29 Gonzalez (10.1016/j.ress.2022.108445_bib0043) 2019; 131 Saeed (10.1016/j.ress.2022.108445_bib0034) 2021; 205 Chen (10.1016/j.ress.2022.108445_bib0027) 2017; 11 Yeter (10.1016/j.ress.2022.108445_bib0007) 2020; 202 Yan (10.1016/j.ress.2022.108445_bib0018) 2020; 202 Ghamlouch (10.1016/j.ress.2022.108445_bib0010) 2019; 188 Marugan (10.1016/j.ress.2022.108445_bib0025) 2019; 191 Shen (10.1016/j.ress.2022.108445_bib0039) 2019; 10 Uit (10.1016/j.ress.2022.108445_bib0015) 2021; 214 Tao (10.1016/j.ress.2022.108445_bib0026) 2019; 2019 Kong (10.1016/j.ress.2022.108445_bib0038) 2020; 146 Bhatt (10.1016/j.ress.2022.108445_bib0044) 2013 Wang (10.1016/j.ress.2022.108445_bib0040) 2020; 11 10.1016/j.ress.2022.108445_bib0021 Hu (10.1016/j.ress.2022.108445_bib0029) 2019; 10 Long (10.1016/j.ress.2022.108445_bib0042) 2020; 11 Wang (10.1016/j.ress.2022.108445_bib0030) 2019; 40 10.1016/j.ress.2022.108445_bib0001 |
| References_xml | – volume: 11 start-page: 403 year: 2017 end-page: 410 ident: bib0027 article-title: Hierarchical method for wind turbine prognosis using SCADA data publication-title: Iet Renewable Power Generation – volume: 11 start-page: 1199 year: 2020 end-page: 1209 ident: bib0040 article-title: Wind power curve modeling with asymmetric error distribution publication-title: IEEE Transactions on Sustainable Energy – reference: GWEC. Global Wind Report 2020. Global Wind Energy Council, 2021. – volume: 200 year: 2020 ident: bib0014 article-title: Automated wind turbine maintenance scheduling publication-title: Reliability Engineering & System Safety – volume: 85 start-page: 45 year: 2016 end-page: 56 ident: bib0023 article-title: Time-frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions publication-title: Renew Energy – volume: 164 start-page: 1540 year: 2021 end-page: 1549 ident: bib0017 article-title: Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ publication-title: Renew Energy – volume: 214 year: 2021 ident: bib0036 article-title: Fault prediction of bearings based on LSTM and statistical process analysis publication-title: Reliability Engineering & System Safety – volume: 116 start-page: 107 year: 2018 end-page: 122 ident: bib0028 article-title: Condition monitoring and fault detection in wind turbines based on cointegration analysis of SCADA data publication-title: Renew Energy – volume: 116 start-page: 199 year: 2017 end-page: 208 ident: bib0024 article-title: Ageing assessment of a wind turbine over time by interpreting wind farm SCADA data publication-title: Renew Energy – volume: 146 start-page: 760 year: 2020 end-page: 768 ident: bib0038 article-title: Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units publication-title: Renew Energy – volume: 135 start-page: 877 year: 2019 end-page: 896 ident: bib0003 article-title: Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: a review publication-title: Renew Energy – volume: 190 year: 2019 ident: bib0008 article-title: A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition publication-title: Reliability Engineering & System Safety – year: 2019 ident: bib0046 article-title: An Aging-Aware SOC Estimation Method for Lithium-Ion Batteries using XGBoost Algorithm publication-title: 2019 IEEE International Conference on Prognostics and Health Management (ICPHM) – volume: 29 start-page: 171 year: 2010 end-page: 782 ident: bib0047 article-title: Kernel bandwidth optimization in spike rate estimation publication-title: J. Comput. Neurosci. – year: 2021 ident: bib0037 article-title: A Method for Fault Detection in Multi-Component Systems Based on Sparse Autoencoder-Based Deep Neural Networks publication-title: Reliability Engineering & System Safety – volume: 192 year: 2019 ident: bib0012 article-title: Maintenance optimization and inspection planning of wind energy assets: models, methods and strategies publication-title: Reliability Engineering & System Safety – volume: 13 start-page: 1063 year: 2020 ident: bib0032 article-title: Evaluation of Anomaly Detection of an Autoencoder Based on Maintenance Information and Scada-Data publication-title: Energies – volume: 147 start-page: 1469 year: 2020 end-page: 1480 ident: bib0033 article-title: Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders publication-title: Renew Energy – volume: 202 year: 2020 ident: bib0007 article-title: Risk-based maintenance planning of offshore wind turbine farms publication-title: Reliability Engineering & System Safety – volume: 11 start-page: 938 year: 2020 end-page: 946 ident: bib0042 article-title: Image-based abnormal data detection and cleaning algorithm via wind power curve publication-title: IEEE Transactions on Sustainable Energy – volume: 6 start-page: 11 year: 2015 end-page: 19 ident: bib0041 article-title: Raw wind data preprocessing: a data-mining approach publication-title: IEEE Transactions on Sustainable Energy – volume: 209 year: 2021 ident: bib0019 article-title: Optimal Condition-based Opportunistic Maintenance and Spare Parts Provisioning for a Two-unit System using a State Space Partitioning Approach publication-title: Reliability Engineering & System Safety – volume: 188 start-page: 614 year: 2019 end-page: 623 ident: bib0010 article-title: The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties publication-title: Reliability Engineering & System Safety – volume: 99 start-page: 784 year: 2016 end-page: 799 ident: bib0016 article-title: A decision support system for strategic maintenance planning in offshore wind farms publication-title: Renew Energy – volume: 191 year: 2019 ident: bib0025 article-title: Reliability analysis of detecting false alarms that employ neural networks: a real case study on wind turbines publication-title: Reliability Engineering & System Safety – volume: 145 start-page: 642 year: 2019 end-page: 650 ident: bib0002 article-title: An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples publication-title: Renew Energy – volume: 133 start-page: 703 year: 2019 end-page: 711 ident: bib0009 article-title: Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management publication-title: Renew Energy – volume: 132 start-page: 93 year: 2019 end-page: 105 ident: bib0013 article-title: Sensitivity study of a wind farm maintenance decision-A performance and revenue analysis publication-title: Renew Energy – volume: 202 year: 2020 ident: bib0011 article-title: Risk-based maintenance planning of offshore wind turbine farms publication-title: Reliability Engineering & System Safety – volume: 10 start-page: 841 year: 2019 end-page: 851 ident: bib0045 article-title: Short-term residential load forecasting based on LSTM recurrent neural network publication-title: IEEE Trans Smart Grid – volume: 208 year: 2021 ident: bib0005 article-title: Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability publication-title: Reliability Engineering & System Safety – volume: 20 start-page: 1421 year: 2017 end-page: 1438 ident: bib0031 article-title: An artificial neural network-based condition monitoring method for wind turbines, with application to the monitoring of the gearbox publication-title: Wind Energy – volume: 214 year: 2021 ident: bib0015 article-title: Joint condition-based maintenance and condition-based production optimization publication-title: Reliability Engineering & System Safety – reference: Sahal R., Alsamhi S.H., Breslin J.G., et al. Digital Twins Collaboration for Automatic Erratic Operational Data Detection in Industry 4.0. Applied Sciences, 11(2021), pp. 3186. – volume: 111 start-page: 45 year: 2013 end-page: 57 ident: bib0004 article-title: Quantifying the added value of an imperfectly performing condition monitoring system-Application to a wind turbine gearbox publication-title: Reliability Engineering & System Safety – volume: 133 start-page: 422 year: 2019 end-page: 432 ident: bib0035 article-title: Fault diagnosis of wind turbine based on Long Short-Term memory networks publication-title: Renew Energy – volume: 10 start-page: 46 year: 2019 end-page: 54 ident: bib0039 article-title: A combined algorithm for cleaning abnormal data of wind turbine power curve based on change point grouping algorithm and quartile algorithm publication-title: IEEE Transactions on Sustainable Energy – volume: 54 start-page: 138 year: 2020 end-page: 151 ident: bib0020 article-title: Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case publication-title: Journal of Manufacturing Systems – volume: 205 year: 2021 ident: bib0034 article-title: Fault diagnosis based on extremely randomized trees in wireless sensor networks publication-title: Reliability Engineering & System Safety – volume: 135 start-page: 390 year: 2019 end-page: 398 ident: bib0006 article-title: A novel wind turbine condition monitoring method based on cloud computing publication-title: Renew Energy – volume: 40 start-page: 141 year: 2019 end-page: 149 ident: bib0030 article-title: Condition monitoring of wind turbine gearbox based on ensemble nonlinear state estimation technique and soft fuzzy clustering publication-title: Chinese Journal of Scientific Instrument – volume: 131 start-page: 841 year: 2019 end-page: 853 ident: bib0043 article-title: Using high-frequency SCADA data for wind turbine performance monitoring: a sensitivity study publication-title: Renew Energy – volume: 10 start-page: 1330 year: 2019 end-page: 1341 ident: bib0029 article-title: Adaptive Confidence Boundary Modeling of Wind Turbine Power Curve using SCADA Data and Its Application publication-title: IEEE Transactions on Sustainable Energy – volume: 19 start-page: 593 year: 2016 end-page: 606 ident: bib0022 article-title: Model-based fault detection for generator cooling system in wind turbines using SCADA data publication-title: Wind Energy – volume: 2019 start-page: 1 year: 2019 end-page: 10 ident: bib0026 article-title: Abnormal Detection of Wind Turbine Based on SCADA Data Mining publication-title: Mathematical Problems in Engineering – start-page: 1 year: 2013 end-page: 3 ident: bib0044 article-title: An enhanced approach for LOF in data mining publication-title: 2013 IEEE International Conference on Green High Performance Computing – volume: 202 year: 2020 ident: bib0018 article-title: Joint maintenance and spare parts inventory optimization for multi-unit systems considering imperfect maintenance actions publication-title: Reliability Engineering & System Safety – volume: 188 start-page: 614 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0010 article-title: The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2017.10.001 – volume: 135 start-page: 390 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0006 article-title: A novel wind turbine condition monitoring method based on cloud computing publication-title: Renew Energy doi: 10.1016/j.renene.2018.12.045 – volume: 202 year: 2020 ident: 10.1016/j.ress.2022.108445_bib0011 article-title: Risk-based maintenance planning of offshore wind turbine farms publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2020.107062 – volume: 10 start-page: 841 issue: 1 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0045 article-title: Short-term residential load forecasting based on LSTM recurrent neural network publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2753802 – ident: 10.1016/j.ress.2022.108445_bib0021 doi: 10.3390/app11073186 – year: 2019 ident: 10.1016/j.ress.2022.108445_bib0046 article-title: An Aging-Aware SOC Estimation Method for Lithium-Ion Batteries using XGBoost Algorithm – ident: 10.1016/j.ress.2022.108445_bib0001 – volume: 20 start-page: 1421 issue: 8 year: 2017 ident: 10.1016/j.ress.2022.108445_bib0031 article-title: An artificial neural network-based condition monitoring method for wind turbines, with application to the monitoring of the gearbox publication-title: Wind Energy doi: 10.1002/we.2102 – volume: 202 year: 2020 ident: 10.1016/j.ress.2022.108445_bib0007 article-title: Risk-based maintenance planning of offshore wind turbine farms publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2020.107062 – volume: 132 start-page: 93 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0013 article-title: Sensitivity study of a wind farm maintenance decision-A performance and revenue analysis publication-title: Renew Energy doi: 10.1016/j.renene.2018.07.110 – volume: 11 start-page: 403 issue: 4 year: 2017 ident: 10.1016/j.ress.2022.108445_bib0027 article-title: Hierarchical method for wind turbine prognosis using SCADA data publication-title: Iet Renewable Power Generation doi: 10.1049/iet-rpg.2016.0247 – volume: 214 issue: 4 year: 2021 ident: 10.1016/j.ress.2022.108445_bib0036 article-title: Fault prediction of bearings based on LSTM and statistical process analysis publication-title: Reliability Engineering & System Safety – year: 2021 ident: 10.1016/j.ress.2022.108445_bib0037 article-title: A Method for Fault Detection in Multi-Component Systems Based on Sparse Autoencoder-Based Deep Neural Networks publication-title: Reliability Engineering & System Safety – volume: 111 start-page: 45 year: 2013 ident: 10.1016/j.ress.2022.108445_bib0004 article-title: Quantifying the added value of an imperfectly performing condition monitoring system-Application to a wind turbine gearbox publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2012.10.010 – volume: 116 start-page: 199 year: 2017 ident: 10.1016/j.ress.2022.108445_bib0024 article-title: Ageing assessment of a wind turbine over time by interpreting wind farm SCADA data publication-title: Renew Energy doi: 10.1016/j.renene.2017.03.097 – volume: 133 start-page: 703 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0009 article-title: Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management publication-title: Renew Energy doi: 10.1016/j.renene.2018.10.076 – volume: 40 start-page: 141 issue: 7 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0030 article-title: Condition monitoring of wind turbine gearbox based on ensemble nonlinear state estimation technique and soft fuzzy clustering publication-title: Chinese Journal of Scientific Instrument – volume: 214 year: 2021 ident: 10.1016/j.ress.2022.108445_bib0015 article-title: Joint condition-based maintenance and condition-based production optimization publication-title: Reliability Engineering & System Safety – volume: 10 start-page: 46 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0039 article-title: A combined algorithm for cleaning abnormal data of wind turbine power curve based on change point grouping algorithm and quartile algorithm publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2018.2822682 – volume: 54 start-page: 138 year: 2020 ident: 10.1016/j.ress.2022.108445_bib0020 article-title: Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2019.11.004 – volume: 10 start-page: 1330 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0029 article-title: Adaptive Confidence Boundary Modeling of Wind Turbine Power Curve using SCADA Data and Its Application publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2018.2866543 – volume: 208 year: 2021 ident: 10.1016/j.ress.2022.108445_bib0005 article-title: Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2020.107404 – volume: 13 start-page: 1063 issue: 5 year: 2020 ident: 10.1016/j.ress.2022.108445_bib0032 article-title: Evaluation of Anomaly Detection of an Autoencoder Based on Maintenance Information and Scada-Data publication-title: Energies doi: 10.3390/en13051063 – volume: 146 start-page: 760 year: 2020 ident: 10.1016/j.ress.2022.108445_bib0038 article-title: Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units publication-title: Renew Energy doi: 10.1016/j.renene.2019.07.033 – volume: 209 year: 2021 ident: 10.1016/j.ress.2022.108445_bib0019 article-title: Optimal Condition-based Opportunistic Maintenance and Spare Parts Provisioning for a Two-unit System using a State Space Partitioning Approach publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2021.107451 – volume: 29 start-page: 171 year: 2010 ident: 10.1016/j.ress.2022.108445_bib0047 article-title: Kernel bandwidth optimization in spike rate estimation publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-009-0180-4 – start-page: 1 year: 2013 ident: 10.1016/j.ress.2022.108445_bib0044 article-title: An enhanced approach for LOF in data mining – volume: 202 year: 2020 ident: 10.1016/j.ress.2022.108445_bib0018 article-title: Joint maintenance and spare parts inventory optimization for multi-unit systems considering imperfect maintenance actions publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2020.106994 – volume: 85 start-page: 45 year: 2016 ident: 10.1016/j.ress.2022.108445_bib0023 article-title: Time-frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions publication-title: Renew Energy doi: 10.1016/j.renene.2015.06.041 – volume: 11 start-page: 1199 year: 2020 ident: 10.1016/j.ress.2022.108445_bib0040 article-title: Wind power curve modeling with asymmetric error distribution publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2019.2920386 – volume: 11 start-page: 938 year: 2020 ident: 10.1016/j.ress.2022.108445_bib0042 article-title: Image-based abnormal data detection and cleaning algorithm via wind power curve publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2019.2914089 – volume: 116 start-page: 107 year: 2018 ident: 10.1016/j.ress.2022.108445_bib0028 article-title: Condition monitoring and fault detection in wind turbines based on cointegration analysis of SCADA data publication-title: Renew Energy doi: 10.1016/j.renene.2017.06.089 – volume: 191 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0025 article-title: Reliability analysis of detecting false alarms that employ neural networks: a real case study on wind turbines publication-title: Reliability Engineering & System Safety – volume: 6 start-page: 11 year: 2015 ident: 10.1016/j.ress.2022.108445_bib0041 article-title: Raw wind data preprocessing: a data-mining approach publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2014.2355837 – volume: 147 start-page: 1469 year: 2020 ident: 10.1016/j.ress.2022.108445_bib0033 article-title: Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders publication-title: Renew Energy doi: 10.1016/j.renene.2019.09.041 – volume: 164 start-page: 1540 year: 2021 ident: 10.1016/j.ress.2022.108445_bib0017 article-title: Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ – volume: 133 start-page: 422 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0035 article-title: Fault diagnosis of wind turbine based on Long Short-Term memory networks publication-title: Renew Energy doi: 10.1016/j.renene.2018.10.031 – volume: 135 start-page: 877 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0003 article-title: Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: a review publication-title: Renew Energy doi: 10.1016/j.renene.2018.12.066 – volume: 131 start-page: 841 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0043 article-title: Using high-frequency SCADA data for wind turbine performance monitoring: a sensitivity study publication-title: Renew Energy doi: 10.1016/j.renene.2018.07.068 – volume: 19 start-page: 593 issue: 4 year: 2016 ident: 10.1016/j.ress.2022.108445_bib0022 article-title: Model-based fault detection for generator cooling system in wind turbines using SCADA data publication-title: Wind Energy doi: 10.1002/we.1852 – volume: 99 start-page: 784 year: 2016 ident: 10.1016/j.ress.2022.108445_bib0016 article-title: A decision support system for strategic maintenance planning in offshore wind farms publication-title: Renew Energy doi: 10.1016/j.renene.2016.07.037 – volume: 205 year: 2021 ident: 10.1016/j.ress.2022.108445_bib0034 article-title: Fault diagnosis based on extremely randomized trees in wireless sensor networks publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2020.107284 – volume: 190 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0008 article-title: A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2019.106512 – volume: 145 start-page: 642 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0002 article-title: An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples publication-title: Renew Energy doi: 10.1016/j.renene.2019.06.103 – volume: 192 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0012 article-title: Maintenance optimization and inspection planning of wind energy assets: models, methods and strategies publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2017.10.025 – volume: 200 year: 2020 ident: 10.1016/j.ress.2022.108445_bib0014 article-title: Automated wind turbine maintenance scheduling publication-title: Reliability Engineering & System Safety – volume: 2019 start-page: 1 issue: 11 year: 2019 ident: 10.1016/j.ress.2022.108445_bib0026 article-title: Abnormal Detection of Wind Turbine Based on SCADA Data Mining publication-title: Mathematical Problems in Engineering |
| SSID | ssj0004957 |
| Score | 2.6631773 |
| Snippet | •An anomaly detection and diagnosis method for wind turbines.•Abnormal data recognition algorithm based on LOF and adaptive K-means.•Normal behavior model... An anomaly detection and diagnosis method for wind turbines using long short-term memory-based stacked denoising autoencoders (LSTM-SDAE) and extreme gradient... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108445 |
| SubjectTerms | Abnormalities Algorithms Anomalies Anomaly detection and diagnosis Confidence intervals Diagnosis Feature extraction Long short-term memory Long short-term memory (LSTM) Mahalanobis distance (MD) Noise reduction Outliers (statistics) Reliability engineering Stacked denoising autoencoders (SDAE) Statistical analysis Turbines Wind farms Wind power Wind turbine Wind turbines XGBoost |
| Title | Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost |
| URI | https://dx.doi.org/10.1016/j.ress.2022.108445 https://www.proquest.com/docview/2653336774 |
| Volume | 222 |
| WOSCitedRecordID | wos000771562000051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE-1paA9cLMc-b3xsVSFglDFIaDcrH1ZdZXaVRKX5tQrP5sZ7_qRoFb0wMWKnPV65fl2Xpr5lpAPYHR06Cvuci5iN0rDHLYUC13mx0pG2EbbpAZ-fmNnZ5PZLP0-Gv1ue2Gu56wsJzc36dV_FTXcA2Fj6-wDxN1NCjfgNwgdriB2uP6T4CGgv-TztaP0SttzwEuFOVYsqSsa-gXnV4F1k_VCYNG7Uzf5gjmeOrQ8B3fcRXXtXGIN7tpFM6cw4wDbHabRZVU0w3m9qpAEEwuhmzfMPn-squVGqh_rnQ0P-NrRPfFhAzdDIe0seW6ZSDbS18fnfYvaad0oxqJTUHbMlFfDnAWEu11tVZd89F3QJd5QDwemQdlqUt-bRIZo8i8lb_INF2PMR4xx-nE_eJNRe8vSdfWHbWnbRYZzZDhHZuZ4RHYDFqegH3ePvpzMvvY9tqlhjW1XbhuwTK3g9krucnK2zH3jw0yfk2c2-KBHBjQvyEiXL8nTASXlK3Jr4UM7-FAQLu3gQwE-FOFDW_jQBj4U4UN7-NAhfKiFD-3gQ4fwad5g4fOa_Ph0Mj0-de0hHa4Mg8nKZTxP0kB5UiTSB3fITyOpUpVEOX4z8Od1zJQOZa5ZqjzlywBMrIAo35OBp0UYviE7ZVXqPUKjWIAzK8JYKB4xIXgOZpwrKTXTqRbRPvHbr5pJy2CPB6nMs7vluU-c7pkrw99y7-i4FVZmPVDjWWaAvXufO2wlm1lVAP8nEEqFCcRXBw9axFvypN8zh2Rntaj1O_JYXq-K5eK9xeUf69G2XA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+and+diagnosis+for+wind+turbines+using+long+short-term+memory-based+stacked+denoising+autoencoders+and+XGBoost&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zhang%2C+Chen&rft.au=Hu%2C+Di&rft.au=Yang%2C+Tao&rft.date=2022-06-01&rft.issn=0951-8320&rft.volume=222&rft.spage=108445&rft_id=info:doi/10.1016%2Fj.ress.2022.108445&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2022_108445 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |