Dynamic reliability assessment and prediction for repairable systems with interval-censored data

The ‘Test, Analyze and Fix’ process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for the system has been paid a great deal of attention. Due to instrument malfunctions, staff omissions and imperfect inspection strategies, field...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety Vol. 159; pp. 301 - 309
Main Authors: Peng, Yizhen, Wang, Yu, Zi, YanYang, Tsui, Kwok-Leung, Zhang, Chuhua
Format: Journal Article
Language:English
Published: Barking Elsevier Ltd 01.03.2017
Elsevier BV
Subjects:
ISSN:0951-8320, 1879-0836
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The ‘Test, Analyze and Fix’ process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for the system has been paid a great deal of attention. Due to instrument malfunctions, staff omissions and imperfect inspection strategies, field reliability data are often subject to interval censoring, making dynamic reliability assessment become a difficult task. Most traditional methods assume this kind of data as multiple normal distributed variables or the missing mechanism as missing at random, which may cause a large bias in parameter estimation. This paper proposes a novel method to evaluate and predict the dynamic reliability of a repairable system subject to interval-censored problem. First, a multiple imputation strategy based on the assumption that the reliability growth trend follows a nonhomogeneous Poisson process is developed to derive the distributions of missing data. Second, a new order statistic model that can transfer the dependent variables into independent variables is developed to simplify the imputation procedure. The unknown parameters of the model are iteratively inferred by the Monte Carlo expectation maximization (MCEM) algorithm. Finally, to verify the effectiveness of the proposed method, a simulation and a real case study for gas pipeline compressor system are implemented. •A new multiple imputation strategy was developed to derive the PDF of missing data.•A new order statistic model was developed to simplify the imputation procedure.•The parameters of the order statistic model were iteratively inferred by MCEM.•A real cases study was conducted to verify the effectiveness of the proposed method.
AbstractList The ‘Test, Analyze and Fix’ process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for the system has been paid a great deal of attention. Due to instrument malfunctions, staff omissions and imperfect inspection strategies, field reliability data are often subject to interval censoring, making dynamic reliability assessment become a difficult task. Most traditional methods assume this kind of data as multiple normal distributed variables or the missing mechanism as missing at random, which may cause a large bias in parameter estimation. This paper proposes a novel method to evaluate and predict the dynamic reliability of a repairable system subject to interval-censored problem. First, a multiple imputation strategy based on the assumption that the reliability growth trend follows a nonhomogeneous Poisson process is developed to derive the distributions of missing data. Second, a new order statistic model that can transfer the dependent variables into independent variables is developed to simplify the imputation procedure. The unknown parameters of the model are iteratively inferred by the Monte Carlo expectation maximization (MCEM) algorithm. Finally, to verify the effectiveness of the proposed method, a simulation and a real case study for gas pipeline compressor system are implemented. •A new multiple imputation strategy was developed to derive the PDF of missing data.•A new order statistic model was developed to simplify the imputation procedure.•The parameters of the order statistic model were iteratively inferred by MCEM.•A real cases study was conducted to verify the effectiveness of the proposed method.
The 'Test, Analyze and Fix' process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for the system has been paid a great deal of attention. Due to instrument malfunctions, staff omissions and imperfect inspection strategies, field reliability data are often subject to interval censoring, making dynamic reliability assessment become a difficult task. Most traditional methods assume this kind of data as multiple normal distributed variables or the missing mechanism as missing at random, which may cause a large bias in parameter estimation. This paper proposes a novel method to evaluate and predict the dynamic reliability of a repairable system subject to interval-censored problem. First, a multiple imputation strategy based on the assumption that the reliability growth trend follows a nonhomogeneous Poisson process is developed to derive the distributions of missing data. Second, a new order statistic model that can transfer the dependent variables into independent variables is developed to simplify the imputation procedure. The unknown parameters of the model are iteratively inferred by the Monte Carlo expectation maximization (MCEM) algorithm. Finally, to verify the effectiveness of the proposed method, a simulation and a real case study for gas pipeline compressor system are implemented.
Author Peng, Yizhen
Zi, YanYang
Wang, Yu
Zhang, Chuhua
Tsui, Kwok-Leung
Author_xml – sequence: 1
  givenname: Yizhen
  surname: Peng
  fullname: Peng, Yizhen
  organization: State Key Laboratory f or Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
– sequence: 2
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  email: ywang95@xjtu.edu.cn
  organization: State Key Laboratory f or Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
– sequence: 3
  givenname: YanYang
  surname: Zi
  fullname: Zi, YanYang
  organization: State Key Laboratory f or Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
– sequence: 4
  givenname: Kwok-Leung
  surname: Tsui
  fullname: Tsui, Kwok-Leung
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Chuhua
  surname: Zhang
  fullname: Zhang, Chuhua
  organization: Department of Fluid Machinery and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxJxgx21iSyyofEqVWGA2F-csXKVOsd2i_ntclYmh093wPnd6nwkZ-cEjIdeclZzx-nZVBoyxrPJecl4yzs_ImMtGFUyKekTGTM15IUXFLsgkxhVjbKbmzZh8Puw9rJ2hAXsHretd2lOIMV9bo08UfEc3ATtnkhs8tUPIyQ24AG2PNO5jwnWkPy59UecThh30hUEfh8zQDhJcknMLfcSrvzklH0-P74uXYvn2_Lq4XxZGVDIVTSM6BhKlUsJC1SqFbVVbzrFRTddWCLkHCttIoTpAaZWFLleXtbUtShBTcnO8uwnD9xZj0qthG3x-qbmazeY1r-Yip6pjyoQhxoBWb4JbQ9hrzvTBpF7pg0l9MKk519lkhuQ_yLgEBx8pgOtPo3dHFHP1ncOgo3HoTRYa0CTdDe4U_guuLJP4
CitedBy_id crossref_primary_10_1088_1757_899X_1043_5_052017
crossref_primary_10_1109_TIM_2021_3126804
crossref_primary_10_1016_j_procs_2022_01_367
crossref_primary_10_3390_math9080905
crossref_primary_10_1016_j_cie_2021_107439
crossref_primary_10_1016_j_ress_2021_107747
crossref_primary_10_1016_j_procs_2021_01_262
crossref_primary_10_1080_03610926_2019_1702697
crossref_primary_10_1016_j_ress_2023_109859
crossref_primary_10_1108_ECAM_12_2018_0542
crossref_primary_10_1016_j_ress_2021_107622
crossref_primary_10_1088_1757_899X_750_1_012175
crossref_primary_10_1177_1748006X20928196
crossref_primary_10_1016_j_engfailanal_2019_104152
crossref_primary_10_1016_j_ress_2020_107190
crossref_primary_10_1109_TR_2018_2832022
crossref_primary_10_1016_j_ress_2024_110424
crossref_primary_10_33889_IJMEMS_2023_8_4_032
Cites_doi 10.1002/we.204
10.1016/j.ress.2011.03.018
10.1080/10629360600903866
10.1109/TA.1964.4319640
10.1016/j.ress.2009.04.001
10.1016/j.ress.2016.03.012
10.1016/j.ress.2005.09.010
10.1109/TR.2010.2044539
10.1016/j.csda.2007.05.003
10.1109/ARMS.1988.196455
10.1080/00401706.1965.10490300
10.1109/TR.2014.2337072
10.1109/TPWRD.2015.2404926
10.1016/j.jsp.2009.10.001
10.1016/j.ress.2005.12.004
10.1080/01621459.1990.10474930
10.1016/j.ress.2008.12.004
10.1080/00401706.2014.902772
10.1016/j.ress.2014.04.012
10.1080/03610926.2011.588363
10.1109/PES.2007.386112
10.1016/j.ress.2014.01.019
10.1080/02664760801920846
10.1016/S0951-8320(99)00045-9
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Mar 2017
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2017
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2016.11.011
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
EndPage 309
ExternalDocumentID 10_1016_j_ress_2016_11_011
S0951832016308286
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-773d0a8e8993fa2b99eb26f11e797db2ea836e3f7839dae8f9fad10186ffbe8a3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392897600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 09:36:17 EDT 2025
Tue Nov 18 22:33:02 EST 2025
Sat Nov 29 07:51:26 EST 2025
Fri Feb 23 02:28:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic reliability
Interval censoring
Monte carlo expectation-maximization algorithm
Non-homogeneous Poisson process
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-773d0a8e8993fa2b99eb26f11e797db2ea836e3f7839dae8f9fad10186ffbe8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1944561253
PQPubID 2045406
PageCount 9
ParticipantIDs proquest_journals_1944561253
crossref_primary_10_1016_j_ress_2016_11_011
crossref_citationtrail_10_1016_j_ress_2016_11_011
elsevier_sciencedirect_doi_10_1016_j_ress_2016_11_011
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Somboonsavatdee, Ananda (bib13) 2015; 57
Xing, Wu, Jiang, Liu (bib17) 2010; 59
Crow LH, Basu AP. Reliability growth estimation with missing data. II. In: Proceedings of reliability and maintainability symposium annual; 1988, pp. 248–253.
Xing, Wu, Jiang, Liu (bib3) 2010; 59
Wayne, Modarres (bib8) 2015; 64
Awad (bib9) 2016; 152
Standards, Belgian. Petroleum, petrochemical and natural gas industries—collection and exchange of reliability and maintenance data for equipment. 2003.
Demirtas, Freels, Yucel (bib26) 2008; 78
Zhang, Xie, Tang (bib18) 2006; 91
Ribrant J, Bertling L . Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. power engineering society general meeting IEEE; 2007 pp. 1–8
Wang, Xie, Zhou (bib11) 2013; 42
Gaver, Jacobs (bib7) 2014; 130
Guo, Watson, Tavner, Xiang (bib25) 2009; 94
Arnold, Balakrishnan, Nagaraja (bib35) 1992
Ross (bib29) 1990
Tavner, Xiang, Spinato (bib30) 2007; 10
Calabria, Pulcini (bib2) 2000; 67
Louit, Pascual, Jardine (bib20) 2009; 94
Dyck, Verdonck (bib12) 2014; 126
Yu, Tian, Tang (bib24) 2008; 52
Calabria, Guida, Pulcini (bib28) 2007; 19
Meeker, Escobar (bib19) 2014
Duane (bib4) 1964; 2.2
Li, Mobin, Keyser (bib6) 2015; 65
Cohen (bib31) 1965; 7
Taghipour, Banjevic (bib14) 2011; 96
Spinato, Tavner, Van Bussel (bib15) 2009; 3
Little, Rubin (bib21) 2014
Wei, Tanner (bib27) 1990; 85
Majeske (bib10) 2007; 92
Crow (bib5) 1974
Tang, Zhou, Zhao, Ma, Huang (bib16) 2015; 30
Baraldi, Enders (bib22) 2010; 48
Jiang, Xie, Tang (bib32) 2008; 35
Jin, Liao, Kilari (bib1) 2003; 50.3
10.1016/j.ress.2016.11.011_bib33
10.1016/j.ress.2016.11.011_bib34
Wei (10.1016/j.ress.2016.11.011_bib27) 1990; 85
Calabria (10.1016/j.ress.2016.11.011_bib2) 2000; 67
Calabria (10.1016/j.ress.2016.11.011_bib28) 2007; 19
Jin (10.1016/j.ress.2016.11.011_bib1) 2003; 50.3
Zhang (10.1016/j.ress.2016.11.011_bib18) 2006; 91
Jiang (10.1016/j.ress.2016.11.011_bib32) 2008; 35
Crow (10.1016/j.ress.2016.11.011_bib5) 1974
Louit (10.1016/j.ress.2016.11.011_bib20) 2009; 94
Little (10.1016/j.ress.2016.11.011_bib21) 2014
Somboonsavatdee (10.1016/j.ress.2016.11.011_bib13) 2015; 57
Li (10.1016/j.ress.2016.11.011_bib6) 2015; 65
Guo (10.1016/j.ress.2016.11.011_bib25) 2009; 94
Wayne (10.1016/j.ress.2016.11.011_bib8) 2015; 64
Yu (10.1016/j.ress.2016.11.011_bib24) 2008; 52
Majeske (10.1016/j.ress.2016.11.011_bib10) 2007; 92
Dyck (10.1016/j.ress.2016.11.011_bib12) 2014; 126
Baraldi (10.1016/j.ress.2016.11.011_bib22) 2010; 48
Cohen (10.1016/j.ress.2016.11.011_bib31) 1965; 7
Arnold (10.1016/j.ress.2016.11.011_bib35) 1992
Duane (10.1016/j.ress.2016.11.011_bib4) 1964; 2.2
10.1016/j.ress.2016.11.011_bib23
Tavner (10.1016/j.ress.2016.11.011_bib30) 2007; 10
Meeker (10.1016/j.ress.2016.11.011_bib19) 2014
Gaver (10.1016/j.ress.2016.11.011_bib7) 2014; 130
Spinato (10.1016/j.ress.2016.11.011_bib15) 2009; 3
Wang (10.1016/j.ress.2016.11.011_bib11) 2013; 42
Tang (10.1016/j.ress.2016.11.011_bib16) 2015; 30
Xing (10.1016/j.ress.2016.11.011_bib17) 2010; 59
Xing (10.1016/j.ress.2016.11.011_bib3) 2010; 59
Awad (10.1016/j.ress.2016.11.011_bib9) 2016; 152
Taghipour (10.1016/j.ress.2016.11.011_bib14) 2011; 96
Demirtas (10.1016/j.ress.2016.11.011_bib26) 2008; 78
Ross (10.1016/j.ress.2016.11.011_bib29) 1990
References_xml – volume: 64
  start-page: 206
  year: 2015
  end-page: 219
  ident: bib8
  article-title: A Bayesian model for complex system reliability growth under arbitrary corrective actions
  publication-title: IEEE Trans Reliab
– year: 1992
  ident: bib35
  article-title: A first course in order statistics
  publication-title: Siam
– volume: 59
  start-page: 309
  year: 2010
  end-page: 312
  ident: bib3
  article-title: Dynamic Bayesian evaluation method for system reliability growth based on in-time correction
  publication-title: Reliab, IEEE Trans
– volume: 94
  start-page: 1618
  year: 2009
  end-page: 1628
  ident: bib20
  article-title: A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data
  publication-title: Reliab Eng Syst Saf
– volume: 92
  start-page: 243
  year: 2007
  end-page: 251
  ident: bib10
  article-title: A non-homogeneous Poisson process predictive model for automobile warranty claims
  publication-title: Reliab Eng Syst Saf
– volume: 59
  start-page: 309
  year: 2010
  end-page: 312
  ident: bib17
  article-title: Dynamic bayesian evaluation method for system reliability growth based on In-time correction
  publication-title: IEEE Trans Reliab
– volume: 30
  start-page: 2410
  year: 2015
  end-page: 2418
  ident: bib16
  article-title: Comparison of the Weibull and the Crow-AMSAA model in prediction of early cable joint failures
  publication-title: Power Deliv IEEE Trans
– reference: Crow LH, Basu AP. Reliability growth estimation with missing data. II. In: Proceedings of reliability and maintainability symposium annual; 1988, pp. 248–253.
– volume: 10
  start-page: 1
  year: 2007
  end-page: 18
  ident: bib30
  article-title: Reliability analysis for wind turbines
  publication-title: Wind Energy
– year: 2014
  ident: bib19
  article-title: Statistical methods for reliability data
– start-page: 379
  year: 1974
  end-page: 410
  ident: bib5
  article-title: Analysis for complex, repairable systems
  publication-title: Reliab Biom Siam
– volume: 96
  start-page: 1340
  year: 2011
  end-page: 1348
  ident: bib14
  article-title: Trend analysis of the power law process using expectation–maximization algorithm for data censored by inspection intervals
  publication-title: Reliab Eng Syst Saf
– volume: 50.3
  start-page: 324
  year: 2003
  end-page: 331
  ident: bib1
  article-title: Reliability growth modeling for in-service electronic systems considering latent failure modes
  publication-title: Microelectron Reliab
– volume: 57
  start-page: 112
  year: 2015
  end-page: 122
  ident: bib13
  article-title: Statistical Inference for power-law process with competing risks
  publication-title: Technometrics
– year: 1990
  ident: bib29
  article-title: A course in simulation
  publication-title: Prentice Hall PTR
– reference: Standards, Belgian. Petroleum, petrochemical and natural gas industries—collection and exchange of reliability and maintenance data for equipment. 2003.
– volume: 2.2
  start-page: 563
  year: 1964
  end-page: 566
  ident: bib4
  article-title: Learning curve approach to reliability monitoring
  publication-title: IEEE Transactions Aerosp.
– volume: 152
  start-page: 273
  year: 2016
  end-page: 280
  ident: bib9
  article-title: Economic allocation of reliability growth testing using Weibull distributions
  publication-title: Reliab Eng Syst Saf
– volume: 91
  start-page: 930
  year: 2006
  end-page: 939
  ident: bib18
  article-title: Bias correction for the least squares estimator of Weibull shape parameter with complete and censored data
  publication-title: Reliab Eng Syst Saf
– volume: 7
  start-page: 579
  year: 1965
  end-page: 588
  ident: bib31
  article-title: Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples
  publication-title: Technometrics
– volume: 52
  start-page: 1587
  year: 2008
  end-page: 1603
  ident: bib24
  article-title: Statistical inference and prediction for the Weibull process with incomplete observations
  publication-title: Comput Stat Data Anal
– volume: 67
  start-page: 41
  year: 2000
  end-page: 53
  ident: bib2
  article-title: Inference and test in modeling the failure/repair process of repairable mechanical equipments
  publication-title: Reliab Eng Syst Saf
– year: 2014
  ident: bib21
  article-title: Statistical analysis with missing data
– reference: Ribrant J, Bertling L . Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. power engineering society general meeting IEEE; 2007 pp. 1–8
– volume: 94
  start-page: 1057
  year: 2009
  end-page: 1063
  ident: bib25
  article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation
  publication-title: Reliab Eng Syst Saf
– volume: 65
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib6
  article-title: Multi-objective and multi-Stage reliability growth planning in early product-development stage
  publication-title: IEEE Trans Reliab
– volume: 126
  start-page: 143
  year: 2014
  end-page: 152
  ident: bib12
  article-title: Precision of power-law NHPP estimates for multiple systems with known failure rate scaling
  publication-title: Reliab Eng Syst Saf
– volume: 3
  start-page: 387
  year: 2009
  end-page: 401
  ident: bib15
  article-title: Reliability of wind turbine subassemblies. renewable power generation
  publication-title: IET
– volume: 48
  start-page: 5
  year: 2010
  end-page: 37
  ident: bib22
  article-title: An introduction to modern missing data analyses
  publication-title: J Sch Psychol
– volume: 19
  start-page: 3023
  year: 2007
  end-page: 3035
  ident: bib28
  article-title: Bayes estimation of prediction intervals for a power law process
  publication-title: Commun Stat-Theory Methods
– volume: 35
  start-page: 647
  year: 2008
  end-page: 658
  ident: bib32
  article-title: Markov chain monte carlo methods for parameter estimation of the modified Weibull distribution
  publication-title: J Appl Stat
– volume: 130
  start-page: 27
  year: 2014
  end-page: 32
  ident: bib7
  article-title: Reliability growth by failure mode removal
  publication-title: Reliab Eng Syst Saf
– volume: 42
  start-page: 898
  year: 2013
  end-page: 906
  ident: bib11
  article-title: Generalized confidence interval for the scale parameter of the power-law process
  publication-title: Commun Stat-Theory Methods
– volume: 78
  start-page: 69
  year: 2008
  end-page: 84
  ident: bib26
  article-title: Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: a simulation assessment
  publication-title: J Stat Comput Simul
– volume: 85
  start-page: 699
  year: 1990
  end-page: 704
  ident: bib27
  article-title: A monte carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
  publication-title: J Am Stat Assoc
– volume: 10
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.ress.2016.11.011_bib30
  article-title: Reliability analysis for wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.204
– volume: 96
  start-page: 1340
  issue: 10
  year: 2011
  ident: 10.1016/j.ress.2016.11.011_bib14
  article-title: Trend analysis of the power law process using expectation–maximization algorithm for data censored by inspection intervals
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2011.03.018
– year: 2014
  ident: 10.1016/j.ress.2016.11.011_bib21
– volume: 78
  start-page: 69
  issue: 1
  year: 2008
  ident: 10.1016/j.ress.2016.11.011_bib26
  article-title: Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: a simulation assessment
  publication-title: J Stat Comput Simul
  doi: 10.1080/10629360600903866
– volume: 2.2
  start-page: 563
  year: 1964
  ident: 10.1016/j.ress.2016.11.011_bib4
  article-title: Learning curve approach to reliability monitoring
  publication-title: IEEE Transactions Aerosp.
  doi: 10.1109/TA.1964.4319640
– volume: 94
  start-page: 1618
  issue: 10
  year: 2009
  ident: 10.1016/j.ress.2016.11.011_bib20
  article-title: A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2009.04.001
– volume: 152
  start-page: 273
  year: 2016
  ident: 10.1016/j.ress.2016.11.011_bib9
  article-title: Economic allocation of reliability growth testing using Weibull distributions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.03.012
– volume: 91
  start-page: 930
  issue: 8
  year: 2006
  ident: 10.1016/j.ress.2016.11.011_bib18
  article-title: Bias correction for the least squares estimator of Weibull shape parameter with complete and censored data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.09.010
– volume: 59
  start-page: 309
  issue: 2
  year: 2010
  ident: 10.1016/j.ress.2016.11.011_bib3
  article-title: Dynamic Bayesian evaluation method for system reliability growth based on in-time correction
  publication-title: Reliab, IEEE Trans
  doi: 10.1109/TR.2010.2044539
– volume: 19
  start-page: 3023
  issue: 19
  year: 2007
  ident: 10.1016/j.ress.2016.11.011_bib28
  article-title: Bayes estimation of prediction intervals for a power law process
  publication-title: Commun Stat-Theory Methods
– volume: 65
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.ress.2016.11.011_bib6
  article-title: Multi-objective and multi-Stage reliability growth planning in early product-development stage
  publication-title: IEEE Trans Reliab
– volume: 52
  start-page: 1587
  issue: 3
  year: 2008
  ident: 10.1016/j.ress.2016.11.011_bib24
  article-title: Statistical inference and prediction for the Weibull process with incomplete observations
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2007.05.003
– year: 2014
  ident: 10.1016/j.ress.2016.11.011_bib19
– ident: 10.1016/j.ress.2016.11.011_bib33
– year: 1992
  ident: 10.1016/j.ress.2016.11.011_bib35
  article-title: A first course in order statistics
  publication-title: Siam
– ident: 10.1016/j.ress.2016.11.011_bib23
  doi: 10.1109/ARMS.1988.196455
– volume: 7
  start-page: 579
  issue: 4
  year: 1965
  ident: 10.1016/j.ress.2016.11.011_bib31
  article-title: Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples
  publication-title: Technometrics
  doi: 10.1080/00401706.1965.10490300
– volume: 64
  start-page: 206
  issue: 1
  year: 2015
  ident: 10.1016/j.ress.2016.11.011_bib8
  article-title: A Bayesian model for complex system reliability growth under arbitrary corrective actions
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2014.2337072
– volume: 30
  start-page: 2410
  issue: 6
  year: 2015
  ident: 10.1016/j.ress.2016.11.011_bib16
  article-title: Comparison of the Weibull and the Crow-AMSAA model in prediction of early cable joint failures
  publication-title: Power Deliv IEEE Trans
  doi: 10.1109/TPWRD.2015.2404926
– volume: 59
  start-page: 309
  issue: 2
  year: 2010
  ident: 10.1016/j.ress.2016.11.011_bib17
  article-title: Dynamic bayesian evaluation method for system reliability growth based on In-time correction
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2010.2044539
– volume: 48
  start-page: 5
  issue: 1
  year: 2010
  ident: 10.1016/j.ress.2016.11.011_bib22
  article-title: An introduction to modern missing data analyses
  publication-title: J Sch Psychol
  doi: 10.1016/j.jsp.2009.10.001
– volume: 92
  start-page: 243
  issue: 2
  year: 2007
  ident: 10.1016/j.ress.2016.11.011_bib10
  article-title: A non-homogeneous Poisson process predictive model for automobile warranty claims
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.12.004
– volume: 85
  start-page: 699
  issue: 411
  year: 1990
  ident: 10.1016/j.ress.2016.11.011_bib27
  article-title: A monte carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1990.10474930
– volume: 94
  start-page: 1057
  issue: 6
  year: 2009
  ident: 10.1016/j.ress.2016.11.011_bib25
  article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2008.12.004
– volume: 57
  start-page: 112
  issue: 1
  year: 2015
  ident: 10.1016/j.ress.2016.11.011_bib13
  article-title: Statistical Inference for power-law process with competing risks
  publication-title: Technometrics
  doi: 10.1080/00401706.2014.902772
– year: 1990
  ident: 10.1016/j.ress.2016.11.011_bib29
  article-title: A course in simulation
  publication-title: Prentice Hall PTR
– volume: 50.3
  start-page: 324
  year: 2003
  ident: 10.1016/j.ress.2016.11.011_bib1
  article-title: Reliability growth modeling for in-service electronic systems considering latent failure modes
  publication-title: Microelectron Reliab
– volume: 130
  start-page: 27
  year: 2014
  ident: 10.1016/j.ress.2016.11.011_bib7
  article-title: Reliability growth by failure mode removal
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.04.012
– volume: 42
  start-page: 898
  issue: 5
  year: 2013
  ident: 10.1016/j.ress.2016.11.011_bib11
  article-title: Generalized confidence interval for the scale parameter of the power-law process
  publication-title: Commun Stat-Theory Methods
  doi: 10.1080/03610926.2011.588363
– ident: 10.1016/j.ress.2016.11.011_bib34
  doi: 10.1109/PES.2007.386112
– start-page: 379
  year: 1974
  ident: 10.1016/j.ress.2016.11.011_bib5
  article-title: Analysis for complex, repairable systems
  publication-title: Reliab Biom Siam
– volume: 126
  start-page: 143
  year: 2014
  ident: 10.1016/j.ress.2016.11.011_bib12
  article-title: Precision of power-law NHPP estimates for multiple systems with known failure rate scaling
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.01.019
– volume: 3
  start-page: 387
  issue: 4
  year: 2009
  ident: 10.1016/j.ress.2016.11.011_bib15
  article-title: Reliability of wind turbine subassemblies. renewable power generation
  publication-title: IET
– volume: 35
  start-page: 647
  issue: 6
  year: 2008
  ident: 10.1016/j.ress.2016.11.011_bib32
  article-title: Markov chain monte carlo methods for parameter estimation of the modified Weibull distribution
  publication-title: J Appl Stat
  doi: 10.1080/02664760801920846
– volume: 67
  start-page: 41
  issue: 1
  year: 2000
  ident: 10.1016/j.ress.2016.11.011_bib2
  article-title: Inference and test in modeling the failure/repair process of repairable mechanical equipments
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/S0951-8320(99)00045-9
SSID ssj0004957
Score 2.2888196
Snippet The ‘Test, Analyze and Fix’ process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for...
The 'Test, Analyze and Fix' process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 301
SubjectTerms Computer simulation
Data processing
Dependent variables
Dynamic reliability
Independent variables
Inspection
Interval censoring
Malfunctions
Mathematical models
Missing data
Monte carlo expectation-maximization algorithm
Monte Carlo simulation
Natural gas
Non-homogeneous Poisson process
Parameter estimation
Poisson density functions
Reliability
Reliability analysis
Reliability engineering
System reliability
Title Dynamic reliability assessment and prediction for repairable systems with interval-censored data
URI https://dx.doi.org/10.1016/j.ress.2016.11.011
https://www.proquest.com/docview/1944561253
Volume 159
WOSCitedRecordID wos000392897600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8oPElBhvyA29VpsZJY_txYkOA0IRgiPbJOLE9Mqp06scY-1v4YznHl6QbMAESUhS1SeM4vl_Od9e7nwl55hjMCVyDWyKYjlJpTJSP0hR8nmEKvlvGs8zUi03ww0MxHsu3vd73phbmbMqrSpyfy9P_Kmo4BsL2pbN_Ie62UTgAn0HosAexw_6PBL8f1pj3VSplIOH-NtAt_2ZDDGDKos0ynMOUVM7rGqpA7Iwlb2WdD6mnUQG-7swnqmMlW2vOvlu7h-2YDWs8haYGC-2QaiRo4KBbJuXF564I7SMGrSerNo5dJxlMdAXbcRtdWKxC7sHX2ZfojV3hGYxZwDzYJm2FQFpTTNNlLoWIZByBggl_09igjwWXNYH2JYWNHOJB5SbYsMVv8pcTQ4hRnOz6GIZP6Mt2PXcr6vnLhNvvfUd8P8BU9QR_2Q2ywfhIij7Z2Ht1MH7d1d3KwCTbdByLskL-4NU7_c7wuWIC1HbN0Sa5gw4J3QtAukt6trpHbq_RVN4nnxBSdA1StIMUBUjRDlIUIEU7SFGEFPWQoj9BinpIPSAfXhwcPX8Z4cocUZEwsQSXLDFDLSw464nTLJfS5ixzcWy55CZnVoPIbOI4mN9GW-Gk08Zzw2XO5Vbo5CHpV7PKPiJUpilsxmntXJoPbe5YAV5ywWwC048ZbpG4GTZVIG29Xz1lqpr8xBPlh1r5oQZ_VsFQb5FBe81pIG259tejRhoKzc5gTioAz7XXbTeiU_j-L1QMD-MXnB0lj_-x2SfkVvfKbJP-cr6yO-RmcbYsF_OnCMEfv_-2Gw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+reliability+assessment+and+prediction+for+repairable+systems+with+interval-censored+data&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Peng%2C+Yizhen&rft.au=Wang%2C+Yu&rft.au=Zi%2C+YanYang&rft.au=Tsui%2C+Kwok-Leung&rft.date=2017-03-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=159&rft.spage=301&rft.epage=309&rft_id=info:doi/10.1016%2Fj.ress.2016.11.011&rft.externalDocID=S0951832016308286
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon