Dynamic reliability assessment and prediction for repairable systems with interval-censored data
The ‘Test, Analyze and Fix’ process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for the system has been paid a great deal of attention. Due to instrument malfunctions, staff omissions and imperfect inspection strategies, field...
Gespeichert in:
| Veröffentlicht in: | Reliability engineering & system safety Jg. 159; S. 301 - 309 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Barking
Elsevier Ltd
01.03.2017
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0951-8320, 1879-0836 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The ‘Test, Analyze and Fix’ process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for the system has been paid a great deal of attention. Due to instrument malfunctions, staff omissions and imperfect inspection strategies, field reliability data are often subject to interval censoring, making dynamic reliability assessment become a difficult task. Most traditional methods assume this kind of data as multiple normal distributed variables or the missing mechanism as missing at random, which may cause a large bias in parameter estimation. This paper proposes a novel method to evaluate and predict the dynamic reliability of a repairable system subject to interval-censored problem. First, a multiple imputation strategy based on the assumption that the reliability growth trend follows a nonhomogeneous Poisson process is developed to derive the distributions of missing data. Second, a new order statistic model that can transfer the dependent variables into independent variables is developed to simplify the imputation procedure. The unknown parameters of the model are iteratively inferred by the Monte Carlo expectation maximization (MCEM) algorithm. Finally, to verify the effectiveness of the proposed method, a simulation and a real case study for gas pipeline compressor system are implemented.
•A new multiple imputation strategy was developed to derive the PDF of missing data.•A new order statistic model was developed to simplify the imputation procedure.•The parameters of the order statistic model were iteratively inferred by MCEM.•A real cases study was conducted to verify the effectiveness of the proposed method. |
|---|---|
| AbstractList | The 'Test, Analyze and Fix' process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for the system has been paid a great deal of attention. Due to instrument malfunctions, staff omissions and imperfect inspection strategies, field reliability data are often subject to interval censoring, making dynamic reliability assessment become a difficult task. Most traditional methods assume this kind of data as multiple normal distributed variables or the missing mechanism as missing at random, which may cause a large bias in parameter estimation. This paper proposes a novel method to evaluate and predict the dynamic reliability of a repairable system subject to interval-censored problem. First, a multiple imputation strategy based on the assumption that the reliability growth trend follows a nonhomogeneous Poisson process is developed to derive the distributions of missing data. Second, a new order statistic model that can transfer the dependent variables into independent variables is developed to simplify the imputation procedure. The unknown parameters of the model are iteratively inferred by the Monte Carlo expectation maximization (MCEM) algorithm. Finally, to verify the effectiveness of the proposed method, a simulation and a real case study for gas pipeline compressor system are implemented. The ‘Test, Analyze and Fix’ process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for the system has been paid a great deal of attention. Due to instrument malfunctions, staff omissions and imperfect inspection strategies, field reliability data are often subject to interval censoring, making dynamic reliability assessment become a difficult task. Most traditional methods assume this kind of data as multiple normal distributed variables or the missing mechanism as missing at random, which may cause a large bias in parameter estimation. This paper proposes a novel method to evaluate and predict the dynamic reliability of a repairable system subject to interval-censored problem. First, a multiple imputation strategy based on the assumption that the reliability growth trend follows a nonhomogeneous Poisson process is developed to derive the distributions of missing data. Second, a new order statistic model that can transfer the dependent variables into independent variables is developed to simplify the imputation procedure. The unknown parameters of the model are iteratively inferred by the Monte Carlo expectation maximization (MCEM) algorithm. Finally, to verify the effectiveness of the proposed method, a simulation and a real case study for gas pipeline compressor system are implemented. •A new multiple imputation strategy was developed to derive the PDF of missing data.•A new order statistic model was developed to simplify the imputation procedure.•The parameters of the order statistic model were iteratively inferred by MCEM.•A real cases study was conducted to verify the effectiveness of the proposed method. |
| Author | Peng, Yizhen Zi, YanYang Wang, Yu Zhang, Chuhua Tsui, Kwok-Leung |
| Author_xml | – sequence: 1 givenname: Yizhen surname: Peng fullname: Peng, Yizhen organization: State Key Laboratory f or Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China – sequence: 2 givenname: Yu surname: Wang fullname: Wang, Yu email: ywang95@xjtu.edu.cn organization: State Key Laboratory f or Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China – sequence: 3 givenname: YanYang surname: Zi fullname: Zi, YanYang organization: State Key Laboratory f or Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China – sequence: 4 givenname: Kwok-Leung surname: Tsui fullname: Tsui, Kwok-Leung organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong – sequence: 5 givenname: Chuhua surname: Zhang fullname: Zhang, Chuhua organization: Department of Fluid Machinery and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CyxJxgx21iSyyofEqVWGA2F-csXKVOsd2i_ntclYmh093wPnd6nwkZ-cEjIdeclZzx-nZVBoyxrPJecl4yzs_ImMtGFUyKekTGTM15IUXFLsgkxhVjbKbmzZh8Puw9rJ2hAXsHretd2lOIMV9bo08UfEc3ATtnkhs8tUPIyQ24AG2PNO5jwnWkPy59UecThh30hUEfh8zQDhJcknMLfcSrvzklH0-P74uXYvn2_Lq4XxZGVDIVTSM6BhKlUsJC1SqFbVVbzrFRTddWCLkHCttIoTpAaZWFLleXtbUtShBTcnO8uwnD9xZj0qthG3x-qbmazeY1r-Yip6pjyoQhxoBWb4JbQ9hrzvTBpF7pg0l9MKk519lkhuQ_yLgEBx8pgOtPo3dHFHP1ncOgo3HoTRYa0CTdDe4U_guuLJP4 |
| CitedBy_id | crossref_primary_10_1088_1757_899X_1043_5_052017 crossref_primary_10_1109_TIM_2021_3126804 crossref_primary_10_1016_j_procs_2022_01_367 crossref_primary_10_3390_math9080905 crossref_primary_10_1016_j_cie_2021_107439 crossref_primary_10_1016_j_ress_2021_107747 crossref_primary_10_1016_j_procs_2021_01_262 crossref_primary_10_1080_03610926_2019_1702697 crossref_primary_10_1016_j_ress_2023_109859 crossref_primary_10_1108_ECAM_12_2018_0542 crossref_primary_10_1016_j_ress_2021_107622 crossref_primary_10_1088_1757_899X_750_1_012175 crossref_primary_10_1177_1748006X20928196 crossref_primary_10_1016_j_engfailanal_2019_104152 crossref_primary_10_1016_j_ress_2020_107190 crossref_primary_10_1109_TR_2018_2832022 crossref_primary_10_1016_j_ress_2024_110424 crossref_primary_10_33889_IJMEMS_2023_8_4_032 |
| Cites_doi | 10.1002/we.204 10.1016/j.ress.2011.03.018 10.1080/10629360600903866 10.1109/TA.1964.4319640 10.1016/j.ress.2009.04.001 10.1016/j.ress.2016.03.012 10.1016/j.ress.2005.09.010 10.1109/TR.2010.2044539 10.1016/j.csda.2007.05.003 10.1109/ARMS.1988.196455 10.1080/00401706.1965.10490300 10.1109/TR.2014.2337072 10.1109/TPWRD.2015.2404926 10.1016/j.jsp.2009.10.001 10.1016/j.ress.2005.12.004 10.1080/01621459.1990.10474930 10.1016/j.ress.2008.12.004 10.1080/00401706.2014.902772 10.1016/j.ress.2014.04.012 10.1080/03610926.2011.588363 10.1109/PES.2007.386112 10.1016/j.ress.2014.01.019 10.1080/02664760801920846 10.1016/S0951-8320(99)00045-9 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Mar 2017 |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2017 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
| DOI | 10.1016/j.ress.2016.11.011 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| EndPage | 309 |
| ExternalDocumentID | 10_1016_j_ress_2016_11_011 S0951832016308286 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TB 8FD AGCQF C1K FR3 SOI |
| ID | FETCH-LOGICAL-c328t-773d0a8e8993fa2b99eb26f11e797db2ea836e3f7839dae8f9fad10186ffbe8a3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392897600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Wed Aug 13 09:36:17 EDT 2025 Tue Nov 18 22:33:02 EST 2025 Sat Nov 29 07:51:26 EST 2025 Fri Feb 23 02:28:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic reliability Interval censoring Monte carlo expectation-maximization algorithm Non-homogeneous Poisson process |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-773d0a8e8993fa2b99eb26f11e797db2ea836e3f7839dae8f9fad10186ffbe8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1944561253 |
| PQPubID | 2045406 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_1944561253 crossref_primary_10_1016_j_ress_2016_11_011 crossref_citationtrail_10_1016_j_ress_2016_11_011 elsevier_sciencedirect_doi_10_1016_j_ress_2016_11_011 |
| PublicationCentury | 2000 |
| PublicationDate | March 2017 2017-03-00 20170301 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Somboonsavatdee, Ananda (bib13) 2015; 57 Xing, Wu, Jiang, Liu (bib17) 2010; 59 Crow LH, Basu AP. Reliability growth estimation with missing data. II. In: Proceedings of reliability and maintainability symposium annual; 1988, pp. 248–253. Xing, Wu, Jiang, Liu (bib3) 2010; 59 Wayne, Modarres (bib8) 2015; 64 Awad (bib9) 2016; 152 Standards, Belgian. Petroleum, petrochemical and natural gas industries—collection and exchange of reliability and maintenance data for equipment. 2003. Demirtas, Freels, Yucel (bib26) 2008; 78 Zhang, Xie, Tang (bib18) 2006; 91 Ribrant J, Bertling L . Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. power engineering society general meeting IEEE; 2007 pp. 1–8 Wang, Xie, Zhou (bib11) 2013; 42 Gaver, Jacobs (bib7) 2014; 130 Guo, Watson, Tavner, Xiang (bib25) 2009; 94 Arnold, Balakrishnan, Nagaraja (bib35) 1992 Ross (bib29) 1990 Tavner, Xiang, Spinato (bib30) 2007; 10 Calabria, Pulcini (bib2) 2000; 67 Louit, Pascual, Jardine (bib20) 2009; 94 Dyck, Verdonck (bib12) 2014; 126 Yu, Tian, Tang (bib24) 2008; 52 Calabria, Guida, Pulcini (bib28) 2007; 19 Meeker, Escobar (bib19) 2014 Duane (bib4) 1964; 2.2 Li, Mobin, Keyser (bib6) 2015; 65 Cohen (bib31) 1965; 7 Taghipour, Banjevic (bib14) 2011; 96 Spinato, Tavner, Van Bussel (bib15) 2009; 3 Little, Rubin (bib21) 2014 Wei, Tanner (bib27) 1990; 85 Majeske (bib10) 2007; 92 Crow (bib5) 1974 Tang, Zhou, Zhao, Ma, Huang (bib16) 2015; 30 Baraldi, Enders (bib22) 2010; 48 Jiang, Xie, Tang (bib32) 2008; 35 Jin, Liao, Kilari (bib1) 2003; 50.3 10.1016/j.ress.2016.11.011_bib33 10.1016/j.ress.2016.11.011_bib34 Wei (10.1016/j.ress.2016.11.011_bib27) 1990; 85 Calabria (10.1016/j.ress.2016.11.011_bib2) 2000; 67 Calabria (10.1016/j.ress.2016.11.011_bib28) 2007; 19 Jin (10.1016/j.ress.2016.11.011_bib1) 2003; 50.3 Zhang (10.1016/j.ress.2016.11.011_bib18) 2006; 91 Jiang (10.1016/j.ress.2016.11.011_bib32) 2008; 35 Crow (10.1016/j.ress.2016.11.011_bib5) 1974 Louit (10.1016/j.ress.2016.11.011_bib20) 2009; 94 Little (10.1016/j.ress.2016.11.011_bib21) 2014 Somboonsavatdee (10.1016/j.ress.2016.11.011_bib13) 2015; 57 Li (10.1016/j.ress.2016.11.011_bib6) 2015; 65 Guo (10.1016/j.ress.2016.11.011_bib25) 2009; 94 Wayne (10.1016/j.ress.2016.11.011_bib8) 2015; 64 Yu (10.1016/j.ress.2016.11.011_bib24) 2008; 52 Majeske (10.1016/j.ress.2016.11.011_bib10) 2007; 92 Dyck (10.1016/j.ress.2016.11.011_bib12) 2014; 126 Baraldi (10.1016/j.ress.2016.11.011_bib22) 2010; 48 Cohen (10.1016/j.ress.2016.11.011_bib31) 1965; 7 Arnold (10.1016/j.ress.2016.11.011_bib35) 1992 Duane (10.1016/j.ress.2016.11.011_bib4) 1964; 2.2 10.1016/j.ress.2016.11.011_bib23 Tavner (10.1016/j.ress.2016.11.011_bib30) 2007; 10 Meeker (10.1016/j.ress.2016.11.011_bib19) 2014 Gaver (10.1016/j.ress.2016.11.011_bib7) 2014; 130 Spinato (10.1016/j.ress.2016.11.011_bib15) 2009; 3 Wang (10.1016/j.ress.2016.11.011_bib11) 2013; 42 Tang (10.1016/j.ress.2016.11.011_bib16) 2015; 30 Xing (10.1016/j.ress.2016.11.011_bib17) 2010; 59 Xing (10.1016/j.ress.2016.11.011_bib3) 2010; 59 Awad (10.1016/j.ress.2016.11.011_bib9) 2016; 152 Taghipour (10.1016/j.ress.2016.11.011_bib14) 2011; 96 Demirtas (10.1016/j.ress.2016.11.011_bib26) 2008; 78 Ross (10.1016/j.ress.2016.11.011_bib29) 1990 |
| References_xml | – volume: 64 start-page: 206 year: 2015 end-page: 219 ident: bib8 article-title: A Bayesian model for complex system reliability growth under arbitrary corrective actions publication-title: IEEE Trans Reliab – year: 1992 ident: bib35 article-title: A first course in order statistics publication-title: Siam – volume: 59 start-page: 309 year: 2010 end-page: 312 ident: bib3 article-title: Dynamic Bayesian evaluation method for system reliability growth based on in-time correction publication-title: Reliab, IEEE Trans – volume: 94 start-page: 1618 year: 2009 end-page: 1628 ident: bib20 article-title: A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data publication-title: Reliab Eng Syst Saf – volume: 92 start-page: 243 year: 2007 end-page: 251 ident: bib10 article-title: A non-homogeneous Poisson process predictive model for automobile warranty claims publication-title: Reliab Eng Syst Saf – volume: 59 start-page: 309 year: 2010 end-page: 312 ident: bib17 article-title: Dynamic bayesian evaluation method for system reliability growth based on In-time correction publication-title: IEEE Trans Reliab – volume: 30 start-page: 2410 year: 2015 end-page: 2418 ident: bib16 article-title: Comparison of the Weibull and the Crow-AMSAA model in prediction of early cable joint failures publication-title: Power Deliv IEEE Trans – reference: Crow LH, Basu AP. Reliability growth estimation with missing data. II. In: Proceedings of reliability and maintainability symposium annual; 1988, pp. 248–253. – volume: 10 start-page: 1 year: 2007 end-page: 18 ident: bib30 article-title: Reliability analysis for wind turbines publication-title: Wind Energy – year: 2014 ident: bib19 article-title: Statistical methods for reliability data – start-page: 379 year: 1974 end-page: 410 ident: bib5 article-title: Analysis for complex, repairable systems publication-title: Reliab Biom Siam – volume: 96 start-page: 1340 year: 2011 end-page: 1348 ident: bib14 article-title: Trend analysis of the power law process using expectation–maximization algorithm for data censored by inspection intervals publication-title: Reliab Eng Syst Saf – volume: 50.3 start-page: 324 year: 2003 end-page: 331 ident: bib1 article-title: Reliability growth modeling for in-service electronic systems considering latent failure modes publication-title: Microelectron Reliab – volume: 57 start-page: 112 year: 2015 end-page: 122 ident: bib13 article-title: Statistical Inference for power-law process with competing risks publication-title: Technometrics – year: 1990 ident: bib29 article-title: A course in simulation publication-title: Prentice Hall PTR – reference: Standards, Belgian. Petroleum, petrochemical and natural gas industries—collection and exchange of reliability and maintenance data for equipment. 2003. – volume: 2.2 start-page: 563 year: 1964 end-page: 566 ident: bib4 article-title: Learning curve approach to reliability monitoring publication-title: IEEE Transactions Aerosp. – volume: 152 start-page: 273 year: 2016 end-page: 280 ident: bib9 article-title: Economic allocation of reliability growth testing using Weibull distributions publication-title: Reliab Eng Syst Saf – volume: 91 start-page: 930 year: 2006 end-page: 939 ident: bib18 article-title: Bias correction for the least squares estimator of Weibull shape parameter with complete and censored data publication-title: Reliab Eng Syst Saf – volume: 7 start-page: 579 year: 1965 end-page: 588 ident: bib31 article-title: Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples publication-title: Technometrics – volume: 52 start-page: 1587 year: 2008 end-page: 1603 ident: bib24 article-title: Statistical inference and prediction for the Weibull process with incomplete observations publication-title: Comput Stat Data Anal – volume: 67 start-page: 41 year: 2000 end-page: 53 ident: bib2 article-title: Inference and test in modeling the failure/repair process of repairable mechanical equipments publication-title: Reliab Eng Syst Saf – year: 2014 ident: bib21 article-title: Statistical analysis with missing data – reference: Ribrant J, Bertling L . Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. power engineering society general meeting IEEE; 2007 pp. 1–8 – volume: 94 start-page: 1057 year: 2009 end-page: 1063 ident: bib25 article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation publication-title: Reliab Eng Syst Saf – volume: 65 start-page: 1 year: 2015 end-page: 13 ident: bib6 article-title: Multi-objective and multi-Stage reliability growth planning in early product-development stage publication-title: IEEE Trans Reliab – volume: 126 start-page: 143 year: 2014 end-page: 152 ident: bib12 article-title: Precision of power-law NHPP estimates for multiple systems with known failure rate scaling publication-title: Reliab Eng Syst Saf – volume: 3 start-page: 387 year: 2009 end-page: 401 ident: bib15 article-title: Reliability of wind turbine subassemblies. renewable power generation publication-title: IET – volume: 48 start-page: 5 year: 2010 end-page: 37 ident: bib22 article-title: An introduction to modern missing data analyses publication-title: J Sch Psychol – volume: 19 start-page: 3023 year: 2007 end-page: 3035 ident: bib28 article-title: Bayes estimation of prediction intervals for a power law process publication-title: Commun Stat-Theory Methods – volume: 35 start-page: 647 year: 2008 end-page: 658 ident: bib32 article-title: Markov chain monte carlo methods for parameter estimation of the modified Weibull distribution publication-title: J Appl Stat – volume: 130 start-page: 27 year: 2014 end-page: 32 ident: bib7 article-title: Reliability growth by failure mode removal publication-title: Reliab Eng Syst Saf – volume: 42 start-page: 898 year: 2013 end-page: 906 ident: bib11 article-title: Generalized confidence interval for the scale parameter of the power-law process publication-title: Commun Stat-Theory Methods – volume: 78 start-page: 69 year: 2008 end-page: 84 ident: bib26 article-title: Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: a simulation assessment publication-title: J Stat Comput Simul – volume: 85 start-page: 699 year: 1990 end-page: 704 ident: bib27 article-title: A monte carlo implementation of the EM algorithm and the poor man's data augmentation algorithms publication-title: J Am Stat Assoc – volume: 10 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.ress.2016.11.011_bib30 article-title: Reliability analysis for wind turbines publication-title: Wind Energy doi: 10.1002/we.204 – volume: 96 start-page: 1340 issue: 10 year: 2011 ident: 10.1016/j.ress.2016.11.011_bib14 article-title: Trend analysis of the power law process using expectation–maximization algorithm for data censored by inspection intervals publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2011.03.018 – year: 2014 ident: 10.1016/j.ress.2016.11.011_bib21 – volume: 78 start-page: 69 issue: 1 year: 2008 ident: 10.1016/j.ress.2016.11.011_bib26 article-title: Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: a simulation assessment publication-title: J Stat Comput Simul doi: 10.1080/10629360600903866 – volume: 2.2 start-page: 563 year: 1964 ident: 10.1016/j.ress.2016.11.011_bib4 article-title: Learning curve approach to reliability monitoring publication-title: IEEE Transactions Aerosp. doi: 10.1109/TA.1964.4319640 – volume: 94 start-page: 1618 issue: 10 year: 2009 ident: 10.1016/j.ress.2016.11.011_bib20 article-title: A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2009.04.001 – volume: 152 start-page: 273 year: 2016 ident: 10.1016/j.ress.2016.11.011_bib9 article-title: Economic allocation of reliability growth testing using Weibull distributions publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.03.012 – volume: 91 start-page: 930 issue: 8 year: 2006 ident: 10.1016/j.ress.2016.11.011_bib18 article-title: Bias correction for the least squares estimator of Weibull shape parameter with complete and censored data publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2005.09.010 – volume: 59 start-page: 309 issue: 2 year: 2010 ident: 10.1016/j.ress.2016.11.011_bib3 article-title: Dynamic Bayesian evaluation method for system reliability growth based on in-time correction publication-title: Reliab, IEEE Trans doi: 10.1109/TR.2010.2044539 – volume: 19 start-page: 3023 issue: 19 year: 2007 ident: 10.1016/j.ress.2016.11.011_bib28 article-title: Bayes estimation of prediction intervals for a power law process publication-title: Commun Stat-Theory Methods – volume: 65 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.ress.2016.11.011_bib6 article-title: Multi-objective and multi-Stage reliability growth planning in early product-development stage publication-title: IEEE Trans Reliab – volume: 52 start-page: 1587 issue: 3 year: 2008 ident: 10.1016/j.ress.2016.11.011_bib24 article-title: Statistical inference and prediction for the Weibull process with incomplete observations publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2007.05.003 – year: 2014 ident: 10.1016/j.ress.2016.11.011_bib19 – ident: 10.1016/j.ress.2016.11.011_bib33 – year: 1992 ident: 10.1016/j.ress.2016.11.011_bib35 article-title: A first course in order statistics publication-title: Siam – ident: 10.1016/j.ress.2016.11.011_bib23 doi: 10.1109/ARMS.1988.196455 – volume: 7 start-page: 579 issue: 4 year: 1965 ident: 10.1016/j.ress.2016.11.011_bib31 article-title: Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples publication-title: Technometrics doi: 10.1080/00401706.1965.10490300 – volume: 64 start-page: 206 issue: 1 year: 2015 ident: 10.1016/j.ress.2016.11.011_bib8 article-title: A Bayesian model for complex system reliability growth under arbitrary corrective actions publication-title: IEEE Trans Reliab doi: 10.1109/TR.2014.2337072 – volume: 30 start-page: 2410 issue: 6 year: 2015 ident: 10.1016/j.ress.2016.11.011_bib16 article-title: Comparison of the Weibull and the Crow-AMSAA model in prediction of early cable joint failures publication-title: Power Deliv IEEE Trans doi: 10.1109/TPWRD.2015.2404926 – volume: 59 start-page: 309 issue: 2 year: 2010 ident: 10.1016/j.ress.2016.11.011_bib17 article-title: Dynamic bayesian evaluation method for system reliability growth based on In-time correction publication-title: IEEE Trans Reliab doi: 10.1109/TR.2010.2044539 – volume: 48 start-page: 5 issue: 1 year: 2010 ident: 10.1016/j.ress.2016.11.011_bib22 article-title: An introduction to modern missing data analyses publication-title: J Sch Psychol doi: 10.1016/j.jsp.2009.10.001 – volume: 92 start-page: 243 issue: 2 year: 2007 ident: 10.1016/j.ress.2016.11.011_bib10 article-title: A non-homogeneous Poisson process predictive model for automobile warranty claims publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2005.12.004 – volume: 85 start-page: 699 issue: 411 year: 1990 ident: 10.1016/j.ress.2016.11.011_bib27 article-title: A monte carlo implementation of the EM algorithm and the poor man's data augmentation algorithms publication-title: J Am Stat Assoc doi: 10.1080/01621459.1990.10474930 – volume: 94 start-page: 1057 issue: 6 year: 2009 ident: 10.1016/j.ress.2016.11.011_bib25 article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2008.12.004 – volume: 57 start-page: 112 issue: 1 year: 2015 ident: 10.1016/j.ress.2016.11.011_bib13 article-title: Statistical Inference for power-law process with competing risks publication-title: Technometrics doi: 10.1080/00401706.2014.902772 – year: 1990 ident: 10.1016/j.ress.2016.11.011_bib29 article-title: A course in simulation publication-title: Prentice Hall PTR – volume: 50.3 start-page: 324 year: 2003 ident: 10.1016/j.ress.2016.11.011_bib1 article-title: Reliability growth modeling for in-service electronic systems considering latent failure modes publication-title: Microelectron Reliab – volume: 130 start-page: 27 year: 2014 ident: 10.1016/j.ress.2016.11.011_bib7 article-title: Reliability growth by failure mode removal publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.04.012 – volume: 42 start-page: 898 issue: 5 year: 2013 ident: 10.1016/j.ress.2016.11.011_bib11 article-title: Generalized confidence interval for the scale parameter of the power-law process publication-title: Commun Stat-Theory Methods doi: 10.1080/03610926.2011.588363 – ident: 10.1016/j.ress.2016.11.011_bib34 doi: 10.1109/PES.2007.386112 – start-page: 379 year: 1974 ident: 10.1016/j.ress.2016.11.011_bib5 article-title: Analysis for complex, repairable systems publication-title: Reliab Biom Siam – volume: 126 start-page: 143 year: 2014 ident: 10.1016/j.ress.2016.11.011_bib12 article-title: Precision of power-law NHPP estimates for multiple systems with known failure rate scaling publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.01.019 – volume: 3 start-page: 387 issue: 4 year: 2009 ident: 10.1016/j.ress.2016.11.011_bib15 article-title: Reliability of wind turbine subassemblies. renewable power generation publication-title: IET – volume: 35 start-page: 647 issue: 6 year: 2008 ident: 10.1016/j.ress.2016.11.011_bib32 article-title: Markov chain monte carlo methods for parameter estimation of the modified Weibull distribution publication-title: J Appl Stat doi: 10.1080/02664760801920846 – volume: 67 start-page: 41 issue: 1 year: 2000 ident: 10.1016/j.ress.2016.11.011_bib2 article-title: Inference and test in modeling the failure/repair process of repairable mechanical equipments publication-title: Reliab Eng Syst Saf doi: 10.1016/S0951-8320(99)00045-9 |
| SSID | ssj0004957 |
| Score | 2.2887237 |
| Snippet | The ‘Test, Analyze and Fix’ process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for... The 'Test, Analyze and Fix' process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 301 |
| SubjectTerms | Computer simulation Data processing Dependent variables Dynamic reliability Independent variables Inspection Interval censoring Malfunctions Mathematical models Missing data Monte carlo expectation-maximization algorithm Monte Carlo simulation Natural gas Non-homogeneous Poisson process Parameter estimation Poisson density functions Reliability Reliability analysis Reliability engineering System reliability |
| Title | Dynamic reliability assessment and prediction for repairable systems with interval-censored data |
| URI | https://dx.doi.org/10.1016/j.ress.2016.11.011 https://www.proquest.com/docview/1944561253 |
| Volume | 159 |
| WOSCitedRecordID | wos000392897600028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8ID7FYEN-4K3K1CRNbD9OMDTQNCEYon0KdmJDRpVO_Rjb_hb-WM65S9INmAAJqYqatHYs3y_nu8vdz4w9z7VNEm1sIIZSB6PYJIFnnQu0cjKVkREFkiQdiMNDOR6rt73e96YW5nQqqkqenamT_ypquAbC9qWzfyHutlO4AN9B6HAEscPxjwT_EveY91UqJZJwnw90y7_ZEAMUZd5mGc5hSSrndQ0VEjtTyVtZ50PqaZCDrzvziepUydaas-_W7mE7ZsMaT9jVYKEdUY2gBkbdMikvvnRFaB8paD1ZtXHsOslgoiv4fG6jC4sV5h58m30NDuyKfqGYBayDbdIWBtKaYpoucwkjkmEACgZf01jUx1KomkD7ksImDnFUuTF1bOlM_XJhwBjF8Y6PYfiEvnTHc7eSnr9MuP3eD8SPA0xVT_CX3mAbkUiU7LON3dd74zdd3a1CJtlm4FSUhfmDV-_0O8PniglQ2zVHd9kdckj4LgLpHuvZ6j67vUZT-YB9IkjxNUjxDlIcIMU7SHGAFO8gxQlS3EOK_wQp7iH1kH14tXf0Yj-gnTmCPI7kElyyuBhqacFZj52OjFLWRKkLQyuUKExkNYjMxk6A-V1oK51yuvDccKlzxkodP2L9albZx4zbUehcnobGODOSQ6NC4aQrRJ4MrYik3mRhM21ZTrT1fveUadbkJx5nfqozP9Xgz2Yw1Zts0LY5QdKWa_-dNNLIyOxEczID8FzbbqsRXUbP_yIL1ci7JFESP_nHbp-yW90js8X6y_nKbrOb-emyXMyfEQR_AJx8twU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+reliability+assessment+and+prediction+for+repairable+systems+with+interval-censored+data&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Peng%2C+Yizhen&rft.au=Wang%2C+Yu&rft.au=Zi%2C+YanYang&rft.au=Tsui%2C+Kwok-Leung&rft.date=2017-03-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=159&rft.spage=301&rft.epage=309&rft_id=info:doi/10.1016%2Fj.ress.2016.11.011&rft.externalDocID=S0951832016308286 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |