Clustering and classification of time series using topological data analysis with applications to finance

In this paper, we propose new methods for time series classification and clustering. These methods are based on techniques of Topological Data Analysis (TDA) such as persistent homology and time delay embedding for analysing time-series data. We present a new clustering method SOM-TDA and a new clas...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 162; s. 113868
Hlavní autori: Majumdar, Sourav, Laha, Arnab Kumar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 30.12.2020
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we propose new methods for time series classification and clustering. These methods are based on techniques of Topological Data Analysis (TDA) such as persistent homology and time delay embedding for analysing time-series data. We present a new clustering method SOM-TDA and a new classification method RF-TDA based on TDA. Using SOM-TDA we examine the topological similarities and dissimilarities of some well-known time-series models used in finance. We also use the RF-TDA to examine if the topological features can be used to distinguish between time series models using simulated data. The performance of RF-TDA on the classification task is compared against three other classification methods. We also consider an application of RF-TDA to financial time series classification using real-life price data of stocks belonging to different sectors. RF-TDA is seen to perform quite well in the two experiments based on real-life stock-price data. This implies that the topological features of the time series of stock prices in the different sectors are not identical and have distinctive features that can be discerned through the use of TDA. We also briefly consider multi-class classification using RF-TDA. •New methods for time series clustering (SOM-TDA) and classification (RF-TDA).•RF-TDA outperforms other methods on the classification task.•Dependence of stock price movements on sectors in NSE is revealed using RF-TDA.
AbstractList In this paper, we propose new methods for time series classification and clustering. These methods are based on techniques of Topological Data Analysis (TDA) such as persistent homology and time delay embedding for analysing time-series data. We present a new clustering method SOM-TDA and a new classification method RF-TDA based on TDA. Using SOM-TDA we examine the topological similarities and dissimilarities of some well-known time-series models used in finance. We also use the RF-TDA to examine if the topological features can be used to distinguish between time series models using simulated data. The performance of RF-TDA on the classification task is compared against three other classification methods. We also consider an application of RF-TDA to financial time series classification using real-life price data of stocks belonging to different sectors. RF-TDA is seen to perform quite well in the two experiments based on real-life stock-price data. This implies that the topological features of the time series of stock prices in the different sectors are not identical and have distinctive features that can be discerned through the use of TDA. We also briefly consider multi-class classification using RF-TDA.
In this paper, we propose new methods for time series classification and clustering. These methods are based on techniques of Topological Data Analysis (TDA) such as persistent homology and time delay embedding for analysing time-series data. We present a new clustering method SOM-TDA and a new classification method RF-TDA based on TDA. Using SOM-TDA we examine the topological similarities and dissimilarities of some well-known time-series models used in finance. We also use the RF-TDA to examine if the topological features can be used to distinguish between time series models using simulated data. The performance of RF-TDA on the classification task is compared against three other classification methods. We also consider an application of RF-TDA to financial time series classification using real-life price data of stocks belonging to different sectors. RF-TDA is seen to perform quite well in the two experiments based on real-life stock-price data. This implies that the topological features of the time series of stock prices in the different sectors are not identical and have distinctive features that can be discerned through the use of TDA. We also briefly consider multi-class classification using RF-TDA. •New methods for time series clustering (SOM-TDA) and classification (RF-TDA).•RF-TDA outperforms other methods on the classification task.•Dependence of stock price movements on sectors in NSE is revealed using RF-TDA.
ArticleNumber 113868
Author Majumdar, Sourav
Laha, Arnab Kumar
Author_xml – sequence: 1
  givenname: Sourav
  surname: Majumdar
  fullname: Majumdar, Sourav
  email: phd18souravm@iima.ac.in
– sequence: 2
  givenname: Arnab Kumar
  surname: Laha
  fullname: Laha, Arnab Kumar
  email: arnab@iima.ac.in
BookMark eNp9kMtKxDAUQIMoOI7-gKuA6455tEkG3MjgCwbc6DqkaaIZalNzM4p_b2pduXAVuJxzyT0n6HCIg0PonJIVJVRc7lYOPs2KEVYGlCuhDtCCKskrIdf8EC3IupFVTWV9jE4AdoRQSYhcoLDp95BdCsMLNkOHbW8Agg_W5BAHHD3O4c1hKIQDvIeJy3GMfXwpTI87k00RTf8FAfBnyK_YjGP_60NhsQ-DGaw7RUfe9ODOft8ler69edrcV9vHu4fN9baynKlcSdFJ1SguOPG0jCzntmbGcCaNZ5T7Zu2VE75pWNMa6RlXvBWdXcuWU9IqvkQX894xxfe9g6x3cZ_KD0GzWjS1FErRQrGZsikCJOf1mMKbSV-aEj0l1Ts9JdVTUj0nLZL6I9mQfw7NyYT-f_VqVl05_SO4pMEGV7J0ITmbdRfDf_o34kCVLQ
CitedBy_id crossref_primary_10_1007_s41066_024_00488_0
crossref_primary_10_1016_j_engappai_2023_107716
crossref_primary_10_3389_fams_2022_940133
crossref_primary_10_1109_ACCESS_2024_3481652
crossref_primary_10_1007_s11634_023_00578_y
crossref_primary_10_1007_s11042_022_12133_6
crossref_primary_10_1016_j_bspc_2022_104396
crossref_primary_10_3390_ijgi14060226
crossref_primary_10_1016_j_eswa_2021_115326
crossref_primary_10_1007_s11227_021_04303_4
crossref_primary_10_1016_j_fub_2025_100059
crossref_primary_10_1016_j_chaos_2025_116054
crossref_primary_10_1007_s00500_022_07630_7
crossref_primary_10_1155_2022_5985733
crossref_primary_10_1111_tgis_13149
crossref_primary_10_1016_j_jneumeth_2021_109324
crossref_primary_10_1016_j_eswa_2022_116629
crossref_primary_10_1016_j_eswa_2025_126884
crossref_primary_10_3390_math13020325
crossref_primary_10_20965_jaciii_2025_p0721
crossref_primary_10_3390_sym16091236
crossref_primary_10_1007_s10661_024_13477_2
crossref_primary_10_1016_j_neucom_2023_127173
crossref_primary_10_1016_j_dajour_2023_100253
crossref_primary_10_3390_math9091046
crossref_primary_10_1016_j_physa_2024_129785
crossref_primary_10_1002_cpe_7732
crossref_primary_10_1016_j_knosys_2024_112768
crossref_primary_10_1007_s11634_023_00548_4
crossref_primary_10_1016_j_knosys_2021_107153
crossref_primary_10_1016_j_eswa_2023_120632
crossref_primary_10_1080_14697688_2025_2544762
crossref_primary_10_21511_imfi_19_4__2022_22
crossref_primary_10_1007_s10489_021_02788_3
crossref_primary_10_1057_s41283_022_00110_0
crossref_primary_10_1016_j_artmed_2023_102492
crossref_primary_10_1155_2022_7400833
Cites_doi 10.1090/noti1869
10.1186/s12859-015-0645-6
10.1007/s00454-006-1276-5
10.1007/s00454-002-2885-2
10.1007/s10208-014-9206-z
10.1007/s10618-016-0483-9
10.1023/A:1010933404324
10.1214/aoms/1177707045
10.1016/j.csda.2018.05.019
10.1016/j.eswa.2020.113222
10.1016/j.csda.2007.05.010
10.1146/annurev-financial-110311-101808
10.3934/mbe.2014.11.723
10.1016/0167-2789(86)90031-X
10.1016/0304-405X(93)90023-5
10.1016/j.physa.2017.09.028
10.1016/j.eswa.2015.04.010
10.1016/S0167-2789(97)00118-8
10.1088/0266-5611/27/12/124007
10.1007/BF00337288
10.1007/s00454-004-1146-y
10.1103/PhysRevA.45.3403
10.1038/srep01236
10.1111/j.1467-9892.1980.tb00297.x
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Dec 30, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 30, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113868
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113868
S095741742030676X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-76d78583630f1c32c33c42aa327af213f59f8e6f5525ba7f2383b6dc97b310b83
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582113700043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Mon Jul 14 07:49:24 EDT 2025
Sat Nov 29 07:07:24 EST 2025
Tue Nov 18 21:40:59 EST 2025
Sun Apr 06 06:53:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Random forest
Persistent homology
Self organizing maps
Time delay embedding
Takens theorem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-76d78583630f1c32c33c42aa327af213f59f8e6f5525ba7f2383b6dc97b310b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2465476881
PQPubID 2045477
ParticipantIDs proquest_journals_2465476881
crossref_primary_10_1016_j_eswa_2020_113868
crossref_citationtrail_10_1016_j_eswa_2020_113868
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113868
PublicationCentury 2000
PublicationDate 2020-12-30
PublicationDateYYYYMMDD 2020-12-30
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-30
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Edelsbrunner, Harer (b13) 2010
Yin (b42) 2008
Goel, Pasricha, Mehra (b19) 2020
(b28) 2020
Zomorodian, Carlsson (b44) 2005; 33
Edelsbrunner, Letscher, Zomorodian (b14) 2002; 28
Maharaj, Alonso (b27) 2007; 52
Goodson (b20) 2016
Kohonen (b25) 1982; 43
Cohen-Steiner, Edelsbrunner, Harer (b10) 2007; 37
Gidea, Katz (b18) 2018; 491
Perea, Harer (b34) 2015; 15
Bubenik (b8) 2015; 16
Veenstra (b41) 2012
Cao (b9) 1997; 110
Kim, Kim, Rinaldo (b24) 2018
Berndt, D. J., & Clifford, J. (1994). Using dynamic time warping to find patterns in time series. In
Gidea, Goldsmith, Katz, Roldan, Shmalo (b17) 2018
Hyndman, Athanasopoulos, Bergmeir, Caceres, Chhay, O’Hara-Wild, Petropoulos, Razbash, Wang, Yasmeen (b22) 2020
Munkres (b30) 2018
Fasy, Kim, Lecci, Maria (b16) 2014
Kennel, Brown, Abarbanel (b23) 1992; 45
Shumway, Stoffer (b36) 2017
Ang, Timmermann (b1) 2012; 4
Granger, Joyeux (b21) 1980; 1
Trapletti, Hornik (b38) 2019
Fama, French (b15) 1993; 33
Batal, Hauskrecht (b3) 2009
Broomhead, King (b7) 1986; 20
Perea, Deckard, Haase, Harer (b33) 2015; 16
Perea (b32) 2019; 66
Berwald, Gidea (b5) 2014; 11
Umeda (b40) 2017; 12
Seattle, WA.
Pereira, de Mello (b35) 2015; 42
Breiman (b6) 2001; 45
Mileyko, Mukherjee, Harer (b29) 2011; 27
Percival, Walden (b31) 2000
Truong (b39) 2017
Bagnall, Lines, Bostrom, Large, Keogh (b2) 2017; 31
Zhao, Barber, Taylor, Milan (b43) 2018; 127
de Silva, Skraba, Vejdemo-Johansson (b11) 2012
Dwass (b12) 1957
Lum, Singh, Lehman, Ishkanov, Vejdemo-Johansson, Alagappan, Carlsson, Carlsson (b26) 2013; 3
Takens (b37) 1981
Broomhead (10.1016/j.eswa.2020.113868_b7) 1986; 20
Fasy (10.1016/j.eswa.2020.113868_b16) 2014
Perea (10.1016/j.eswa.2020.113868_b34) 2015; 15
Berwald (10.1016/j.eswa.2020.113868_b5) 2014; 11
(10.1016/j.eswa.2020.113868_b28) 2020
Edelsbrunner (10.1016/j.eswa.2020.113868_b14) 2002; 28
Mileyko (10.1016/j.eswa.2020.113868_b29) 2011; 27
Munkres (10.1016/j.eswa.2020.113868_b30) 2018
Veenstra (10.1016/j.eswa.2020.113868_b41) 2012
Hyndman (10.1016/j.eswa.2020.113868_b22) 2020
Kohonen (10.1016/j.eswa.2020.113868_b25) 1982; 43
Lum (10.1016/j.eswa.2020.113868_b26) 2013; 3
Cao (10.1016/j.eswa.2020.113868_b9) 1997; 110
Batal (10.1016/j.eswa.2020.113868_b3) 2009
10.1016/j.eswa.2020.113868_b4
Gidea (10.1016/j.eswa.2020.113868_b17) 2018
Gidea (10.1016/j.eswa.2020.113868_b18) 2018; 491
Perea (10.1016/j.eswa.2020.113868_b32) 2019; 66
Trapletti (10.1016/j.eswa.2020.113868_b38) 2019
Kim (10.1016/j.eswa.2020.113868_b24) 2018
Bubenik (10.1016/j.eswa.2020.113868_b8) 2015; 16
Cohen-Steiner (10.1016/j.eswa.2020.113868_b10) 2007; 37
Fama (10.1016/j.eswa.2020.113868_b15) 1993; 33
Kennel (10.1016/j.eswa.2020.113868_b23) 1992; 45
Goodson (10.1016/j.eswa.2020.113868_b20) 2016
Truong (10.1016/j.eswa.2020.113868_b39) 2017
Perea (10.1016/j.eswa.2020.113868_b33) 2015; 16
de Silva (10.1016/j.eswa.2020.113868_b11) 2012
Edelsbrunner (10.1016/j.eswa.2020.113868_b13) 2010
Bagnall (10.1016/j.eswa.2020.113868_b2) 2017; 31
Granger (10.1016/j.eswa.2020.113868_b21) 1980; 1
Pereira (10.1016/j.eswa.2020.113868_b35) 2015; 42
Takens (10.1016/j.eswa.2020.113868_b37) 1981
Zhao (10.1016/j.eswa.2020.113868_b43) 2018; 127
Goel (10.1016/j.eswa.2020.113868_b19) 2020
Dwass (10.1016/j.eswa.2020.113868_b12) 1957
Breiman (10.1016/j.eswa.2020.113868_b6) 2001; 45
Yin (10.1016/j.eswa.2020.113868_b42) 2008
Ang (10.1016/j.eswa.2020.113868_b1) 2012; 4
Maharaj (10.1016/j.eswa.2020.113868_b27) 2007; 52
Umeda (10.1016/j.eswa.2020.113868_b40) 2017; 12
Shumway (10.1016/j.eswa.2020.113868_b36) 2017
Percival (10.1016/j.eswa.2020.113868_b31) 2000
Zomorodian (10.1016/j.eswa.2020.113868_b44) 2005; 33
References_xml – volume: 12
  start-page: 228
  year: 2017
  end-page: 239
  ident: b40
  article-title: Time series classification via topological data analysis
  publication-title: Information and Media Technologies
– start-page: 181
  year: 1957
  end-page: 187
  ident: b12
  article-title: Modified randomization tests for nonparametric hypotheses
  publication-title: The Annals of Mathematical Statistics
– reference: . Seattle, WA.
– volume: 66
  year: 2019
  ident: b32
  article-title: Topological time series analysis
  publication-title: Notices of the American Mathematical Society
– volume: 16
  start-page: 77
  year: 2015
  end-page: 102
  ident: b8
  article-title: Statistical topological data analysis using persistence landscapes
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 110
  start-page: 43
  year: 1997
  end-page: 50
  ident: b9
  article-title: Practical method for determining the minimum embedding dimension of a scalar time series
  publication-title: Physica D: Nonlinear Phenomena
– volume: 42
  start-page: 6026
  year: 2015
  end-page: 6038
  ident: b35
  article-title: Persistent homology for time series and spatial data clustering
  publication-title: Expert Systems with Applications
– reference: Berndt, D. J., & Clifford, J. (1994). Using dynamic time warping to find patterns in time series. In
– year: 2018
  ident: b30
  article-title: Elements of algebraic topology
– year: 2018
  ident: b17
  article-title: Topological recognition of critical transitions in time series of cryptocurrencies
– volume: 27
  year: 2011
  ident: b29
  article-title: Probability measures on the space of persistence diagrams
  publication-title: Inverse Problems
– year: 2012
  ident: b11
  article-title: Topological analysis of recurrent systems
  publication-title: Workshop on algebraic topology and machine learning, NIPS
– volume: 11
  start-page: 723
  year: 2014
  end-page: 740
  ident: b5
  article-title: Critical transitions in a model of a genetic regulatory system
  publication-title: Mathematical Biosciences & Engineering
– volume: 45
  start-page: 3403
  year: 1992
  ident: b23
  article-title: Determining embedding dimension for phase-space reconstruction using a geometrical construction
  publication-title: Physical Review A
– volume: 4
  start-page: 313
  year: 2012
  end-page: 337
  ident: b1
  article-title: Regime changes and financial markets
  publication-title: Annual Review of Financial Economics
– year: 2010
  ident: b13
  article-title: Computational topology: an introduction
– volume: 127
  start-page: 204
  year: 2018
  end-page: 216
  ident: b43
  article-title: Classification tree methods for panel data using wavelet-transformed time series
  publication-title: Computational Statistics & Data Analysis
– volume: 20
  start-page: 217
  year: 1986
  end-page: 236
  ident: b7
  article-title: Extracting qualitative dynamics from experimental data
  publication-title: Physica D: Nonlinear Phenomena
– year: 2016
  ident: b20
  article-title: Chaotic dynamics: fractals, tilings, and substitutions
– volume: 16
  start-page: 257
  year: 2015
  ident: b33
  article-title: SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data
  publication-title: BMC Bioinformatics
– volume: 1
  start-page: 15
  year: 1980
  end-page: 29
  ident: b21
  article-title: An introduction to long-memory time series models and fractional differencing
  publication-title: Journal of Time Series Analysis
– volume: 491
  start-page: 820
  year: 2018
  end-page: 834
  ident: b18
  article-title: Topological data analysis of financial time series: Landscapes of crashes
  publication-title: Physica A. Statistical Mechanics and its Applications
– year: 2020
  ident: b19
  article-title: Topological data analysis in investment decisions
  publication-title: Expert Systems with Applications
– start-page: 715
  year: 2008
  end-page: 762
  ident: b42
  article-title: The self-organizing maps: background, theories, extensions and applications
  publication-title: Computational intelligence: A compendium
– year: 2017
  ident: b39
  article-title: An exploration of topological properties of high-frequency one-dimensional financial time series data using TDA
– year: 2020
  ident: b28
  article-title: Methodology document of NIFTY sectoral index series
– volume: 15
  start-page: 799
  year: 2015
  end-page: 838
  ident: b34
  article-title: Sliding windows and persistence: An application of topological methods to signal analysis
  publication-title: Foundations of Computational Mathematics
– start-page: 366
  year: 1981
  end-page: 381
  ident: b37
  article-title: Detecting strange attractors in turbulence
  publication-title: Dynamical systems and turbulence, Warwick 1980
– year: 2017
  ident: b36
  article-title: Time series analysis and its applications: With R examples
– volume: 31
  start-page: 606
  year: 2017
  end-page: 660
  ident: b2
  article-title: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances
  publication-title: Data Mining and Knowledge Discovery
– volume: 52
  start-page: 879
  year: 2007
  end-page: 895
  ident: b27
  article-title: Discrimination of locally stationary time series using wavelets
  publication-title: Computational Statistics & Data Analysis
– volume: 33
  start-page: 249
  year: 2005
  end-page: 274
  ident: b44
  article-title: Computing persistent homology
  publication-title: Discrete & Computational Geometry
– year: 2012
  ident: b41
  article-title: Persistence and anti-persistence: Theory and software
– volume: 43
  start-page: 59
  year: 1982
  end-page: 69
  ident: b25
  article-title: Self-organized formation of topologically correct feature maps
  publication-title: Biological Cybernetics
– volume: 37
  start-page: 103
  year: 2007
  end-page: 120
  ident: b10
  article-title: Stability of persistence diagrams
  publication-title: Discrete & Computational Geometry
– volume: 28
  start-page: 511
  year: 2002
  end-page: 533
  ident: b14
  article-title: Topological persistence and simplification
  publication-title: Discrete & Computational Geometry
– volume: 33
  start-page: 3
  year: 1993
  end-page: 56
  ident: b15
  article-title: Common risk factors in the returns on stocks and bonds
  publication-title: Journal of Financial Economic
– volume: 3
  start-page: 1236
  year: 2013
  ident: b26
  article-title: Extracting insights from the shape of complex data using topology
  publication-title: Scientific Reports
– year: 2000
  ident: b31
  article-title: Wavelet methods for time series analysis, Vol. 4
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b6
  article-title: Random forests
  publication-title: Machine Learning
– year: 2019
  ident: b38
  article-title: Tseries: Time series analysis and computational finance
– year: 2020
  ident: b22
  article-title: Forecast: Forecasting functions for time series and linear models
– year: 2018
  ident: b24
  article-title: Time series featurization via topological data analysis: an application to cryptocurrency trend forecasting
– year: 2014
  ident: b16
  article-title: Introduction to the R package TDA
– start-page: 735
  year: 2009
  end-page: 739
  ident: b3
  article-title: A supervised time series feature extraction technique using dct and dwt
  publication-title: 2009 international conference on machine learning and applications
– volume: 66
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2020.113868_b32
  article-title: Topological time series analysis
  publication-title: Notices of the American Mathematical Society
  doi: 10.1090/noti1869
– year: 2017
  ident: 10.1016/j.eswa.2020.113868_b36
– volume: 16
  start-page: 77
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2020.113868_b8
  article-title: Statistical topological data analysis using persistence landscapes
  publication-title: Journal of Machine Learning Research (JMLR)
– year: 2020
  ident: 10.1016/j.eswa.2020.113868_b22
– year: 2000
  ident: 10.1016/j.eswa.2020.113868_b31
– year: 2012
  ident: 10.1016/j.eswa.2020.113868_b11
  article-title: Topological analysis of recurrent systems
– year: 2014
  ident: 10.1016/j.eswa.2020.113868_b16
– volume: 16
  start-page: 257
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2020.113868_b33
  article-title: SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0645-6
– volume: 37
  start-page: 103
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2020.113868_b10
  article-title: Stability of persistence diagrams
  publication-title: Discrete & Computational Geometry
  doi: 10.1007/s00454-006-1276-5
– volume: 28
  start-page: 511
  year: 2002
  ident: 10.1016/j.eswa.2020.113868_b14
  article-title: Topological persistence and simplification
  publication-title: Discrete & Computational Geometry
  doi: 10.1007/s00454-002-2885-2
– volume: 15
  start-page: 799
  issue: 3
  year: 2015
  ident: 10.1016/j.eswa.2020.113868_b34
  article-title: Sliding windows and persistence: An application of topological methods to signal analysis
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/s10208-014-9206-z
– volume: 31
  start-page: 606
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2020.113868_b2
  article-title: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-016-0483-9
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2020.113868_b6
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– start-page: 181
  year: 1957
  ident: 10.1016/j.eswa.2020.113868_b12
  article-title: Modified randomization tests for nonparametric hypotheses
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177707045
– volume: 127
  start-page: 204
  year: 2018
  ident: 10.1016/j.eswa.2020.113868_b43
  article-title: Classification tree methods for panel data using wavelet-transformed time series
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2018.05.019
– year: 2018
  ident: 10.1016/j.eswa.2020.113868_b17
– year: 2016
  ident: 10.1016/j.eswa.2020.113868_b20
– year: 2020
  ident: 10.1016/j.eswa.2020.113868_b19
  article-title: Topological data analysis in investment decisions
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113222
– year: 2018
  ident: 10.1016/j.eswa.2020.113868_b30
– ident: 10.1016/j.eswa.2020.113868_b4
– year: 2012
  ident: 10.1016/j.eswa.2020.113868_b41
– volume: 52
  start-page: 879
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2020.113868_b27
  article-title: Discrimination of locally stationary time series using wavelets
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2007.05.010
– year: 2017
  ident: 10.1016/j.eswa.2020.113868_b39
– volume: 4
  start-page: 313
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2020.113868_b1
  article-title: Regime changes and financial markets
  publication-title: Annual Review of Financial Economics
  doi: 10.1146/annurev-financial-110311-101808
– start-page: 735
  year: 2009
  ident: 10.1016/j.eswa.2020.113868_b3
  article-title: A supervised time series feature extraction technique using dct and dwt
– volume: 11
  start-page: 723
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2020.113868_b5
  article-title: Critical transitions in a model of a genetic regulatory system
  publication-title: Mathematical Biosciences & Engineering
  doi: 10.3934/mbe.2014.11.723
– volume: 20
  start-page: 217
  issue: 2–3
  year: 1986
  ident: 10.1016/j.eswa.2020.113868_b7
  article-title: Extracting qualitative dynamics from experimental data
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(86)90031-X
– volume: 33
  start-page: 3
  year: 1993
  ident: 10.1016/j.eswa.2020.113868_b15
  article-title: Common risk factors in the returns on stocks and bonds
  publication-title: Journal of Financial Economic
  doi: 10.1016/0304-405X(93)90023-5
– volume: 491
  start-page: 820
  year: 2018
  ident: 10.1016/j.eswa.2020.113868_b18
  article-title: Topological data analysis of financial time series: Landscapes of crashes
  publication-title: Physica A. Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2017.09.028
– year: 2010
  ident: 10.1016/j.eswa.2020.113868_b13
– volume: 42
  start-page: 6026
  issue: 15–16
  year: 2015
  ident: 10.1016/j.eswa.2020.113868_b35
  article-title: Persistent homology for time series and spatial data clustering
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.04.010
– volume: 110
  start-page: 43
  issue: 1–2
  year: 1997
  ident: 10.1016/j.eswa.2020.113868_b9
  article-title: Practical method for determining the minimum embedding dimension of a scalar time series
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/S0167-2789(97)00118-8
– volume: 12
  start-page: 228
  year: 2017
  ident: 10.1016/j.eswa.2020.113868_b40
  article-title: Time series classification via topological data analysis
  publication-title: Information and Media Technologies
– year: 2020
  ident: 10.1016/j.eswa.2020.113868_b28
– start-page: 715
  year: 2008
  ident: 10.1016/j.eswa.2020.113868_b42
  article-title: The self-organizing maps: background, theories, extensions and applications
– year: 2018
  ident: 10.1016/j.eswa.2020.113868_b24
– volume: 27
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2020.113868_b29
  article-title: Probability measures on the space of persistence diagrams
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/27/12/124007
– volume: 43
  start-page: 59
  issue: 1
  year: 1982
  ident: 10.1016/j.eswa.2020.113868_b25
  article-title: Self-organized formation of topologically correct feature maps
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00337288
– volume: 33
  start-page: 249
  issue: 2
  year: 2005
  ident: 10.1016/j.eswa.2020.113868_b44
  article-title: Computing persistent homology
  publication-title: Discrete & Computational Geometry
  doi: 10.1007/s00454-004-1146-y
– volume: 45
  start-page: 3403
  issue: 6
  year: 1992
  ident: 10.1016/j.eswa.2020.113868_b23
  article-title: Determining embedding dimension for phase-space reconstruction using a geometrical construction
  publication-title: Physical Review A
  doi: 10.1103/PhysRevA.45.3403
– volume: 3
  start-page: 1236
  year: 2013
  ident: 10.1016/j.eswa.2020.113868_b26
  article-title: Extracting insights from the shape of complex data using topology
  publication-title: Scientific Reports
  doi: 10.1038/srep01236
– start-page: 366
  year: 1981
  ident: 10.1016/j.eswa.2020.113868_b37
  article-title: Detecting strange attractors in turbulence
– year: 2019
  ident: 10.1016/j.eswa.2020.113868_b38
– volume: 1
  start-page: 15
  issue: 1
  year: 1980
  ident: 10.1016/j.eswa.2020.113868_b21
  article-title: An introduction to long-memory time series models and fractional differencing
  publication-title: Journal of Time Series Analysis
  doi: 10.1111/j.1467-9892.1980.tb00297.x
SSID ssj0017007
Score 2.5973978
Snippet In this paper, we propose new methods for time series classification and clustering. These methods are based on techniques of Topological Data Analysis (TDA)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113868
SubjectTerms Classification
Clustering
Data analysis
Finance
Homology
Persistent homology
Random forest
Self organizing maps
Takens theorem
Time delay embedding
Time lag
Time series
Topology
Title Clustering and classification of time series using topological data analysis with applications to finance
URI https://dx.doi.org/10.1016/j.eswa.2020.113868
https://www.proquest.com/docview/2465476881
Volume 162
WOSCitedRecordID wos000582113700043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMXdkQXkA_cRkGJncT2cVQVAUIVEgXNzYodW-poSKtOZujP53nLLNCKHrhEkWVbTr4vL8_Pb0HoHTGg0wqiMhB8eVa2bZ4Jm-vMMFPnyv2SvGngxxd2dsanU_F1NLIpFmY1Z13Hb27E1X-FGtoAbBc6ew-4h0mhAe4BdLgC7HD9J-BP5kuX_CAFH2qnHjt_oEE3dOXkx24pZjFeelNBHyolhBObpndhWjFVSQh92zjkdrqq9Vk6tnyIfMbkPuaF_suwteF7tvzZBqfub_A0zWrwCGrC0dMEnlCNvef3pkWCeO-OeLiSTIssK4tQfWeQslHoBjlZFJSHcjp_iPBgTZi9N4tfLi8U8WVnYuftfNk7_7HBuzA5rs2km0O6OWSY4wHaJ6wSIP32J59Op5-H8yaWh8D6tPIYXhU8AXdXcpsKs_Mz9xrK-VP0OG4t8CRQ4hkame45epLKduAoxV-gizVDMDAEbzMEX1rsGIIDQ7BnCN5gCHYMwYkh2EGNN6GGvjgy5CX6_uH0_ORjFituZJoS3mesbhmvOK1pbgto0pTqkjQNJayxpKC2Epab2lYVqVTDLOh7VNWtFkzBNkFx-grtdZedeY2w5YK3qmSatHlZKiNoUegK7okCsaHKA1Sklyh1TEfvqqLM5e3wHaDxMOYqJGO5s3eVsJFRnQxqogSq3TnuOAEp43e9kMTlHYStOS8O77WII_Ro_Ykco73-emneoId61V8srt9GGv4GQAakTg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+and+classification+of+time+series+using+topological+data+analysis+with+applications+to+finance&rft.jtitle=Expert+systems+with+applications&rft.au=Majumdar%2C+Sourav&rft.au=Laha%2C+Arnab+Kumar&rft.date=2020-12-30&rft.issn=0957-4174&rft.volume=162&rft.spage=113868&rft_id=info:doi/10.1016%2Fj.eswa.2020.113868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2020_113868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon