Adaptive monitoring scheme of stochastically failing systems under hidden degradation processes
•Development of an adaptive monitoring scheme for fault detection.•Multivariate hidden Markov model describes the deterioration process.•SMDP approach to formulate the control problem and to optimize the scheme.•Considerably better fault detection compared with published results. Limited by the inst...
Saved in:
| Published in: | Reliability engineering & system safety Vol. 221; p. 108322 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Barking
Elsevier Ltd
01.05.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0951-8320, 1879-0836 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Development of an adaptive monitoring scheme for fault detection.•Multivariate hidden Markov model describes the deterioration process.•SMDP approach to formulate the control problem and to optimize the scheme.•Considerably better fault detection compared with published results.
Limited by the installation of sensors and the structure of systems, only external observation information can generate an association with the internal health status of a system. In addition, modern industrial systems are often accompanied by hidden degradation processes, which present great challenges when monitoring and alerting impending failures. To address this issue, this paper proposes an adaptive monitoring scheme for predicting faults of systems with hidden degradation processes. A multivariate, continuous-time hidden Markov model with three states (hidden healthy state, hidden unhealthy state, and observable failure state) is established to describe the degradation process of the system. An expectation maximization (EM) algorithm is presented to estimate the parameters of the stochastic model. On the basis of the hidden degradation model, an adaptive Bayesian control scheme is developed for monitoring the potential risk of the system with two switchable sampling intervals. We calculate optimal decision variables of the control scheme to achieve the minimum expected average cost by a policy iteration algorithm under a semi-Markov decision process (SMDP). The performance and characteristics of the proposed scheme are demonstrated via real oil measurement data obtained from mechanical generators. A comparison case illustrates the superiority of the prediction performance of our monitoring scheme. |
|---|---|
| AbstractList | •Development of an adaptive monitoring scheme for fault detection.•Multivariate hidden Markov model describes the deterioration process.•SMDP approach to formulate the control problem and to optimize the scheme.•Considerably better fault detection compared with published results.
Limited by the installation of sensors and the structure of systems, only external observation information can generate an association with the internal health status of a system. In addition, modern industrial systems are often accompanied by hidden degradation processes, which present great challenges when monitoring and alerting impending failures. To address this issue, this paper proposes an adaptive monitoring scheme for predicting faults of systems with hidden degradation processes. A multivariate, continuous-time hidden Markov model with three states (hidden healthy state, hidden unhealthy state, and observable failure state) is established to describe the degradation process of the system. An expectation maximization (EM) algorithm is presented to estimate the parameters of the stochastic model. On the basis of the hidden degradation model, an adaptive Bayesian control scheme is developed for monitoring the potential risk of the system with two switchable sampling intervals. We calculate optimal decision variables of the control scheme to achieve the minimum expected average cost by a policy iteration algorithm under a semi-Markov decision process (SMDP). The performance and characteristics of the proposed scheme are demonstrated via real oil measurement data obtained from mechanical generators. A comparison case illustrates the superiority of the prediction performance of our monitoring scheme. Limited by the installation of sensors and the structure of systems, only external observation information can generate an association with the internal health status of a system. In addition, modern industrial systems are often accompanied by hidden degradation processes, which present great challenges when monitoring and alerting impending failures. To address this issue, this paper proposes an adaptive monitoring scheme for predicting faults of systems with hidden degradation processes. A multivariate, continuous-time hidden Markov model with three states (hidden healthy state, hidden unhealthy state, and observable failure state) is established to describe the degradation process of the system. An expectation maximization (EM) algorithm is presented to estimate the parameters of the stochastic model. On the basis of the hidden degradation model, an adaptive Bayesian control scheme is developed for monitoring the potential risk of the system with two switchable sampling intervals. We calculate optimal decision variables of the control scheme to achieve the minimum expected average cost by a policy iteration algorithm under a semi-Markov decision process (SMDP). The performance and characteristics of the proposed scheme are demonstrated via real oil measurement data obtained from mechanical generators. A comparison case illustrates the superiority of the prediction performance of our monitoring scheme. |
| ArticleNumber | 108322 |
| Author | Luo, Jun Li, Yifan Pu, Huayan Duan, Chaoqun |
| Author_xml | – sequence: 1 givenname: Chaoqun surname: Duan fullname: Duan, Chaoqun email: chaoqun.duan@hotmail.com organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China – sequence: 2 givenname: Yifan surname: Li fullname: Li, Yifan email: lyf781913441@shu.edu.cn organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China – sequence: 3 givenname: Huayan surname: Pu fullname: Pu, Huayan email: phygood_2001@shu.edu.cn organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China – sequence: 4 givenname: Jun surname: Luo fullname: Luo, Jun email: luojun@shu.edu.cn organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China |
| BookMark | eNp9kMtuAiEUhkljk6rtC3RF0vVYYK4k3RjTW2LSjXtC4aBMHLCAJr59UbvqwhXh5P_O5ZugkfMOEHqkZEYJbZ77WYAYZ4wwlgtdydgNGtOu5UX-NCM0JrymRa6TOzSJsSeEVLxux0jMtdwlewA8eGeTD9atcVQbGAB7g2PyaiNjskput0dspN2eA8eYYIh47zQEvLFag8Ma1kFqmax3eBe8ygtBvEe3Rm4jPPy9U7R6e10tPorl1_vnYr4sVMm6VLQVMyU1HFpoDNcVp7KTkn9z2UJZs6YEI7miJeWq1oZUBOquVEpDpYmpmnKKni5t8-CfPcQker8PLk8UrMndMlGRnGKXlAo-xgBG7IIdZDgKSsTJo-jFyaM4eRQXjxnq_kHKpvOVKWQd19GXCwr58oOFIKKy4BRoG0Alob29hv8CNESSmg |
| CitedBy_id | crossref_primary_10_1016_j_ress_2022_109008 crossref_primary_10_1016_j_ress_2025_111235 crossref_primary_10_1080_0951192X_2024_2426134 crossref_primary_10_1016_j_ress_2024_110663 crossref_primary_10_1088_1361_6501_ad0685 crossref_primary_10_1016_j_ress_2023_109498 crossref_primary_10_1016_j_ress_2023_109608 crossref_primary_10_1002_asmb_2835 |
| Cites_doi | 10.1016/j.ijpe.2016.01.007 10.1016/j.compind.2020.103295 10.1093/biomet/48.3-4.419 10.1109/TASE.2015.2487523 10.1016/j.ymssp.2019.03.023 10.1109/TMECH.2020.2995757 10.1016/j.ymssp.2015.12.011 10.1016/j.ress.2020.107042 10.1016/j.ejor.2020.11.036 10.1016/j.ymssp.2018.11.040 10.1109/TR.2019.2957965 10.1109/TIE.2017.2767550 10.1016/j.ymssp.2017.11.016 10.1002/asmb.1920 10.1109/TR.2015.2423191 10.1016/j.ress.2021.107560 10.1016/j.ymssp.2018.05.050 10.1016/j.ymssp.2018.12.008 10.1109/TII.2020.2993074 10.1002/qre.2947 10.1016/j.ejor.2020.11.041 10.1016/j.ress.2017.09.002 10.1109/TMECH.2018.2823320 10.1016/j.ress.2021.107937 10.1016/j.ress.2015.12.016 10.1016/j.ress.2021.108063 10.1016/j.oceaneng.2020.108180 10.1016/j.ress.2014.09.014 10.1016/j.cie.2020.106541 10.1109/TIM.2014.2313034 10.1080/0740817X.2016.1189632 10.1016/j.ress.2021.108074 10.1080/24725854.2019.1567957 10.1109/TR.2019.2907402 10.1016/j.ejor.2011.04.023 10.1016/j.cie.2020.106322 10.1109/TR.2015.2500681 10.1080/00224065.1998.11979850 10.1109/TII.2019.2948018 10.1016/j.ymssp.2021.107714 10.1016/j.engappai.2020.103587 10.1016/j.mechmachtheory.2019.103627 |
| ContentType | Journal Article |
| Copyright | 2022 Copyright Elsevier BV May 2022 |
| Copyright_xml | – notice: 2022 – notice: Copyright Elsevier BV May 2022 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
| DOI | 10.1016/j.ress.2022.108322 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| ExternalDocumentID | 10_1016_j_ress_2022_108322 S0951832022000047 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TB 8FD AGCQF C1K FR3 SOI |
| ID | FETCH-LOGICAL-c328t-742f31f9e7e6f9d491a8aa9b9a7e35263efa9c1319c5df040e583ccde4d0f463 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771556500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Wed Aug 13 10:34:42 EDT 2025 Tue Nov 18 20:07:32 EST 2025 Sat Nov 29 07:03:08 EST 2025 Fri Feb 23 02:40:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault prediction Adaptive monitoring Prognostics and health management (PHM) Semi-Markov decision process (SMDP) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-742f31f9e7e6f9d491a8aa9b9a7e35263efa9c1319c5df040e583ccde4d0f463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2649104040 |
| PQPubID | 2045406 |
| ParticipantIDs | proquest_journals_2649104040 crossref_primary_10_1016_j_ress_2022_108322 crossref_citationtrail_10_1016_j_ress_2022_108322 elsevier_sciencedirect_doi_10_1016_j_ress_2022_108322 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Wang, Wang, Hong, Jiang (bib0020) 2021; 292 Ruiz, Heydari, Sullivan, Liao, Pohl (bib0007) 2020; 52 Duan, Li, Liu (bib0016) 2020; 218 Duan, Makis, Deng (bib0035) 2019; 122 Iannacone, Sharma, Tabandeh, Gardoni (bib0015) 2022; 217 Yan, Ma, Yang, Wang, Wu (bib0019) 2020; 54 Chen, Li, Xia, Pan (bib0031) 2017; 184 Hu, Miao, Si, Pan, Zio (bib0005) 2022; 217 Ross (bib0045) 2006 Du, Duan, Wu (bib0034) 2021; 70 Tijms (bib0047) 1994 Vrignat, Avila, Duculty, Kratz (bib0030) 2015; 64 Rezamand, Kordestani, Orchard, Carriveau, Ting, Saif (bib0032) 2020; 17 Soleimani, Campean, Neagu (bib0014) 2021; 37 Kim, Makis, Jiang (bib0046) 2013; 29 Ma, Sun, Zhang, Chen (bib0002) 2019; 124 Naderkhani, Makis (bib0042) 2016; 174 Qin, Li, Cao, Chen (bib0003) 2020; 143 Duan (bib0043) 2021; 158 Afshari, Enayatollahi, Xu, Liang (bib0026) 2022; 219 Reinsel (bib0048) 1997 Le Son, Fouladirad, Barros (bib0039) 2016; 149 Zhao, Yan, Chen, Mao, Wang, Gao (bib0022) 2019; 115 Eker, Camci, Jennions (bib0013) 2015; 75 Guo, Li, Li (bib0010) 2019; 69 Deng, Guo, Zhou, Chen (bib0024) 2017; 14 Qian, Yan, Hu (bib0027) 2014; 63 Imhof (bib0049) 1961; 48 Dong, Yang, Wei, Wei, Tsui (bib0017) 2019; 16 Duan, Deng (bib0028) 2020; 25 Xiang, Qin, Zhu, Wang, Chen (bib0023) 2020; 91 Li, Xu, Li (bib0006) 2020; 145 Kong, Chen, Li, Duan, Lu, Chen (bib0025) 2019; 127 Tagaras (bib0044) 1988; 30 Yang, Zheng, Qi (bib0037) 2020; 122 Ellefsen, Æsøy, Ushakov, Zhang (bib0021) 2019; 68 An, Kim, Choi (bib0004) 2015; 133 Mejdoubi, Chaoui, Sabor, Gualous (bib0011) 2018; 65 Zhao, Chen, Gaudoin, Doyen (bib0018) 2021; 292 Khaleghei, Makis (bib0029) 2016; 48 Moradi, Growth (bib0001) 2020; 21 Liu, Zhu, Zeng (bib0036) 2018; 23 Shamstabar, Shahriari, Samimi (bib0038) 2021; 216 Hu, Baraldi, Di Maio, Zio (bib0012) 2015; 65 Han, Wang, Xie, He, Li, Wang (bib0008) 2021; 210 Zheng, Makis (bib0041) 2020; 141 Lei, Li, Guo, Li, Yan, Lin (bib0009) 2018; 104 Kim, Jiang, Makis, Lee (bib0033) 2011; 214 Shi, Zhu, Xiang, Feng (bib0040) 2020; 202 Yang (10.1016/j.ress.2022.108322_bib0037) 2020; 122 Mejdoubi (10.1016/j.ress.2022.108322_bib0011) 2018; 65 Qian (10.1016/j.ress.2022.108322_bib0027) 2014; 63 Liu (10.1016/j.ress.2022.108322_bib0036) 2018; 23 Dong (10.1016/j.ress.2022.108322_bib0017) 2019; 16 Naderkhani (10.1016/j.ress.2022.108322_bib0042) 2016; 174 Ma (10.1016/j.ress.2022.108322_bib0002) 2019; 124 Ruiz (10.1016/j.ress.2022.108322_bib0007) 2020; 52 Tagaras (10.1016/j.ress.2022.108322_bib0044) 1988; 30 Imhof (10.1016/j.ress.2022.108322_bib0049) 1961; 48 Chen (10.1016/j.ress.2022.108322_bib0031) 2017; 184 Rezamand (10.1016/j.ress.2022.108322_bib0032) 2020; 17 Iannacone (10.1016/j.ress.2022.108322_bib0015) 2022; 217 Guo (10.1016/j.ress.2022.108322_bib0010) 2019; 69 Eker (10.1016/j.ress.2022.108322_bib0013) 2015; 75 Deng (10.1016/j.ress.2022.108322_bib0024) 2017; 14 Shi (10.1016/j.ress.2022.108322_bib0040) 2020; 202 Kim (10.1016/j.ress.2022.108322_bib0046) 2013; 29 Le Son (10.1016/j.ress.2022.108322_bib0039) 2016; 149 Duan (10.1016/j.ress.2022.108322_bib0016) 2020; 218 Vrignat (10.1016/j.ress.2022.108322_bib0030) 2015; 64 Duan (10.1016/j.ress.2022.108322_bib0035) 2019; 122 Ellefsen (10.1016/j.ress.2022.108322_bib0021) 2019; 68 Tijms (10.1016/j.ress.2022.108322_bib0047) 1994 Khaleghei (10.1016/j.ress.2022.108322_bib0029) 2016; 48 Afshari (10.1016/j.ress.2022.108322_bib0026) 2022; 219 Soleimani (10.1016/j.ress.2022.108322_bib0014) 2021; 37 Hu (10.1016/j.ress.2022.108322_bib0012) 2015; 65 Kim (10.1016/j.ress.2022.108322_bib0033) 2011; 214 An (10.1016/j.ress.2022.108322_bib0004) 2015; 133 Li (10.1016/j.ress.2022.108322_bib0006) 2020; 145 Qin (10.1016/j.ress.2022.108322_bib0003) 2020; 143 Du (10.1016/j.ress.2022.108322_bib0034) 2021; 70 Hu (10.1016/j.ress.2022.108322_bib0005) 2022; 217 Reinsel (10.1016/j.ress.2022.108322_bib0048) 1997 Lei (10.1016/j.ress.2022.108322_bib0009) 2018; 104 Wang (10.1016/j.ress.2022.108322_bib0020) 2021; 292 Moradi (10.1016/j.ress.2022.108322_bib0001) 2020; 21 Duan (10.1016/j.ress.2022.108322_bib0028) 2020; 25 Zhao (10.1016/j.ress.2022.108322_bib0022) 2019; 115 Xiang (10.1016/j.ress.2022.108322_bib0023) 2020; 91 Yan (10.1016/j.ress.2022.108322_bib0019) 2020; 54 Ross (10.1016/j.ress.2022.108322_bib0045) 2006 Shamstabar (10.1016/j.ress.2022.108322_bib0038) 2021; 216 Duan (10.1016/j.ress.2022.108322_bib0043) 2021; 158 Zhao (10.1016/j.ress.2022.108322_bib0018) 2021; 292 Han (10.1016/j.ress.2022.108322_bib0008) 2021; 210 Zheng (10.1016/j.ress.2022.108322_bib0041) 2020; 141 Kong (10.1016/j.ress.2022.108322_bib0025) 2019; 127 |
| References_xml | – volume: 70 start-page: 1 year: 2021 end-page: 10 ident: bib0034 article-title: Replacement scheme for lubricating oil based on Bayesian control chart publication-title: IEEE Trans Instrum Meas – volume: 37 start-page: 3746 year: 2021 end-page: 3778 ident: bib0014 article-title: Diagnostics and prognostics for complex systems: a review of methods and challenges publication-title: Qual Reliab Eng Int – volume: 52 start-page: 301 year: 2020 end-page: 320 ident: bib0007 article-title: Data analysis and resource allocation in Bayesian selective accelerated reliability growth publication-title: IISE Trans – volume: 104 start-page: 799 year: 2018 end-page: 834 ident: bib0009 article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction publication-title: Mech Syst Signal Process – volume: 48 start-page: 419 year: 1961 end-page: 426 ident: bib0049 article-title: Computing the distribution of quadratic forms in normal variables publication-title: Biometrika – volume: 122 start-page: 290 year: 2019 end-page: 306 ident: bib0035 article-title: Optimal Bayesian early fault detection for CNC equipment using hidden semi-Markov process publication-title: Mech Syst Signal Process – volume: 124 start-page: 298 year: 2019 end-page: 312 ident: bib0002 article-title: Subspace-based MVE for performance degradation assessment of aero-engine bearings with multimodal features publication-title: Mech Syst Signal Process – volume: 127 start-page: 573 year: 2019 end-page: 594 ident: bib0025 article-title: Relevance vector machine for tool wear prediction publication-title: Mech Syst Signal Process – volume: 158 start-page: 107 year: 2021 end-page: 714 ident: bib0043 article-title: Dynamic Bayesian monitoring and detection for partially observable machines under multivariate observations publication-title: Mech Syst Signal Process – volume: 218 year: 2020 ident: bib0016 article-title: Condition-based maintenance for ship pumps subject to competing risks under stochastic maintenance quality publication-title: Ocean Eng – volume: 292 start-page: 1200 year: 2021 end-page: 1208 ident: bib0020 article-title: Degradation data analysis based on gamma process with random effects publication-title: Eur J Op Res – volume: 217 year: 2022 ident: bib0005 article-title: Prognostics and health management: a review from the perspectives of design, development and decision publication-title: Reliab Eng Syst Saf – volume: 17 start-page: 1742 year: 2020 end-page: 1752 ident: bib0032 article-title: Improved remaining useful life estimation of wind turbine drivetrain bearings under varying operating conditions publication-title: IEEE Trans Ind Inf – volume: 68 start-page: 720 year: 2019 end-page: 740 ident: bib0021 article-title: A comprehensive survey of prognostics and health management based on deep learning for autonomous ships publication-title: IEEE Trans Reliab – volume: 214 start-page: 331 year: 2011 end-page: 339 ident: bib0033 article-title: Optimal Bayesian monitoring-alert scheme for a partially observable system subject to random failure publication-title: Eur J Op Res – volume: 145 year: 2020 ident: bib0006 article-title: A joint modeling approach for reliability growth planning considering product life cycle cost performance publication-title: Comput Ind Eng – volume: 122 start-page: 103 year: 2020 end-page: 295 ident: bib0037 article-title: A method for degradation prediction based on hidden semi-Markov models with mixture of Kernels publication-title: Comput Ind – volume: 75 start-page: 395 year: 2015 end-page: 412 ident: bib0013 article-title: Physics-based prognostic modelling of filter clogging phenomena publication-title: Mech Syst Signal Process – volume: 91 year: 2020 ident: bib0023 article-title: Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction publication-title: Eng Appl Artif Intell – year: 2006 ident: bib0045 article-title: Introduction to probability models – volume: 21 start-page: 107 year: 2020 end-page: 194 ident: bib0001 article-title: Modernizing risk assessment: a systematic integration of PRA and PHM techniques publication-title: Reliab Eng Syst Saf – volume: 210 year: 2021 ident: bib0008 article-title: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence publication-title: Reliab Eng Syst Saf – volume: 174 start-page: 29 year: 2016 end-page: 42 ident: bib0042 article-title: Economic design of multivariate Bayesian control chart with two sampling intervals publication-title: Int J Prod Econ – volume: 133 start-page: 223 year: 2015 end-page: 236 ident: bib0004 article-title: Practical options for selecting data-driven or physics-based prognostics algorithms with reviews publication-title: Reliab Eng Syst Saf – volume: 16 start-page: 4736 year: 2019 end-page: 4746 ident: bib0017 article-title: Data-driven battery health prognosis using adaptive brownian motion model publication-title: IEEE Trans Ind Inf – volume: 54 start-page: 107 year: 2020 end-page: 138 ident: bib0019 article-title: A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis publication-title: Reliab Eng Syst Saf – volume: 143 year: 2020 ident: bib0003 article-title: A fault dynamic model of high-speed angular contact ball bearings publication-title: Mech Mach Theory – volume: 69 start-page: 1110 year: 2019 end-page: 1129 ident: bib0010 article-title: A review on prognostics methods for engineering systems publication-title: IEEE Trans Reliab – volume: 65 start-page: 718 year: 2015 end-page: 735 ident: bib0012 article-title: Online performance assessment method for a model-based prognostic approach publication-title: IEEE Trans Reliab – volume: 292 start-page: 1099 year: 2021 end-page: 1114 ident: bib0018 article-title: Accelerated degradation tests with inspection effects publication-title: Eur J Op Res – volume: 149 start-page: 76 year: 2016 end-page: 87 ident: bib0039 article-title: Remaining useful lifetime estimation and noisy gamma deterioration process publication-title: Reliab Eng Syst Saf – volume: 30 start-page: 212 year: 1988 end-page: 231 ident: bib0044 article-title: A survey of recent developments in the design of adaptive control charts publication-title: J Qual Technol – volume: 202 year: 2020 ident: bib0040 article-title: Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement publication-title: Reliab Eng Syst Saf – volume: 29 start-page: 279 year: 2013 end-page: 294 ident: bib0046 article-title: Parameter estimation for partially observable systems subject to random failure publication-title: Appl Stoch Models Bus Ind – year: 1994 ident: bib0047 article-title: Stochastic models: an algorithmic approach (Vol. 303) – volume: 219 year: 2022 ident: bib0026 article-title: Machine learning-based methods in structural reliability analysis: a review publication-title: Reliab Eng Syst Saf – volume: 141 start-page: 106 year: 2020 end-page: 322 ident: bib0041 article-title: Optimal condition-based maintenance with general repair and two dependent failure modes publication-title: Comput Ind Eng – volume: 115 start-page: 213 year: 2019 end-page: 237 ident: bib0022 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech Syst Signal Process – volume: 65 start-page: 4357 year: 2018 end-page: 4367 ident: bib0011 article-title: Remaining useful life prognosis of supercapacitors under temperature and voltage aging conditions publication-title: IEEE Trans Ind Electron – volume: 48 start-page: 1058 year: 2016 end-page: 1071 ident: bib0029 article-title: Reliability estimation of a system subject to condition monitoring with two dependent failure modes publication-title: IISE Trans – volume: 63 start-page: 2599 year: 2014 end-page: 2610 ident: bib0027 article-title: Bearing degradation evaluation using recurrence quantification analysis and Kalman filter publication-title: IEEE Trans Instrum Meas – volume: 25 start-page: 2264 year: 2020 end-page: 2275 ident: bib0028 article-title: Prognostics of health measures for machines with aging and dynamic cumulative damage publication-title: IEEE/ASME Trans Mechatron – volume: 216 year: 2021 ident: bib0038 article-title: Reliability monitoring of systems with cumulative shock-based deterioration process publication-title: Reliab Eng Syst Saf – volume: 184 start-page: 123 year: 2017 end-page: 136 ident: bib0031 article-title: Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy publication-title: Reliab Eng Syst Saf – volume: 23 start-page: 1456 year: 2018 end-page: 1466 ident: bib0036 article-title: Diagnosis and prognosis of degradation process via hidden semi-Markov model publication-title: IEEE/ASME Trans Mechatron – volume: 14 start-page: 1053 year: 2017 end-page: 1063 ident: bib0024 article-title: Sensor multi fault diagnosis with improved support vector machines publication-title: IEEE Trans Autom Sci Eng – year: 1997 ident: bib0048 article-title: Elements of multivariate time series analysis – volume: 217 year: 2022 ident: bib0015 article-title: Modeling time-varying reliability and resilience of deteriorating infrastructure publication-title: Reliab Eng Syst Saf – volume: 64 start-page: 1038 year: 2015 end-page: 1048 ident: bib0030 article-title: Failure event prediction using hidden Markov model approaches publication-title: IEEE Trans Reliab – volume: 174 start-page: 29 year: 2016 ident: 10.1016/j.ress.2022.108322_bib0042 article-title: Economic design of multivariate Bayesian control chart with two sampling intervals publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2016.01.007 – volume: 122 start-page: 103 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0037 article-title: A method for degradation prediction based on hidden semi-Markov models with mixture of Kernels publication-title: Comput Ind doi: 10.1016/j.compind.2020.103295 – volume: 48 start-page: 419 issue: 3–4 year: 1961 ident: 10.1016/j.ress.2022.108322_bib0049 article-title: Computing the distribution of quadratic forms in normal variables publication-title: Biometrika doi: 10.1093/biomet/48.3-4.419 – volume: 14 start-page: 1053 issue: 2 year: 2017 ident: 10.1016/j.ress.2022.108322_bib0024 article-title: Sensor multi fault diagnosis with improved support vector machines publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2015.2487523 – volume: 127 start-page: 573 year: 2019 ident: 10.1016/j.ress.2022.108322_bib0025 article-title: Relevance vector machine for tool wear prediction publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.03.023 – volume: 25 start-page: 2264 issue: 5 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0028 article-title: Prognostics of health measures for machines with aging and dynamic cumulative damage publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2020.2995757 – volume: 75 start-page: 395 year: 2015 ident: 10.1016/j.ress.2022.108322_bib0013 article-title: Physics-based prognostic modelling of filter clogging phenomena publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.12.011 – volume: 202 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0040 article-title: Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107042 – volume: 292 start-page: 1200 issue: 3 year: 2021 ident: 10.1016/j.ress.2022.108322_bib0020 article-title: Degradation data analysis based on gamma process with random effects publication-title: Eur J Op Res doi: 10.1016/j.ejor.2020.11.036 – volume: 122 start-page: 290 year: 2019 ident: 10.1016/j.ress.2022.108322_bib0035 article-title: Optimal Bayesian early fault detection for CNC equipment using hidden semi-Markov process publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.11.040 – volume: 69 start-page: 1110 issue: 3 year: 2019 ident: 10.1016/j.ress.2022.108322_bib0010 article-title: A review on prognostics methods for engineering systems publication-title: IEEE Trans Reliab doi: 10.1109/TR.2019.2957965 – volume: 65 start-page: 4357 year: 2018 ident: 10.1016/j.ress.2022.108322_bib0011 article-title: Remaining useful life prognosis of supercapacitors under temperature and voltage aging conditions publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2767550 – volume: 104 start-page: 799 year: 2018 ident: 10.1016/j.ress.2022.108322_bib0009 article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.11.016 – volume: 29 start-page: 279 issue: 3 year: 2013 ident: 10.1016/j.ress.2022.108322_bib0046 article-title: Parameter estimation for partially observable systems subject to random failure publication-title: Appl Stoch Models Bus Ind doi: 10.1002/asmb.1920 – volume: 64 start-page: 1038 issue: 3 year: 2015 ident: 10.1016/j.ress.2022.108322_bib0030 article-title: Failure event prediction using hidden Markov model approaches publication-title: IEEE Trans Reliab doi: 10.1109/TR.2015.2423191 – volume: 210 year: 2021 ident: 10.1016/j.ress.2022.108322_bib0008 article-title: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107560 – volume: 115 start-page: 213 year: 2019 ident: 10.1016/j.ress.2022.108322_bib0022 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.05.050 – volume: 124 start-page: 298 year: 2019 ident: 10.1016/j.ress.2022.108322_bib0002 article-title: Subspace-based MVE for performance degradation assessment of aero-engine bearings with multimodal features publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.12.008 – volume: 17 start-page: 1742 issue: 3 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0032 article-title: Improved remaining useful life estimation of wind turbine drivetrain bearings under varying operating conditions publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2020.2993074 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.ress.2022.108322_bib0034 article-title: Replacement scheme for lubricating oil based on Bayesian control chart publication-title: IEEE Trans Instrum Meas – volume: 37 start-page: 3746 issue: 8 year: 2021 ident: 10.1016/j.ress.2022.108322_bib0014 article-title: Diagnostics and prognostics for complex systems: a review of methods and challenges publication-title: Qual Reliab Eng Int doi: 10.1002/qre.2947 – volume: 292 start-page: 1099 issue: 3 year: 2021 ident: 10.1016/j.ress.2022.108322_bib0018 article-title: Accelerated degradation tests with inspection effects publication-title: Eur J Op Res doi: 10.1016/j.ejor.2020.11.041 – year: 1994 ident: 10.1016/j.ress.2022.108322_bib0047 – volume: 184 start-page: 123 year: 2017 ident: 10.1016/j.ress.2022.108322_bib0031 article-title: Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.09.002 – volume: 23 start-page: 1456 issue: 3 year: 2018 ident: 10.1016/j.ress.2022.108322_bib0036 article-title: Diagnosis and prognosis of degradation process via hidden semi-Markov model publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2018.2823320 – volume: 216 year: 2021 ident: 10.1016/j.ress.2022.108322_bib0038 article-title: Reliability monitoring of systems with cumulative shock-based deterioration process publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107937 – volume: 149 start-page: 76 year: 2016 ident: 10.1016/j.ress.2022.108322_bib0039 article-title: Remaining useful lifetime estimation and noisy gamma deterioration process publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.12.016 – volume: 217 year: 2022 ident: 10.1016/j.ress.2022.108322_bib0005 article-title: Prognostics and health management: a review from the perspectives of design, development and decision publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.108063 – volume: 218 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0016 article-title: Condition-based maintenance for ship pumps subject to competing risks under stochastic maintenance quality publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.108180 – volume: 133 start-page: 223 year: 2015 ident: 10.1016/j.ress.2022.108322_bib0004 article-title: Practical options for selecting data-driven or physics-based prognostics algorithms with reviews publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.09.014 – volume: 54 start-page: 107 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0019 article-title: A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis publication-title: Reliab Eng Syst Saf – volume: 219 year: 2022 ident: 10.1016/j.ress.2022.108322_bib0026 article-title: Machine learning-based methods in structural reliability analysis: a review publication-title: Reliab Eng Syst Saf – volume: 145 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0006 article-title: A joint modeling approach for reliability growth planning considering product life cycle cost performance publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.106541 – year: 1997 ident: 10.1016/j.ress.2022.108322_bib0048 – volume: 63 start-page: 2599 issue: 11 year: 2014 ident: 10.1016/j.ress.2022.108322_bib0027 article-title: Bearing degradation evaluation using recurrence quantification analysis and Kalman filter publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2014.2313034 – volume: 48 start-page: 1058 issue: 11 year: 2016 ident: 10.1016/j.ress.2022.108322_bib0029 article-title: Reliability estimation of a system subject to condition monitoring with two dependent failure modes publication-title: IISE Trans doi: 10.1080/0740817X.2016.1189632 – volume: 217 year: 2022 ident: 10.1016/j.ress.2022.108322_bib0015 article-title: Modeling time-varying reliability and resilience of deteriorating infrastructure publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.108074 – volume: 52 start-page: 301 issue: 3 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0007 article-title: Data analysis and resource allocation in Bayesian selective accelerated reliability growth publication-title: IISE Trans doi: 10.1080/24725854.2019.1567957 – year: 2006 ident: 10.1016/j.ress.2022.108322_bib0045 – volume: 68 start-page: 720 issue: 2 year: 2019 ident: 10.1016/j.ress.2022.108322_bib0021 article-title: A comprehensive survey of prognostics and health management based on deep learning for autonomous ships publication-title: IEEE Trans Reliab doi: 10.1109/TR.2019.2907402 – volume: 214 start-page: 331 issue: 2 year: 2011 ident: 10.1016/j.ress.2022.108322_bib0033 article-title: Optimal Bayesian monitoring-alert scheme for a partially observable system subject to random failure publication-title: Eur J Op Res doi: 10.1016/j.ejor.2011.04.023 – volume: 141 start-page: 106 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0041 article-title: Optimal condition-based maintenance with general repair and two dependent failure modes publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.106322 – volume: 65 start-page: 718 issue: 2 year: 2015 ident: 10.1016/j.ress.2022.108322_bib0012 article-title: Online performance assessment method for a model-based prognostic approach publication-title: IEEE Trans Reliab doi: 10.1109/TR.2015.2500681 – volume: 30 start-page: 212 issue: 3 year: 1988 ident: 10.1016/j.ress.2022.108322_bib0044 article-title: A survey of recent developments in the design of adaptive control charts publication-title: J Qual Technol doi: 10.1080/00224065.1998.11979850 – volume: 21 start-page: 107 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0001 article-title: Modernizing risk assessment: a systematic integration of PRA and PHM techniques publication-title: Reliab Eng Syst Saf – volume: 16 start-page: 4736 issue: 7 year: 2019 ident: 10.1016/j.ress.2022.108322_bib0017 article-title: Data-driven battery health prognosis using adaptive brownian motion model publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2019.2948018 – volume: 158 start-page: 107 year: 2021 ident: 10.1016/j.ress.2022.108322_bib0043 article-title: Dynamic Bayesian monitoring and detection for partially observable machines under multivariate observations publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.107714 – volume: 91 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0023 article-title: Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103587 – volume: 143 year: 2020 ident: 10.1016/j.ress.2022.108322_bib0003 article-title: A fault dynamic model of high-speed angular contact ball bearings publication-title: Mech Mach Theory doi: 10.1016/j.mechmachtheory.2019.103627 |
| SSID | ssj0004957 |
| Score | 2.4084117 |
| Snippet | •Development of an adaptive monitoring scheme for fault detection.•Multivariate hidden Markov model describes the deterioration process.•SMDP approach to... Limited by the installation of sensors and the structure of systems, only external observation information can generate an association with the internal health... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108322 |
| SubjectTerms | Adaptive control Adaptive monitoring Algorithms Bayesian analysis Degradation Fault prediction Iterative algorithms Iterative methods Markov chains Markov processes Monitoring Optimization Prognostics and health management (PHM) Reliability engineering Semi-Markov decision process (SMDP) Stochastic models |
| Title | Adaptive monitoring scheme of stochastically failing systems under hidden degradation processes |
| URI | https://dx.doi.org/10.1016/j.ress.2022.108322 https://www.proquest.com/docview/2649104040 |
| Volume | 221 |
| WOSCitedRecordID | wos000771556500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE_twoJ84BZllYcTx8cKLQIOq5XooZwiO7HZrrrZqo9V--8Ze-ymFLECJC5RldZx6vlsz4xnviHkvbGMIVKrOOFKxYzlKq4EY2CltAXsxpynmXLFJvjFRTWZiMvBYBNyYe5mvOuqzUbM_6uo4R4I26bO_oW4dw-FG_AZhA5XEDtc_0jwo1bOXTzQjZuuLr4OTFh947wDoOs1V3LpPNizbWTk1OWjI6Hz0lXFXURXllfERsl-X0isuRTNMaHARxwGRm89myLP9zbSPbGhgxM-MVpK45lGUF2W4ZAfNqQ-GsiFFHybmh6ql2u3Ka7ldi9oaI3HRL6h91WAmbuLDEQHWkii6SOW0BOZxrCw4PGMxnW44sIRZ-8v1BnmUv-y6KP_4frM-ifObLc2cDLHdOcDMu2vtjPbV5Y564g_IEcZL0Q1JEejz-eTL31OrUCW2PByPuEKYwMPe_qdUnOwvTudZfyUPPHGBh0hSJ6Rge6ek8d7FJQvSB3gQnu4UIQLvTX0Z7hQDxfq4UIdXCjChe7Bhe7g8pKMP56PP3yKfdGNuMmzahVzlpk8NUJzXRrRMpHKSkqhhOTa1lLItZGiSWHlborWwBagiypvmlazNjGszF-RYXfb6WNCs1QXmUhUyhqwG4xSeZIYXSptKs10KU9IGgatbjwhva2LMqtD5OF1bQe6tgNd40CfkGjXZo50LPf-ugiyqL1CiYpiDdC5t91pEFztZzZ8X8JYwP9lyet_fOwb8qifFKdkuFqs9VvysLlbTZeLdx6APwBfZ6hw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+monitoring+scheme+of+stochastically+failing+systems+under+hidden+degradation+processes&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Duan%2C+Chaoqun&rft.au=Li%2C+Yifan&rft.au=Pu%2C+Huayan&rft.au=Luo%2C+Jun&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=221&rft_id=info:doi/10.1016%2Fj.ress.2022.108322&rft.externalDocID=S0951832022000047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |