Adaptive monitoring scheme of stochastically failing systems under hidden degradation processes

•Development of an adaptive monitoring scheme for fault detection.•Multivariate hidden Markov model describes the deterioration process.•SMDP approach to formulate the control problem and to optimize the scheme.•Considerably better fault detection compared with published results. Limited by the inst...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety Vol. 221; p. 108322
Main Authors: Duan, Chaoqun, Li, Yifan, Pu, Huayan, Luo, Jun
Format: Journal Article
Language:English
Published: Barking Elsevier Ltd 01.05.2022
Elsevier BV
Subjects:
ISSN:0951-8320, 1879-0836
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Development of an adaptive monitoring scheme for fault detection.•Multivariate hidden Markov model describes the deterioration process.•SMDP approach to formulate the control problem and to optimize the scheme.•Considerably better fault detection compared with published results. Limited by the installation of sensors and the structure of systems, only external observation information can generate an association with the internal health status of a system. In addition, modern industrial systems are often accompanied by hidden degradation processes, which present great challenges when monitoring and alerting impending failures. To address this issue, this paper proposes an adaptive monitoring scheme for predicting faults of systems with hidden degradation processes. A multivariate, continuous-time hidden Markov model with three states (hidden healthy state, hidden unhealthy state, and observable failure state) is established to describe the degradation process of the system. An expectation maximization (EM) algorithm is presented to estimate the parameters of the stochastic model. On the basis of the hidden degradation model, an adaptive Bayesian control scheme is developed for monitoring the potential risk of the system with two switchable sampling intervals. We calculate optimal decision variables of the control scheme to achieve the minimum expected average cost by a policy iteration algorithm under a semi-Markov decision process (SMDP). The performance and characteristics of the proposed scheme are demonstrated via real oil measurement data obtained from mechanical generators. A comparison case illustrates the superiority of the prediction performance of our monitoring scheme.
AbstractList •Development of an adaptive monitoring scheme for fault detection.•Multivariate hidden Markov model describes the deterioration process.•SMDP approach to formulate the control problem and to optimize the scheme.•Considerably better fault detection compared with published results. Limited by the installation of sensors and the structure of systems, only external observation information can generate an association with the internal health status of a system. In addition, modern industrial systems are often accompanied by hidden degradation processes, which present great challenges when monitoring and alerting impending failures. To address this issue, this paper proposes an adaptive monitoring scheme for predicting faults of systems with hidden degradation processes. A multivariate, continuous-time hidden Markov model with three states (hidden healthy state, hidden unhealthy state, and observable failure state) is established to describe the degradation process of the system. An expectation maximization (EM) algorithm is presented to estimate the parameters of the stochastic model. On the basis of the hidden degradation model, an adaptive Bayesian control scheme is developed for monitoring the potential risk of the system with two switchable sampling intervals. We calculate optimal decision variables of the control scheme to achieve the minimum expected average cost by a policy iteration algorithm under a semi-Markov decision process (SMDP). The performance and characteristics of the proposed scheme are demonstrated via real oil measurement data obtained from mechanical generators. A comparison case illustrates the superiority of the prediction performance of our monitoring scheme.
Limited by the installation of sensors and the structure of systems, only external observation information can generate an association with the internal health status of a system. In addition, modern industrial systems are often accompanied by hidden degradation processes, which present great challenges when monitoring and alerting impending failures. To address this issue, this paper proposes an adaptive monitoring scheme for predicting faults of systems with hidden degradation processes. A multivariate, continuous-time hidden Markov model with three states (hidden healthy state, hidden unhealthy state, and observable failure state) is established to describe the degradation process of the system. An expectation maximization (EM) algorithm is presented to estimate the parameters of the stochastic model. On the basis of the hidden degradation model, an adaptive Bayesian control scheme is developed for monitoring the potential risk of the system with two switchable sampling intervals. We calculate optimal decision variables of the control scheme to achieve the minimum expected average cost by a policy iteration algorithm under a semi-Markov decision process (SMDP). The performance and characteristics of the proposed scheme are demonstrated via real oil measurement data obtained from mechanical generators. A comparison case illustrates the superiority of the prediction performance of our monitoring scheme.
ArticleNumber 108322
Author Luo, Jun
Li, Yifan
Pu, Huayan
Duan, Chaoqun
Author_xml – sequence: 1
  givenname: Chaoqun
  surname: Duan
  fullname: Duan, Chaoqun
  email: chaoqun.duan@hotmail.com
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
– sequence: 2
  givenname: Yifan
  surname: Li
  fullname: Li, Yifan
  email: lyf781913441@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
– sequence: 3
  givenname: Huayan
  surname: Pu
  fullname: Pu, Huayan
  email: phygood_2001@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
– sequence: 4
  givenname: Jun
  surname: Luo
  fullname: Luo, Jun
  email: luojun@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
BookMark eNp9kMtuAiEUhkljk6rtC3RF0vVYYK4k3RjTW2LSjXtC4aBMHLCAJr59UbvqwhXh5P_O5ZugkfMOEHqkZEYJbZ77WYAYZ4wwlgtdydgNGtOu5UX-NCM0JrymRa6TOzSJsSeEVLxux0jMtdwlewA8eGeTD9atcVQbGAB7g2PyaiNjskput0dspN2eA8eYYIh47zQEvLFag8Ma1kFqmax3eBe8ygtBvEe3Rm4jPPy9U7R6e10tPorl1_vnYr4sVMm6VLQVMyU1HFpoDNcVp7KTkn9z2UJZs6YEI7miJeWq1oZUBOquVEpDpYmpmnKKni5t8-CfPcQker8PLk8UrMndMlGRnGKXlAo-xgBG7IIdZDgKSsTJo-jFyaM4eRQXjxnq_kHKpvOVKWQd19GXCwr58oOFIKKy4BRoG0Alob29hv8CNESSmg
CitedBy_id crossref_primary_10_1016_j_ress_2022_109008
crossref_primary_10_1016_j_ress_2025_111235
crossref_primary_10_1080_0951192X_2024_2426134
crossref_primary_10_1016_j_ress_2024_110663
crossref_primary_10_1088_1361_6501_ad0685
crossref_primary_10_1016_j_ress_2023_109498
crossref_primary_10_1016_j_ress_2023_109608
crossref_primary_10_1002_asmb_2835
Cites_doi 10.1016/j.ijpe.2016.01.007
10.1016/j.compind.2020.103295
10.1093/biomet/48.3-4.419
10.1109/TASE.2015.2487523
10.1016/j.ymssp.2019.03.023
10.1109/TMECH.2020.2995757
10.1016/j.ymssp.2015.12.011
10.1016/j.ress.2020.107042
10.1016/j.ejor.2020.11.036
10.1016/j.ymssp.2018.11.040
10.1109/TR.2019.2957965
10.1109/TIE.2017.2767550
10.1016/j.ymssp.2017.11.016
10.1002/asmb.1920
10.1109/TR.2015.2423191
10.1016/j.ress.2021.107560
10.1016/j.ymssp.2018.05.050
10.1016/j.ymssp.2018.12.008
10.1109/TII.2020.2993074
10.1002/qre.2947
10.1016/j.ejor.2020.11.041
10.1016/j.ress.2017.09.002
10.1109/TMECH.2018.2823320
10.1016/j.ress.2021.107937
10.1016/j.ress.2015.12.016
10.1016/j.ress.2021.108063
10.1016/j.oceaneng.2020.108180
10.1016/j.ress.2014.09.014
10.1016/j.cie.2020.106541
10.1109/TIM.2014.2313034
10.1080/0740817X.2016.1189632
10.1016/j.ress.2021.108074
10.1080/24725854.2019.1567957
10.1109/TR.2019.2907402
10.1016/j.ejor.2011.04.023
10.1016/j.cie.2020.106322
10.1109/TR.2015.2500681
10.1080/00224065.1998.11979850
10.1109/TII.2019.2948018
10.1016/j.ymssp.2021.107714
10.1016/j.engappai.2020.103587
10.1016/j.mechmachtheory.2019.103627
ContentType Journal Article
Copyright 2022
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2022
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2022.108322
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2022_108322
S0951832022000047
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-742f31f9e7e6f9d491a8aa9b9a7e35263efa9c1319c5df040e583ccde4d0f463
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771556500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 10:34:42 EDT 2025
Tue Nov 18 20:07:32 EST 2025
Sat Nov 29 07:03:08 EST 2025
Fri Feb 23 02:40:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault prediction
Adaptive monitoring
Prognostics and health management (PHM)
Semi-Markov decision process (SMDP)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-742f31f9e7e6f9d491a8aa9b9a7e35263efa9c1319c5df040e583ccde4d0f463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2649104040
PQPubID 2045406
ParticipantIDs proquest_journals_2649104040
crossref_primary_10_1016_j_ress_2022_108322
crossref_citationtrail_10_1016_j_ress_2022_108322
elsevier_sciencedirect_doi_10_1016_j_ress_2022_108322
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang, Wang, Hong, Jiang (bib0020) 2021; 292
Ruiz, Heydari, Sullivan, Liao, Pohl (bib0007) 2020; 52
Duan, Li, Liu (bib0016) 2020; 218
Duan, Makis, Deng (bib0035) 2019; 122
Iannacone, Sharma, Tabandeh, Gardoni (bib0015) 2022; 217
Yan, Ma, Yang, Wang, Wu (bib0019) 2020; 54
Chen, Li, Xia, Pan (bib0031) 2017; 184
Hu, Miao, Si, Pan, Zio (bib0005) 2022; 217
Ross (bib0045) 2006
Du, Duan, Wu (bib0034) 2021; 70
Tijms (bib0047) 1994
Vrignat, Avila, Duculty, Kratz (bib0030) 2015; 64
Rezamand, Kordestani, Orchard, Carriveau, Ting, Saif (bib0032) 2020; 17
Soleimani, Campean, Neagu (bib0014) 2021; 37
Kim, Makis, Jiang (bib0046) 2013; 29
Ma, Sun, Zhang, Chen (bib0002) 2019; 124
Naderkhani, Makis (bib0042) 2016; 174
Qin, Li, Cao, Chen (bib0003) 2020; 143
Duan (bib0043) 2021; 158
Afshari, Enayatollahi, Xu, Liang (bib0026) 2022; 219
Reinsel (bib0048) 1997
Le Son, Fouladirad, Barros (bib0039) 2016; 149
Zhao, Yan, Chen, Mao, Wang, Gao (bib0022) 2019; 115
Eker, Camci, Jennions (bib0013) 2015; 75
Guo, Li, Li (bib0010) 2019; 69
Deng, Guo, Zhou, Chen (bib0024) 2017; 14
Qian, Yan, Hu (bib0027) 2014; 63
Imhof (bib0049) 1961; 48
Dong, Yang, Wei, Wei, Tsui (bib0017) 2019; 16
Duan, Deng (bib0028) 2020; 25
Xiang, Qin, Zhu, Wang, Chen (bib0023) 2020; 91
Li, Xu, Li (bib0006) 2020; 145
Kong, Chen, Li, Duan, Lu, Chen (bib0025) 2019; 127
Tagaras (bib0044) 1988; 30
Yang, Zheng, Qi (bib0037) 2020; 122
Ellefsen, Æsøy, Ushakov, Zhang (bib0021) 2019; 68
An, Kim, Choi (bib0004) 2015; 133
Mejdoubi, Chaoui, Sabor, Gualous (bib0011) 2018; 65
Zhao, Chen, Gaudoin, Doyen (bib0018) 2021; 292
Khaleghei, Makis (bib0029) 2016; 48
Moradi, Growth (bib0001) 2020; 21
Liu, Zhu, Zeng (bib0036) 2018; 23
Shamstabar, Shahriari, Samimi (bib0038) 2021; 216
Hu, Baraldi, Di Maio, Zio (bib0012) 2015; 65
Han, Wang, Xie, He, Li, Wang (bib0008) 2021; 210
Zheng, Makis (bib0041) 2020; 141
Lei, Li, Guo, Li, Yan, Lin (bib0009) 2018; 104
Kim, Jiang, Makis, Lee (bib0033) 2011; 214
Shi, Zhu, Xiang, Feng (bib0040) 2020; 202
Yang (10.1016/j.ress.2022.108322_bib0037) 2020; 122
Mejdoubi (10.1016/j.ress.2022.108322_bib0011) 2018; 65
Qian (10.1016/j.ress.2022.108322_bib0027) 2014; 63
Liu (10.1016/j.ress.2022.108322_bib0036) 2018; 23
Dong (10.1016/j.ress.2022.108322_bib0017) 2019; 16
Naderkhani (10.1016/j.ress.2022.108322_bib0042) 2016; 174
Ma (10.1016/j.ress.2022.108322_bib0002) 2019; 124
Ruiz (10.1016/j.ress.2022.108322_bib0007) 2020; 52
Tagaras (10.1016/j.ress.2022.108322_bib0044) 1988; 30
Imhof (10.1016/j.ress.2022.108322_bib0049) 1961; 48
Chen (10.1016/j.ress.2022.108322_bib0031) 2017; 184
Rezamand (10.1016/j.ress.2022.108322_bib0032) 2020; 17
Iannacone (10.1016/j.ress.2022.108322_bib0015) 2022; 217
Guo (10.1016/j.ress.2022.108322_bib0010) 2019; 69
Eker (10.1016/j.ress.2022.108322_bib0013) 2015; 75
Deng (10.1016/j.ress.2022.108322_bib0024) 2017; 14
Shi (10.1016/j.ress.2022.108322_bib0040) 2020; 202
Kim (10.1016/j.ress.2022.108322_bib0046) 2013; 29
Le Son (10.1016/j.ress.2022.108322_bib0039) 2016; 149
Duan (10.1016/j.ress.2022.108322_bib0016) 2020; 218
Vrignat (10.1016/j.ress.2022.108322_bib0030) 2015; 64
Duan (10.1016/j.ress.2022.108322_bib0035) 2019; 122
Ellefsen (10.1016/j.ress.2022.108322_bib0021) 2019; 68
Tijms (10.1016/j.ress.2022.108322_bib0047) 1994
Khaleghei (10.1016/j.ress.2022.108322_bib0029) 2016; 48
Afshari (10.1016/j.ress.2022.108322_bib0026) 2022; 219
Soleimani (10.1016/j.ress.2022.108322_bib0014) 2021; 37
Hu (10.1016/j.ress.2022.108322_bib0012) 2015; 65
Kim (10.1016/j.ress.2022.108322_bib0033) 2011; 214
An (10.1016/j.ress.2022.108322_bib0004) 2015; 133
Li (10.1016/j.ress.2022.108322_bib0006) 2020; 145
Qin (10.1016/j.ress.2022.108322_bib0003) 2020; 143
Du (10.1016/j.ress.2022.108322_bib0034) 2021; 70
Hu (10.1016/j.ress.2022.108322_bib0005) 2022; 217
Reinsel (10.1016/j.ress.2022.108322_bib0048) 1997
Lei (10.1016/j.ress.2022.108322_bib0009) 2018; 104
Wang (10.1016/j.ress.2022.108322_bib0020) 2021; 292
Moradi (10.1016/j.ress.2022.108322_bib0001) 2020; 21
Duan (10.1016/j.ress.2022.108322_bib0028) 2020; 25
Zhao (10.1016/j.ress.2022.108322_bib0022) 2019; 115
Xiang (10.1016/j.ress.2022.108322_bib0023) 2020; 91
Yan (10.1016/j.ress.2022.108322_bib0019) 2020; 54
Ross (10.1016/j.ress.2022.108322_bib0045) 2006
Shamstabar (10.1016/j.ress.2022.108322_bib0038) 2021; 216
Duan (10.1016/j.ress.2022.108322_bib0043) 2021; 158
Zhao (10.1016/j.ress.2022.108322_bib0018) 2021; 292
Han (10.1016/j.ress.2022.108322_bib0008) 2021; 210
Zheng (10.1016/j.ress.2022.108322_bib0041) 2020; 141
Kong (10.1016/j.ress.2022.108322_bib0025) 2019; 127
References_xml – volume: 70
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib0034
  article-title: Replacement scheme for lubricating oil based on Bayesian control chart
  publication-title: IEEE Trans Instrum Meas
– volume: 37
  start-page: 3746
  year: 2021
  end-page: 3778
  ident: bib0014
  article-title: Diagnostics and prognostics for complex systems: a review of methods and challenges
  publication-title: Qual Reliab Eng Int
– volume: 52
  start-page: 301
  year: 2020
  end-page: 320
  ident: bib0007
  article-title: Data analysis and resource allocation in Bayesian selective accelerated reliability growth
  publication-title: IISE Trans
– volume: 104
  start-page: 799
  year: 2018
  end-page: 834
  ident: bib0009
  article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction
  publication-title: Mech Syst Signal Process
– volume: 48
  start-page: 419
  year: 1961
  end-page: 426
  ident: bib0049
  article-title: Computing the distribution of quadratic forms in normal variables
  publication-title: Biometrika
– volume: 122
  start-page: 290
  year: 2019
  end-page: 306
  ident: bib0035
  article-title: Optimal Bayesian early fault detection for CNC equipment using hidden semi-Markov process
  publication-title: Mech Syst Signal Process
– volume: 124
  start-page: 298
  year: 2019
  end-page: 312
  ident: bib0002
  article-title: Subspace-based MVE for performance degradation assessment of aero-engine bearings with multimodal features
  publication-title: Mech Syst Signal Process
– volume: 127
  start-page: 573
  year: 2019
  end-page: 594
  ident: bib0025
  article-title: Relevance vector machine for tool wear prediction
  publication-title: Mech Syst Signal Process
– volume: 158
  start-page: 107
  year: 2021
  end-page: 714
  ident: bib0043
  article-title: Dynamic Bayesian monitoring and detection for partially observable machines under multivariate observations
  publication-title: Mech Syst Signal Process
– volume: 218
  year: 2020
  ident: bib0016
  article-title: Condition-based maintenance for ship pumps subject to competing risks under stochastic maintenance quality
  publication-title: Ocean Eng
– volume: 292
  start-page: 1200
  year: 2021
  end-page: 1208
  ident: bib0020
  article-title: Degradation data analysis based on gamma process with random effects
  publication-title: Eur J Op Res
– volume: 217
  year: 2022
  ident: bib0005
  article-title: Prognostics and health management: a review from the perspectives of design, development and decision
  publication-title: Reliab Eng Syst Saf
– volume: 17
  start-page: 1742
  year: 2020
  end-page: 1752
  ident: bib0032
  article-title: Improved remaining useful life estimation of wind turbine drivetrain bearings under varying operating conditions
  publication-title: IEEE Trans Ind Inf
– volume: 68
  start-page: 720
  year: 2019
  end-page: 740
  ident: bib0021
  article-title: A comprehensive survey of prognostics and health management based on deep learning for autonomous ships
  publication-title: IEEE Trans Reliab
– volume: 214
  start-page: 331
  year: 2011
  end-page: 339
  ident: bib0033
  article-title: Optimal Bayesian monitoring-alert scheme for a partially observable system subject to random failure
  publication-title: Eur J Op Res
– volume: 145
  year: 2020
  ident: bib0006
  article-title: A joint modeling approach for reliability growth planning considering product life cycle cost performance
  publication-title: Comput Ind Eng
– volume: 122
  start-page: 103
  year: 2020
  end-page: 295
  ident: bib0037
  article-title: A method for degradation prediction based on hidden semi-Markov models with mixture of Kernels
  publication-title: Comput Ind
– volume: 75
  start-page: 395
  year: 2015
  end-page: 412
  ident: bib0013
  article-title: Physics-based prognostic modelling of filter clogging phenomena
  publication-title: Mech Syst Signal Process
– volume: 91
  year: 2020
  ident: bib0023
  article-title: Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction
  publication-title: Eng Appl Artif Intell
– year: 2006
  ident: bib0045
  article-title: Introduction to probability models
– volume: 21
  start-page: 107
  year: 2020
  end-page: 194
  ident: bib0001
  article-title: Modernizing risk assessment: a systematic integration of PRA and PHM techniques
  publication-title: Reliab Eng Syst Saf
– volume: 210
  year: 2021
  ident: bib0008
  article-title: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence
  publication-title: Reliab Eng Syst Saf
– volume: 174
  start-page: 29
  year: 2016
  end-page: 42
  ident: bib0042
  article-title: Economic design of multivariate Bayesian control chart with two sampling intervals
  publication-title: Int J Prod Econ
– volume: 133
  start-page: 223
  year: 2015
  end-page: 236
  ident: bib0004
  article-title: Practical options for selecting data-driven or physics-based prognostics algorithms with reviews
  publication-title: Reliab Eng Syst Saf
– volume: 16
  start-page: 4736
  year: 2019
  end-page: 4746
  ident: bib0017
  article-title: Data-driven battery health prognosis using adaptive brownian motion model
  publication-title: IEEE Trans Ind Inf
– volume: 54
  start-page: 107
  year: 2020
  end-page: 138
  ident: bib0019
  article-title: A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis
  publication-title: Reliab Eng Syst Saf
– volume: 143
  year: 2020
  ident: bib0003
  article-title: A fault dynamic model of high-speed angular contact ball bearings
  publication-title: Mech Mach Theory
– volume: 69
  start-page: 1110
  year: 2019
  end-page: 1129
  ident: bib0010
  article-title: A review on prognostics methods for engineering systems
  publication-title: IEEE Trans Reliab
– volume: 65
  start-page: 718
  year: 2015
  end-page: 735
  ident: bib0012
  article-title: Online performance assessment method for a model-based prognostic approach
  publication-title: IEEE Trans Reliab
– volume: 292
  start-page: 1099
  year: 2021
  end-page: 1114
  ident: bib0018
  article-title: Accelerated degradation tests with inspection effects
  publication-title: Eur J Op Res
– volume: 149
  start-page: 76
  year: 2016
  end-page: 87
  ident: bib0039
  article-title: Remaining useful lifetime estimation and noisy gamma deterioration process
  publication-title: Reliab Eng Syst Saf
– volume: 30
  start-page: 212
  year: 1988
  end-page: 231
  ident: bib0044
  article-title: A survey of recent developments in the design of adaptive control charts
  publication-title: J Qual Technol
– volume: 202
  year: 2020
  ident: bib0040
  article-title: Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement
  publication-title: Reliab Eng Syst Saf
– volume: 29
  start-page: 279
  year: 2013
  end-page: 294
  ident: bib0046
  article-title: Parameter estimation for partially observable systems subject to random failure
  publication-title: Appl Stoch Models Bus Ind
– year: 1994
  ident: bib0047
  article-title: Stochastic models: an algorithmic approach (Vol. 303)
– volume: 219
  year: 2022
  ident: bib0026
  article-title: Machine learning-based methods in structural reliability analysis: a review
  publication-title: Reliab Eng Syst Saf
– volume: 141
  start-page: 106
  year: 2020
  end-page: 322
  ident: bib0041
  article-title: Optimal condition-based maintenance with general repair and two dependent failure modes
  publication-title: Comput Ind Eng
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: bib0022
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech Syst Signal Process
– volume: 65
  start-page: 4357
  year: 2018
  end-page: 4367
  ident: bib0011
  article-title: Remaining useful life prognosis of supercapacitors under temperature and voltage aging conditions
  publication-title: IEEE Trans Ind Electron
– volume: 48
  start-page: 1058
  year: 2016
  end-page: 1071
  ident: bib0029
  article-title: Reliability estimation of a system subject to condition monitoring with two dependent failure modes
  publication-title: IISE Trans
– volume: 63
  start-page: 2599
  year: 2014
  end-page: 2610
  ident: bib0027
  article-title: Bearing degradation evaluation using recurrence quantification analysis and Kalman filter
  publication-title: IEEE Trans Instrum Meas
– volume: 25
  start-page: 2264
  year: 2020
  end-page: 2275
  ident: bib0028
  article-title: Prognostics of health measures for machines with aging and dynamic cumulative damage
  publication-title: IEEE/ASME Trans Mechatron
– volume: 216
  year: 2021
  ident: bib0038
  article-title: Reliability monitoring of systems with cumulative shock-based deterioration process
  publication-title: Reliab Eng Syst Saf
– volume: 184
  start-page: 123
  year: 2017
  end-page: 136
  ident: bib0031
  article-title: Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy
  publication-title: Reliab Eng Syst Saf
– volume: 23
  start-page: 1456
  year: 2018
  end-page: 1466
  ident: bib0036
  article-title: Diagnosis and prognosis of degradation process via hidden semi-Markov model
  publication-title: IEEE/ASME Trans Mechatron
– volume: 14
  start-page: 1053
  year: 2017
  end-page: 1063
  ident: bib0024
  article-title: Sensor multi fault diagnosis with improved support vector machines
  publication-title: IEEE Trans Autom Sci Eng
– year: 1997
  ident: bib0048
  article-title: Elements of multivariate time series analysis
– volume: 217
  year: 2022
  ident: bib0015
  article-title: Modeling time-varying reliability and resilience of deteriorating infrastructure
  publication-title: Reliab Eng Syst Saf
– volume: 64
  start-page: 1038
  year: 2015
  end-page: 1048
  ident: bib0030
  article-title: Failure event prediction using hidden Markov model approaches
  publication-title: IEEE Trans Reliab
– volume: 174
  start-page: 29
  year: 2016
  ident: 10.1016/j.ress.2022.108322_bib0042
  article-title: Economic design of multivariate Bayesian control chart with two sampling intervals
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2016.01.007
– volume: 122
  start-page: 103
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0037
  article-title: A method for degradation prediction based on hidden semi-Markov models with mixture of Kernels
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2020.103295
– volume: 48
  start-page: 419
  issue: 3–4
  year: 1961
  ident: 10.1016/j.ress.2022.108322_bib0049
  article-title: Computing the distribution of quadratic forms in normal variables
  publication-title: Biometrika
  doi: 10.1093/biomet/48.3-4.419
– volume: 14
  start-page: 1053
  issue: 2
  year: 2017
  ident: 10.1016/j.ress.2022.108322_bib0024
  article-title: Sensor multi fault diagnosis with improved support vector machines
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2015.2487523
– volume: 127
  start-page: 573
  year: 2019
  ident: 10.1016/j.ress.2022.108322_bib0025
  article-title: Relevance vector machine for tool wear prediction
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.03.023
– volume: 25
  start-page: 2264
  issue: 5
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0028
  article-title: Prognostics of health measures for machines with aging and dynamic cumulative damage
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2020.2995757
– volume: 75
  start-page: 395
  year: 2015
  ident: 10.1016/j.ress.2022.108322_bib0013
  article-title: Physics-based prognostic modelling of filter clogging phenomena
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.12.011
– volume: 202
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0040
  article-title: Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107042
– volume: 292
  start-page: 1200
  issue: 3
  year: 2021
  ident: 10.1016/j.ress.2022.108322_bib0020
  article-title: Degradation data analysis based on gamma process with random effects
  publication-title: Eur J Op Res
  doi: 10.1016/j.ejor.2020.11.036
– volume: 122
  start-page: 290
  year: 2019
  ident: 10.1016/j.ress.2022.108322_bib0035
  article-title: Optimal Bayesian early fault detection for CNC equipment using hidden semi-Markov process
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.11.040
– volume: 69
  start-page: 1110
  issue: 3
  year: 2019
  ident: 10.1016/j.ress.2022.108322_bib0010
  article-title: A review on prognostics methods for engineering systems
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2019.2957965
– volume: 65
  start-page: 4357
  year: 2018
  ident: 10.1016/j.ress.2022.108322_bib0011
  article-title: Remaining useful life prognosis of supercapacitors under temperature and voltage aging conditions
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2767550
– volume: 104
  start-page: 799
  year: 2018
  ident: 10.1016/j.ress.2022.108322_bib0009
  article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 29
  start-page: 279
  issue: 3
  year: 2013
  ident: 10.1016/j.ress.2022.108322_bib0046
  article-title: Parameter estimation for partially observable systems subject to random failure
  publication-title: Appl Stoch Models Bus Ind
  doi: 10.1002/asmb.1920
– volume: 64
  start-page: 1038
  issue: 3
  year: 2015
  ident: 10.1016/j.ress.2022.108322_bib0030
  article-title: Failure event prediction using hidden Markov model approaches
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2015.2423191
– volume: 210
  year: 2021
  ident: 10.1016/j.ress.2022.108322_bib0008
  article-title: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107560
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.ress.2022.108322_bib0022
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 124
  start-page: 298
  year: 2019
  ident: 10.1016/j.ress.2022.108322_bib0002
  article-title: Subspace-based MVE for performance degradation assessment of aero-engine bearings with multimodal features
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.12.008
– volume: 17
  start-page: 1742
  issue: 3
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0032
  article-title: Improved remaining useful life estimation of wind turbine drivetrain bearings under varying operating conditions
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.2993074
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2022.108322_bib0034
  article-title: Replacement scheme for lubricating oil based on Bayesian control chart
  publication-title: IEEE Trans Instrum Meas
– volume: 37
  start-page: 3746
  issue: 8
  year: 2021
  ident: 10.1016/j.ress.2022.108322_bib0014
  article-title: Diagnostics and prognostics for complex systems: a review of methods and challenges
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2947
– volume: 292
  start-page: 1099
  issue: 3
  year: 2021
  ident: 10.1016/j.ress.2022.108322_bib0018
  article-title: Accelerated degradation tests with inspection effects
  publication-title: Eur J Op Res
  doi: 10.1016/j.ejor.2020.11.041
– year: 1994
  ident: 10.1016/j.ress.2022.108322_bib0047
– volume: 184
  start-page: 123
  year: 2017
  ident: 10.1016/j.ress.2022.108322_bib0031
  article-title: Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.09.002
– volume: 23
  start-page: 1456
  issue: 3
  year: 2018
  ident: 10.1016/j.ress.2022.108322_bib0036
  article-title: Diagnosis and prognosis of degradation process via hidden semi-Markov model
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2018.2823320
– volume: 216
  year: 2021
  ident: 10.1016/j.ress.2022.108322_bib0038
  article-title: Reliability monitoring of systems with cumulative shock-based deterioration process
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107937
– volume: 149
  start-page: 76
  year: 2016
  ident: 10.1016/j.ress.2022.108322_bib0039
  article-title: Remaining useful lifetime estimation and noisy gamma deterioration process
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.12.016
– volume: 217
  year: 2022
  ident: 10.1016/j.ress.2022.108322_bib0005
  article-title: Prognostics and health management: a review from the perspectives of design, development and decision
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108063
– volume: 218
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0016
  article-title: Condition-based maintenance for ship pumps subject to competing risks under stochastic maintenance quality
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2020.108180
– volume: 133
  start-page: 223
  year: 2015
  ident: 10.1016/j.ress.2022.108322_bib0004
  article-title: Practical options for selecting data-driven or physics-based prognostics algorithms with reviews
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.09.014
– volume: 54
  start-page: 107
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0019
  article-title: A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis
  publication-title: Reliab Eng Syst Saf
– volume: 219
  year: 2022
  ident: 10.1016/j.ress.2022.108322_bib0026
  article-title: Machine learning-based methods in structural reliability analysis: a review
  publication-title: Reliab Eng Syst Saf
– volume: 145
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0006
  article-title: A joint modeling approach for reliability growth planning considering product life cycle cost performance
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.106541
– year: 1997
  ident: 10.1016/j.ress.2022.108322_bib0048
– volume: 63
  start-page: 2599
  issue: 11
  year: 2014
  ident: 10.1016/j.ress.2022.108322_bib0027
  article-title: Bearing degradation evaluation using recurrence quantification analysis and Kalman filter
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2014.2313034
– volume: 48
  start-page: 1058
  issue: 11
  year: 2016
  ident: 10.1016/j.ress.2022.108322_bib0029
  article-title: Reliability estimation of a system subject to condition monitoring with two dependent failure modes
  publication-title: IISE Trans
  doi: 10.1080/0740817X.2016.1189632
– volume: 217
  year: 2022
  ident: 10.1016/j.ress.2022.108322_bib0015
  article-title: Modeling time-varying reliability and resilience of deteriorating infrastructure
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108074
– volume: 52
  start-page: 301
  issue: 3
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0007
  article-title: Data analysis and resource allocation in Bayesian selective accelerated reliability growth
  publication-title: IISE Trans
  doi: 10.1080/24725854.2019.1567957
– year: 2006
  ident: 10.1016/j.ress.2022.108322_bib0045
– volume: 68
  start-page: 720
  issue: 2
  year: 2019
  ident: 10.1016/j.ress.2022.108322_bib0021
  article-title: A comprehensive survey of prognostics and health management based on deep learning for autonomous ships
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2019.2907402
– volume: 214
  start-page: 331
  issue: 2
  year: 2011
  ident: 10.1016/j.ress.2022.108322_bib0033
  article-title: Optimal Bayesian monitoring-alert scheme for a partially observable system subject to random failure
  publication-title: Eur J Op Res
  doi: 10.1016/j.ejor.2011.04.023
– volume: 141
  start-page: 106
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0041
  article-title: Optimal condition-based maintenance with general repair and two dependent failure modes
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.106322
– volume: 65
  start-page: 718
  issue: 2
  year: 2015
  ident: 10.1016/j.ress.2022.108322_bib0012
  article-title: Online performance assessment method for a model-based prognostic approach
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2015.2500681
– volume: 30
  start-page: 212
  issue: 3
  year: 1988
  ident: 10.1016/j.ress.2022.108322_bib0044
  article-title: A survey of recent developments in the design of adaptive control charts
  publication-title: J Qual Technol
  doi: 10.1080/00224065.1998.11979850
– volume: 21
  start-page: 107
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0001
  article-title: Modernizing risk assessment: a systematic integration of PRA and PHM techniques
  publication-title: Reliab Eng Syst Saf
– volume: 16
  start-page: 4736
  issue: 7
  year: 2019
  ident: 10.1016/j.ress.2022.108322_bib0017
  article-title: Data-driven battery health prognosis using adaptive brownian motion model
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2019.2948018
– volume: 158
  start-page: 107
  year: 2021
  ident: 10.1016/j.ress.2022.108322_bib0043
  article-title: Dynamic Bayesian monitoring and detection for partially observable machines under multivariate observations
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.107714
– volume: 91
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0023
  article-title: Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103587
– volume: 143
  year: 2020
  ident: 10.1016/j.ress.2022.108322_bib0003
  article-title: A fault dynamic model of high-speed angular contact ball bearings
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2019.103627
SSID ssj0004957
Score 2.4084117
Snippet •Development of an adaptive monitoring scheme for fault detection.•Multivariate hidden Markov model describes the deterioration process.•SMDP approach to...
Limited by the installation of sensors and the structure of systems, only external observation information can generate an association with the internal health...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108322
SubjectTerms Adaptive control
Adaptive monitoring
Algorithms
Bayesian analysis
Degradation
Fault prediction
Iterative algorithms
Iterative methods
Markov chains
Markov processes
Monitoring
Optimization
Prognostics and health management (PHM)
Reliability engineering
Semi-Markov decision process (SMDP)
Stochastic models
Title Adaptive monitoring scheme of stochastically failing systems under hidden degradation processes
URI https://dx.doi.org/10.1016/j.ress.2022.108322
https://www.proquest.com/docview/2649104040
Volume 221
WOSCitedRecordID wos000771556500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE_twoJ84BZllYcTx8cKLQIOq5XooZwiO7HZrrrZqo9V--8Ze-ymFLECJC5RldZx6vlsz4xnviHkvbGMIVKrOOFKxYzlKq4EY2CltAXsxpynmXLFJvjFRTWZiMvBYBNyYe5mvOuqzUbM_6uo4R4I26bO_oW4dw-FG_AZhA5XEDtc_0jwo1bOXTzQjZuuLr4OTFh947wDoOs1V3LpPNizbWTk1OWjI6Hz0lXFXURXllfERsl-X0isuRTNMaHARxwGRm89myLP9zbSPbGhgxM-MVpK45lGUF2W4ZAfNqQ-GsiFFHybmh6ql2u3Ka7ldi9oaI3HRL6h91WAmbuLDEQHWkii6SOW0BOZxrCw4PGMxnW44sIRZ-8v1BnmUv-y6KP_4frM-ifObLc2cDLHdOcDMu2vtjPbV5Y564g_IEcZL0Q1JEejz-eTL31OrUCW2PByPuEKYwMPe_qdUnOwvTudZfyUPPHGBh0hSJ6Rge6ek8d7FJQvSB3gQnu4UIQLvTX0Z7hQDxfq4UIdXCjChe7Bhe7g8pKMP56PP3yKfdGNuMmzahVzlpk8NUJzXRrRMpHKSkqhhOTa1lLItZGiSWHlborWwBagiypvmlazNjGszF-RYXfb6WNCs1QXmUhUyhqwG4xSeZIYXSptKs10KU9IGgatbjwhva2LMqtD5OF1bQe6tgNd40CfkGjXZo50LPf-ugiyqL1CiYpiDdC5t91pEFztZzZ8X8JYwP9lyet_fOwb8qifFKdkuFqs9VvysLlbTZeLdx6APwBfZ6hw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+monitoring+scheme+of+stochastically+failing+systems+under+hidden+degradation+processes&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Duan%2C+Chaoqun&rft.au=Li%2C+Yifan&rft.au=Pu%2C+Huayan&rft.au=Luo%2C+Jun&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=221&rft_id=info:doi/10.1016%2Fj.ress.2022.108322&rft.externalDocID=S0951832022000047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon