Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems
[Display omitted] •Harris Hawk Optimizer (HHO) is extended to deal with dynamic optimization.•Multi-population HHO with exclusion operator is developed.•Quantum particles are utilized to balance intensification and diversification.•CEC 2009 dynamic test functions are used and extended.•Different var...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 167; s. 114202 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
01.04.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•Harris Hawk Optimizer (HHO) is extended to deal with dynamic optimization.•Multi-population HHO with exclusion operator is developed.•Quantum particles are utilized to balance intensification and diversification.•CEC 2009 dynamic test functions are used and extended.•Different variants of multi-population HHO are tested.•Improvements over the canonical HHO are achieved.
Dynamic optimization problems (DOPs) have been a subject of considerable research interest mainly due to their widespread application potential. In the literature, various mechanisms have been reported to cope with the challenges of DOPs. The proposed mechanisms have usually been adopted by well-known population-based optimization algorithms, such as genetic algorithms or particle swarm optimization. Although new generation swarm-intelligence algorithms are continuously being developed and have much to offer in DOPs, their performance is usually tested on stationary optimization problems. In this study, a recently introduced optimization algorithm, Harris Hawk Optimizer, is redesigned as a multi-population based algorithm to deal with possible multiple optima. Thus, the proposed modification is allowed to search diverse parts of the search space more efficiently, particularly in multimodal environments. Next, it is further enhanced by using quantum particles to tackle with diversification and intensification challenges in DOPs. As shown in the present work, this mechanism can maintain population diversity and intensification depending on a user-supplied parameter. Finally, based on different algorithmic components, four different variants of HHO are proposed. The performances of the developed algorithms are tested on both stationary and dynamic test problems. Dynamic test functions introduced in the IEEE Congress on Evolutionary Computation 2009 (CEC 2009) are used and further extended to test the proposed algorithms' performances. Finally, appropriate statistical analysis is conducted to demonstrate significant improvements over the existing algorithms. |
|---|---|
| AbstractList | Dynamic optimization problems (DOPs) have been a subject of considerable research interest mainly due to their widespread application potential. In the literature, various mechanisms have been reported to cope with the challenges of DOPs. The proposed mechanisms have usually been adopted by well-known population-based optimization algorithms, such as genetic algorithms or particle swarm optimization. Although new generation swarm-intelligence algorithms are continuously being developed and have much to offer in DOPs, their performance is usually tested on stationary optimization problems. In this study, a recently introduced optimization algorithm, Harris Hawk Optimizer, is redesigned as a multi-population based algorithm to deal with possible multiple optima. Thus, the proposed modification is allowed to search diverse parts of the search space more efficiently, particularly in multimodal environments. Next, it is further enhanced by using quantum particles to tackle with diversification and intensification challenges in DOPs. As shown in the present work, this mechanism can maintain population diversity and intensification depending on a user-supplied parameter. Finally, based on different algorithmic components, four different variants of HHO are proposed. The performances of the developed algorithms are tested on both stationary and dynamic test problems. Dynamic test functions introduced in the IEEE Congress on Evolutionary Computation 2009 (CEC 2009) are used and further extended to test the proposed algorithms' performances. Finally, appropriate statistical analysis is conducted to demonstrate significant improvements over the existing algorithms. [Display omitted] •Harris Hawk Optimizer (HHO) is extended to deal with dynamic optimization.•Multi-population HHO with exclusion operator is developed.•Quantum particles are utilized to balance intensification and diversification.•CEC 2009 dynamic test functions are used and extended.•Different variants of multi-population HHO are tested.•Improvements over the canonical HHO are achieved. Dynamic optimization problems (DOPs) have been a subject of considerable research interest mainly due to their widespread application potential. In the literature, various mechanisms have been reported to cope with the challenges of DOPs. The proposed mechanisms have usually been adopted by well-known population-based optimization algorithms, such as genetic algorithms or particle swarm optimization. Although new generation swarm-intelligence algorithms are continuously being developed and have much to offer in DOPs, their performance is usually tested on stationary optimization problems. In this study, a recently introduced optimization algorithm, Harris Hawk Optimizer, is redesigned as a multi-population based algorithm to deal with possible multiple optima. Thus, the proposed modification is allowed to search diverse parts of the search space more efficiently, particularly in multimodal environments. Next, it is further enhanced by using quantum particles to tackle with diversification and intensification challenges in DOPs. As shown in the present work, this mechanism can maintain population diversity and intensification depending on a user-supplied parameter. Finally, based on different algorithmic components, four different variants of HHO are proposed. The performances of the developed algorithms are tested on both stationary and dynamic test problems. Dynamic test functions introduced in the IEEE Congress on Evolutionary Computation 2009 (CEC 2009) are used and further extended to test the proposed algorithms' performances. Finally, appropriate statistical analysis is conducted to demonstrate significant improvements over the existing algorithms. |
| ArticleNumber | 114202 |
| Author | Ozsoydan, Fehmi Burcin Gölcük, İlker |
| Author_xml | – sequence: 1 givenname: İlker orcidid: 0000-0002-8430-7952 surname: Gölcük fullname: Gölcük, İlker email: ilker.golcuk@bakircay.edu.tr organization: Department of Industrial Engineering, İzmir Bakırçay University, İzmir 35665, Turkey – sequence: 2 givenname: Fehmi Burcin orcidid: 0000-0002-6368-4425 surname: Ozsoydan fullname: Ozsoydan, Fehmi Burcin email: burcin.ozsoydan@deu.edu.tr organization: Department of Industrial Engineering, Faculty of Engineering, Dokuz Eylül University, İzmir 35397, Turkey |
| BookMark | eNp9kE1LAzEURYNUsK3-AVcB11PzNZMMuJGiViiIoAtXIZPJYOp8mWQs9debcVy56OrC453cl7MAs7ZrDQCXGK0wwtn1bmX8Xq0IInGAWcwTMMeC0yTjOZ2BOcpTnjDM2RlYeL9DCHOE-By8PQ-qDUMDe-WC1bXxiWnfVatNCZuhDravDdwo56yPsf_wMPa4xsOqc7A8tKqxGnZ9sI39VsF2LexdV9Sm8efgtFK1Nxd_uQSv93cv602yfXp4XN9uE02JCAnHHNOUKiJKormgChnMc1TxihU0K3mmKWOoLCgptUCCVSJnuVGKkyLPVJHSJbia3o3Fn4PxQe66wbWxUpIUUcxJmvG4JaYt7TrvnamktuH34OCUrSVGchQpd3IUKUeRchIZUfIP7Z1tlDsch24myMSvf1njpNfWjFqtMzrIsrPH8B9zoI8j |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126503 crossref_primary_10_1002_aisy_202500172 crossref_primary_10_1016_j_eswa_2022_118571 crossref_primary_10_1016_j_matcom_2022_09_010 crossref_primary_10_1007_s00366_021_01497_2 crossref_primary_10_3390_electronics11121919 crossref_primary_10_1007_s10462_022_10235_z crossref_primary_10_3233_JIFS_210459 crossref_primary_10_1016_j_eswa_2022_117255 crossref_primary_10_1016_j_adhoc_2025_103914 crossref_primary_10_1007_s11053_021_09896_4 crossref_primary_10_1016_j_eswa_2023_119815 crossref_primary_10_1007_s10462_022_10280_8 crossref_primary_10_1007_s00366_021_01459_8 crossref_primary_10_1007_s13042_022_01656_x crossref_primary_10_1007_s00170_023_12167_6 crossref_primary_10_1007_s00521_022_07146_z crossref_primary_10_1007_s11227_023_05260_w crossref_primary_10_1016_j_knosys_2023_110274 |
| Cites_doi | 10.1016/j.knosys.2020.105586 10.1016/j.ejor.2011.08.031 10.1016/j.swevo.2011.02.002 10.1109/CEC.1999.785502 10.1016/j.ins.2011.04.028 10.1016/j.amc.2015.06.036 10.1016/j.asoc.2020.106526 10.1016/j.asoc.2011.11.027 10.1016/j.cor.2013.06.004 10.1016/j.eswa.2020.113428 10.15672/HJMS.2019.655 10.1016/j.comnet.2020.107371 10.1016/j.ins.2014.02.084 10.1016/j.eswa.2017.11.048 10.1162/evco.2008.16.1.1 10.1016/j.swevo.2020.100697 10.1016/j.physa.2011.12.004 10.1007/BFb0026605 10.1016/j.ins.2014.10.062 10.1016/j.knosys.2015.12.022 10.1016/j.advengsoft.2013.12.007 10.1109/ACCESS.2020.3010127 10.1016/j.advengsoft.2016.01.008 10.1016/j.energy.2020.117804 10.1016/j.eswa.2020.113510 10.1080/09540091.2019.1700912 10.1016/j.advengsoft.2017.07.002 10.1007/s10898-012-9864-9 10.1007/978-3-540-24653-4_50 10.1109/MHS.1995.494215 10.1016/j.future.2020.04.008 10.1016/j.asoc.2020.106620 10.1016/j.future.2019.02.028 10.1016/j.amc.2014.11.064 10.1007/s00500-020-04834-7 10.1016/j.asoc.2018.02.042 10.1007/s10489-011-0317-9 10.1016/j.swevo.2012.05.001 10.1007/s00500-008-0347-3 10.1016/j.ress.2020.106815 10.1016/j.eswa.2018.08.007 10.1016/j.asoc.2014.04.032 10.1016/j.cie.2018.01.003 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Apr 1, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Apr 1, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.114202 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_114202 S0957417420309313 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-7171353a28d2c783a0e1790f7f4b36d76c3440db32dc8084f8949eaa72b96ab53 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640531100037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Mon Nov 10 02:34:34 EST 2025 Sat Nov 29 07:09:23 EST 2025 Tue Nov 18 21:34:47 EST 2025 Fri Feb 23 02:40:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Harris Hawk Optimizer Quantum particles Global optimization Real-valued optimization Multi-population Dynamic optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-7171353a28d2c783a0e1790f7f4b36d76c3440db32dc8084f8949eaa72b96ab53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6368-4425 0000-0002-8430-7952 |
| PQID | 2503172567 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2503172567 crossref_citationtrail_10_1016_j_eswa_2020_114202 crossref_primary_10_1016_j_eswa_2020_114202 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114202 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Jiao, Chong, Huang, Hu, Wang, Heidari, Chen, Zhao (b0145) 2020; 203 Branke, J. (1999). Memory enhanced evolutionary algorithms for changing optimization problems. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Vol. 3, pp. 1875-1882). Golilarz, Mirmozaffari, Gashteroodkhani, Ali, Dolatsara, Boskabadi, Yazdi (b0115) 2020; 8 Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Nagoya, Japan. Turky, Abdullah, Dawod (b0245) 2018; 117 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0140) 2019; 97 Liu, Wu, Wu, Wang (b0175) 2015; 268 Rossi, Abderrahim, Díaz (b0225) 2008; 16 Gupta, Deep, Heidari, Moayedi, Wang (b0125) 2020; 158 Nguyen, Yang, Branke (b0210) 2012; 6 Törnqvist, Vartia, Vartia (b0240) 1985; 39 Mirjalili, Mirjalili, Lewis (b0200) 2014; 69 Rodríguez-Esparza, Zanella-Calzada, Oliva, Heidari, Zaldivar, Pérez-Cisneros, Foong (b0220) 2020; 155 Turky, Abdullah (b0250) 2014; 22 Wang, Wang, Yang (b0260) 2009; 13 Turky, Abdullah (b0255) 2014; 272 Barshandeh, Piri, Sangani (b0015) 2020 Mirjalili (b0185) 2016; 96 Fu, Yang (b0110) 2020; 197 Ayvaz, Topcuoglu, Gurgen (b0010) 2012; 37 du Plessis, Engelbrecht (b0090) 2012; 55 Baykasoğlu, Gölcük, Özsoydan (b0020) 2019; 48 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0190) 2017; 114 Hamzadayi, Topaloglu, Yelkenci Kose (b0130) 2013; 40 Blackwell, T., & Branke, J. (2004). Multi-swarm Optimization in Dynamic Environments. In (pp. 489-500). Berlin, Heidelberg: Springer Berlin Heidelberg. Xia, Gui, Zhan (b0270) 2018; 67 Blackwell, Bentley (b0050) 2002 Bhat, Venkata (b0030) 2020; 179 Hatzakis, Wallace (b0135) 2006 Aragón, Esquivel, Coello Coello (b0005) 2011; 181 Talbi (b0235) 2009; Vol. 74 Chen, Heidari, Chen, Wang, Pan, Gandomi (b0070) 2020; 111 Li, Branke, Blackwell (b0165) 2006 Kazemi Kordestani, Meybodi, Rahmani (b0150) 2020; 32 Baykasoğlu, Ozsoydan (b0025) 2018; 96 Li, Nguyen, Yang, Yang, Zeng (b0155) 2015; 296 Mosadegh, Zandieh, Ghomi (b0205) 2012; 12 Wunnava, Naik, Panda, Jena, Abraham (b0265) 2020; 95 Blackwell, Branke, Li (b0045) 2008 Derrac, García, Molina, Herrera (b0080) 2011; 1 Gölcük, Ozsoydan (b0120) 2020; 194 Lipowski, Lipowska (b0170) 2012; 391 Cao, Fan, Zhao, Yang, Muhammad, Tanveer (b0065) 2020; 57 Du, Wang, Hao, Niu, Yang (b0085) 2020; 96 Daneshyari, Yen (b0075) 2011 Salomon, R., & Eggenberger, P. (1998). Adaptation on the evolutionary time scale: A working hypothesis and basic experiments. In (pp. 251-262). Berlin, Heidelberg: Springer Berlin Heidelberg. Ozsoydan, Baykasoğlu (b0215) 2019; 115 Long, Wu, Wang (b0180) 2015; 251 Mirjalili, Lewis (b0195) 2016; 95 Li, C., Yang, S., Nguyen, T. T., Yu, E. L., Yao, X., Jin, Y., Beyer, H.-G., & Suganthan, P. N. (2008). Benchmark generator for CEC'2009 competition on dynamic optimization. In: Univ. Leicester, Leicester, U.K., Univ. Birmingham, U.K., Nanyang Technological Univ., Singapore. du Plessis, Engelbrecht (b0095) 2012; 218 Fan, Chen, Xia (b0105) 2020; 24 Blackwell (b0035) 2007 Branke (b0060) 2002; Vol. 3 Törnqvist (10.1016/j.eswa.2020.114202_b0240) 1985; 39 Mirjalili (10.1016/j.eswa.2020.114202_b0195) 2016; 95 Rossi (10.1016/j.eswa.2020.114202_b0225) 2008; 16 Fu (10.1016/j.eswa.2020.114202_b0110) 2020; 197 Kazemi Kordestani (10.1016/j.eswa.2020.114202_b0150) 2020; 32 Golilarz (10.1016/j.eswa.2020.114202_b0115) 2020; 8 Blackwell (10.1016/j.eswa.2020.114202_b0050) 2002 Baykasoğlu (10.1016/j.eswa.2020.114202_b0020) 2019; 48 Fan (10.1016/j.eswa.2020.114202_b0105) 2020; 24 Jiao (10.1016/j.eswa.2020.114202_b0145) 2020; 203 Xia (10.1016/j.eswa.2020.114202_b0270) 2018; 67 Turky (10.1016/j.eswa.2020.114202_b0250) 2014; 22 10.1016/j.eswa.2020.114202_b0100 Baykasoğlu (10.1016/j.eswa.2020.114202_b0025) 2018; 96 Mirjalili (10.1016/j.eswa.2020.114202_b0200) 2014; 69 Ozsoydan (10.1016/j.eswa.2020.114202_b0215) 2019; 115 Derrac (10.1016/j.eswa.2020.114202_b0080) 2011; 1 du Plessis (10.1016/j.eswa.2020.114202_b0095) 2012; 218 Turky (10.1016/j.eswa.2020.114202_b0255) 2014; 272 Talbi (10.1016/j.eswa.2020.114202_b0235) 2009; Vol. 74 Liu (10.1016/j.eswa.2020.114202_b0175) 2015; 268 Heidari (10.1016/j.eswa.2020.114202_b0140) 2019; 97 Hamzadayi (10.1016/j.eswa.2020.114202_b0130) 2013; 40 10.1016/j.eswa.2020.114202_b0230 Hatzakis (10.1016/j.eswa.2020.114202_b0135) 2006 Gölcük (10.1016/j.eswa.2020.114202_b0120) 2020; 194 Aragón (10.1016/j.eswa.2020.114202_b0005) 2011; 181 Branke (10.1016/j.eswa.2020.114202_b0060) 2002; Vol. 3 Daneshyari (10.1016/j.eswa.2020.114202_b0075) 2011 Wang (10.1016/j.eswa.2020.114202_b0260) 2009; 13 Ayvaz (10.1016/j.eswa.2020.114202_b0010) 2012; 37 Blackwell (10.1016/j.eswa.2020.114202_b0035) 2007 Li (10.1016/j.eswa.2020.114202_b0165) 2006 Blackwell (10.1016/j.eswa.2020.114202_b0045) 2008 10.1016/j.eswa.2020.114202_b0160 Rodríguez-Esparza (10.1016/j.eswa.2020.114202_b0220) 2020; 155 10.1016/j.eswa.2020.114202_b0040 Nguyen (10.1016/j.eswa.2020.114202_b0210) 2012; 6 Bhat (10.1016/j.eswa.2020.114202_b0030) 2020; 179 Chen (10.1016/j.eswa.2020.114202_b0070) 2020; 111 Li (10.1016/j.eswa.2020.114202_b0155) 2015; 296 Mosadegh (10.1016/j.eswa.2020.114202_b0205) 2012; 12 Mirjalili (10.1016/j.eswa.2020.114202_b0190) 2017; 114 Barshandeh (10.1016/j.eswa.2020.114202_b0015) 2020 Long (10.1016/j.eswa.2020.114202_b0180) 2015; 251 Du (10.1016/j.eswa.2020.114202_b0085) 2020; 96 Cao (10.1016/j.eswa.2020.114202_b0065) 2020; 57 Lipowski (10.1016/j.eswa.2020.114202_b0170) 2012; 391 Gupta (10.1016/j.eswa.2020.114202_b0125) 2020; 158 Wunnava (10.1016/j.eswa.2020.114202_b0265) 2020; 95 Turky (10.1016/j.eswa.2020.114202_b0245) 2018; 117 du Plessis (10.1016/j.eswa.2020.114202_b0090) 2012; 55 Mirjalili (10.1016/j.eswa.2020.114202_b0185) 2016; 96 10.1016/j.eswa.2020.114202_b0055 |
| References_xml | – volume: 96 year: 2020 ident: b0085 article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting publication-title: Applied Soft Computing – start-page: 29 year: 2007 end-page: 49 ident: b0035 article-title: Particle Swarm Optimization in Dynamic Environments publication-title: Evolutionary Computation in Dynamic and Uncertain Environments – year: 2020 ident: b0015 article-title: HMPA: An innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems publication-title: Engineering with Computers – reference: Salomon, R., & Eggenberger, P. (1998). Adaptation on the evolutionary time scale: A working hypothesis and basic experiments. In (pp. 251-262). Berlin, Heidelberg: Springer Berlin Heidelberg. – reference: Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Nagoya, Japan. – volume: 67 start-page: 126 year: 2018 end-page: 140 ident: b0270 article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting publication-title: Applied Soft Computing – volume: 272 start-page: 84 year: 2014 end-page: 95 ident: b0255 article-title: A multi-population harmony search algorithm with external archive for dynamic optimization problems publication-title: Information Sciences – reference: Blackwell, T., & Branke, J. (2004). Multi-swarm Optimization in Dynamic Environments. In (pp. 489-500). Berlin, Heidelberg: Springer Berlin Heidelberg. – volume: 181 start-page: 3614 year: 2011 end-page: 3637 ident: b0005 article-title: A T-cell algorithm for solving dynamic optimization problems publication-title: Information Sciences – volume: 296 start-page: 95 year: 2015 end-page: 118 ident: b0155 article-title: Multi-population methods in unconstrained continuous dynamic environments: The challenges publication-title: Information Sciences – reference: Branke, J. (1999). Memory enhanced evolutionary algorithms for changing optimization problems. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Vol. 3, pp. 1875-1882). – start-page: 509 year: 2011 end-page: 516 ident: b0075 article-title: Dynamic optimization using cultural based PSO publication-title: 2011 IEEE Congress of Evolutionary Computation (CEC) – volume: 117 start-page: 19 year: 2018 end-page: 28 ident: b0245 article-title: A dual-population multi operators harmony search algorithm for dynamic optimization problems publication-title: Computers & Industrial Engineering – volume: 194 start-page: 105586 year: 2020 ident: b0120 article-title: Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary domains publication-title: Knowledge-Based Systems – volume: 268 start-page: 246 year: 2015 end-page: 269 ident: b0175 article-title: A novel differential search algorithm and applications for structure design publication-title: Applied Mathematics and Computation – start-page: 51 year: 2006 end-page: 58 ident: b0165 publication-title: Particle swarm with speciation and adaptation in a dynamic environment – volume: 197 start-page: 106815 year: 2020 ident: b0110 article-title: Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks publication-title: Reliability Engineering & System Safety – volume: 179 start-page: 107371 year: 2020 ident: b0030 article-title: An optimization based localization with area minimization for heterogeneous wireless sensor networks in anisotropic fields publication-title: Computer Networks – volume: 55 start-page: 73 year: 2012 end-page: 99 ident: b0090 article-title: Differential evolution for dynamic environments with unknown numbers of optima publication-title: Journal of Global Optimization – volume: 155 start-page: 113428 year: 2020 ident: b0220 article-title: An efficient Harris hawks-inspired image segmentation method publication-title: Expert Systems with Applications – volume: 96 start-page: 157 year: 2018 end-page: 174 ident: b0025 article-title: Dynamic optimization in binary search spaces via weighted superposition attraction algorithm publication-title: Expert Systems with Applications – volume: Vol. 3 year: 2002 ident: b0060 publication-title: Evolutionary optimization in dynamic environments – volume: 218 start-page: 7 year: 2012 end-page: 20 ident: b0095 article-title: Using Competitive Population Evaluation in a differential evolution algorithm for dynamic environments publication-title: European Journal of Operational Research – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b0140 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems – volume: 16 start-page: 1 year: 2008 end-page: 30 ident: b0225 article-title: Tracking Moving Optima Using Kalman-Based Predictions publication-title: Evolutionary Computation – volume: 37 start-page: 130 year: 2012 end-page: 144 ident: b0010 article-title: Performance evaluation of evolutionary heuristics in dynamic environments publication-title: Applied Intelligence – volume: 203 start-page: 117804 year: 2020 ident: b0145 article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models publication-title: Energy – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0195 article-title: The Whale Optimization Algorithm publication-title: Advances in Engineering Software – volume: 24 start-page: 14825 year: 2020 end-page: 14843 ident: b0105 article-title: A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems publication-title: Soft Computing – volume: 48 start-page: 859 year: 2019 end-page: 882 ident: b0020 article-title: Improving fuzzy c-means clustering via quantum-enhanced weighted superposition attraction algorithm publication-title: Hacettepe Journal of Mathematics and Statistics – volume: 13 start-page: 763 year: 2009 end-page: 780 ident: b0260 article-title: A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems publication-title: Soft Computing – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b0190 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0200 article-title: Grey Wolf Optimizer publication-title: Advances in Engineering Software – volume: 57 start-page: 100697 year: 2020 ident: b0065 article-title: Quantum-enhanced multiobjective large-scale optimization via parallelism publication-title: Swarm and Evolutionary Computation – volume: 12 start-page: 1359 year: 2012 end-page: 1370 ident: b0205 article-title: Simultaneous solving of balancing and sequencing problems with station-dependent assembly times for mixed-model assembly lines publication-title: Applied Soft Computing – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b0080 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation – volume: 251 start-page: 284 year: 2015 end-page: 299 ident: b0180 article-title: A system of nonsmooth equations solver based upon subgradient method publication-title: Applied Mathematics and Computation – volume: 111 start-page: 175 year: 2020 end-page: 198 ident: b0070 article-title: Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies publication-title: Future Generation Computer Systems – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b0185 article-title: SCA: A Sine Cosine Algorithm for solving optimization problems publication-title: Knowledge-Based Systems – volume: 22 start-page: 474 year: 2014 end-page: 482 ident: b0250 article-title: A multi-population electromagnetic algorithm for dynamic optimisation problems publication-title: Applied Soft Computing – volume: 158 start-page: 113510 year: 2020 ident: b0125 article-title: Opposition-based learning Harris hawks optimization with advanced transition rules: Principles and analysis publication-title: Expert Systems with Applications – volume: 8 start-page: 133076 year: 2020 end-page: 133085 ident: b0115 article-title: Optimized wavelet-based satellite image de-noising with multi-population differential evolution-assisted Harris Hawks optimization algorithm publication-title: IEEE Access – volume: 6 start-page: 1 year: 2012 end-page: 24 ident: b0210 article-title: Evolutionary dynamic optimization: A survey of the state of the art publication-title: Swarm and Evolutionary Computation – reference: Li, C., Yang, S., Nguyen, T. T., Yu, E. L., Yao, X., Jin, Y., Beyer, H.-G., & Suganthan, P. N. (2008). Benchmark generator for CEC'2009 competition on dynamic optimization. In: Univ. Leicester, Leicester, U.K., Univ. Birmingham, U.K., Nanyang Technological Univ., Singapore. – volume: 115 start-page: 189 year: 2019 end-page: 199 ident: b0215 article-title: Quantum firefly swarms for multimodal dynamic optimization problems publication-title: Expert Systems with Applications – volume: 391 start-page: 2193 year: 2012 end-page: 2196 ident: b0170 article-title: Roulette-wheel selection via stochastic acceptance publication-title: Physica A: Statistical Mechanics and its Applications – start-page: 193 year: 2008 end-page: 217 ident: b0045 article-title: Particle Swarms for Dynamic Optimization Problems publication-title: Swarm Intelligence: Introduction and Applications – start-page: 19 year: 2002 end-page: 26 ident: b0050 publication-title: Dynamic search with charged swarms – volume: 40 start-page: 2893 year: 2013 end-page: 2905 ident: b0130 article-title: Nested simulated annealing approach to periodic routing problem of a retail distribution system publication-title: Computers & Operations Research – volume: 39 start-page: 43 year: 1985 end-page: 46 ident: b0240 article-title: How Should Relative Changes be Measured? publication-title: The American Statistician – volume: 95 start-page: 106526 year: 2020 ident: b0265 article-title: An adaptive Harris hawks optimization technique for two dimensional grey gradient based multilevel image thresholding publication-title: Applied Soft Computing – volume: Vol. 74 year: 2009 ident: b0235 publication-title: Metaheuristics: from design to implementation – volume: 32 start-page: 239 year: 2020 end-page: 263 ident: b0150 article-title: A note on the exclusion operator in multi-swarm PSO algorithms for dynamic environments publication-title: Connection Science – start-page: 1201 year: 2006 end-page: 1208 ident: b0135 article-title: Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach publication-title: Proceedings of the 8th annual conference on Genetic and evolutionary computation – start-page: 19 year: 2002 ident: 10.1016/j.eswa.2020.114202_b0050 – volume: 194 start-page: 105586 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0120 article-title: Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary domains publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.105586 – volume: 218 start-page: 7 issue: 1 year: 2012 ident: 10.1016/j.eswa.2020.114202_b0095 article-title: Using Competitive Population Evaluation in a differential evolution algorithm for dynamic environments publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2011.08.031 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.eswa.2020.114202_b0080 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – start-page: 1201 year: 2006 ident: 10.1016/j.eswa.2020.114202_b0135 article-title: Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach – ident: 10.1016/j.eswa.2020.114202_b0055 doi: 10.1109/CEC.1999.785502 – ident: 10.1016/j.eswa.2020.114202_b0160 – volume: 181 start-page: 3614 issue: 17 year: 2011 ident: 10.1016/j.eswa.2020.114202_b0005 article-title: A T-cell algorithm for solving dynamic optimization problems publication-title: Information Sciences doi: 10.1016/j.ins.2011.04.028 – volume: 268 start-page: 246 year: 2015 ident: 10.1016/j.eswa.2020.114202_b0175 article-title: A novel differential search algorithm and applications for structure design publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2015.06.036 – volume: 95 start-page: 106526 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0265 article-title: An adaptive Harris hawks optimization technique for two dimensional grey gradient based multilevel image thresholding publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106526 – volume: 12 start-page: 1359 issue: 4 year: 2012 ident: 10.1016/j.eswa.2020.114202_b0205 article-title: Simultaneous solving of balancing and sequencing problems with station-dependent assembly times for mixed-model assembly lines publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2011.11.027 – volume: 40 start-page: 2893 issue: 12 year: 2013 ident: 10.1016/j.eswa.2020.114202_b0130 article-title: Nested simulated annealing approach to periodic routing problem of a retail distribution system publication-title: Computers & Operations Research doi: 10.1016/j.cor.2013.06.004 – volume: 155 start-page: 113428 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0220 article-title: An efficient Harris hawks-inspired image segmentation method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113428 – volume: 48 start-page: 859 year: 2019 ident: 10.1016/j.eswa.2020.114202_b0020 article-title: Improving fuzzy c-means clustering via quantum-enhanced weighted superposition attraction algorithm publication-title: Hacettepe Journal of Mathematics and Statistics doi: 10.15672/HJMS.2019.655 – volume: 179 start-page: 107371 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0030 article-title: An optimization based localization with area minimization for heterogeneous wireless sensor networks in anisotropic fields publication-title: Computer Networks doi: 10.1016/j.comnet.2020.107371 – volume: 272 start-page: 84 year: 2014 ident: 10.1016/j.eswa.2020.114202_b0255 article-title: A multi-population harmony search algorithm with external archive for dynamic optimization problems publication-title: Information Sciences doi: 10.1016/j.ins.2014.02.084 – start-page: 509 year: 2011 ident: 10.1016/j.eswa.2020.114202_b0075 article-title: Dynamic optimization using cultural based PSO – volume: 96 start-page: 157 year: 2018 ident: 10.1016/j.eswa.2020.114202_b0025 article-title: Dynamic optimization in binary search spaces via weighted superposition attraction algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.11.048 – volume: 16 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.eswa.2020.114202_b0225 article-title: Tracking Moving Optima Using Kalman-Based Predictions publication-title: Evolutionary Computation doi: 10.1162/evco.2008.16.1.1 – volume: 57 start-page: 100697 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0065 article-title: Quantum-enhanced multiobjective large-scale optimization via parallelism publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2020.100697 – volume: 391 start-page: 2193 issue: 6 year: 2012 ident: 10.1016/j.eswa.2020.114202_b0170 article-title: Roulette-wheel selection via stochastic acceptance publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2011.12.004 – volume: Vol. 74 year: 2009 ident: 10.1016/j.eswa.2020.114202_b0235 – ident: 10.1016/j.eswa.2020.114202_b0230 doi: 10.1007/BFb0026605 – volume: Vol. 3 year: 2002 ident: 10.1016/j.eswa.2020.114202_b0060 – volume: 296 start-page: 95 year: 2015 ident: 10.1016/j.eswa.2020.114202_b0155 article-title: Multi-population methods in unconstrained continuous dynamic environments: The challenges publication-title: Information Sciences doi: 10.1016/j.ins.2014.10.062 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.eswa.2020.114202_b0185 article-title: SCA: A Sine Cosine Algorithm for solving optimization problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.12.022 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2020.114202_b0200 article-title: Grey Wolf Optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 8 start-page: 133076 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0115 article-title: Optimized wavelet-based satellite image de-noising with multi-population differential evolution-assisted Harris Hawks optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010127 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2020.114202_b0195 article-title: The Whale Optimization Algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 203 start-page: 117804 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0145 article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models publication-title: Energy doi: 10.1016/j.energy.2020.117804 – volume: 158 start-page: 113510 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0125 article-title: Opposition-based learning Harris hawks optimization with advanced transition rules: Principles and analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113510 – year: 2020 ident: 10.1016/j.eswa.2020.114202_b0015 article-title: HMPA: An innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems publication-title: Engineering with Computers – volume: 32 start-page: 239 issue: 3 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0150 article-title: A note on the exclusion operator in multi-swarm PSO algorithms for dynamic environments publication-title: Connection Science doi: 10.1080/09540091.2019.1700912 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.eswa.2020.114202_b0190 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – start-page: 29 year: 2007 ident: 10.1016/j.eswa.2020.114202_b0035 article-title: Particle Swarm Optimization in Dynamic Environments – volume: 55 start-page: 73 issue: 1 year: 2012 ident: 10.1016/j.eswa.2020.114202_b0090 article-title: Differential evolution for dynamic environments with unknown numbers of optima publication-title: Journal of Global Optimization doi: 10.1007/s10898-012-9864-9 – ident: 10.1016/j.eswa.2020.114202_b0040 doi: 10.1007/978-3-540-24653-4_50 – volume: 39 start-page: 43 issue: 1 year: 1985 ident: 10.1016/j.eswa.2020.114202_b0240 article-title: How Should Relative Changes be Measured? publication-title: The American Statistician – ident: 10.1016/j.eswa.2020.114202_b0100 doi: 10.1109/MHS.1995.494215 – volume: 111 start-page: 175 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0070 article-title: Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2020.04.008 – start-page: 51 year: 2006 ident: 10.1016/j.eswa.2020.114202_b0165 – volume: 96 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0085 article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106620 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.eswa.2020.114202_b0140 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – start-page: 193 year: 2008 ident: 10.1016/j.eswa.2020.114202_b0045 article-title: Particle Swarms for Dynamic Optimization Problems – volume: 251 start-page: 284 year: 2015 ident: 10.1016/j.eswa.2020.114202_b0180 article-title: A system of nonsmooth equations solver based upon subgradient method publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2014.11.064 – volume: 24 start-page: 14825 issue: 19 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0105 article-title: A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems publication-title: Soft Computing doi: 10.1007/s00500-020-04834-7 – volume: 67 start-page: 126 year: 2018 ident: 10.1016/j.eswa.2020.114202_b0270 article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.02.042 – volume: 37 start-page: 130 issue: 1 year: 2012 ident: 10.1016/j.eswa.2020.114202_b0010 article-title: Performance evaluation of evolutionary heuristics in dynamic environments publication-title: Applied Intelligence doi: 10.1007/s10489-011-0317-9 – volume: 6 start-page: 1 year: 2012 ident: 10.1016/j.eswa.2020.114202_b0210 article-title: Evolutionary dynamic optimization: A survey of the state of the art publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2012.05.001 – volume: 13 start-page: 763 issue: 8-9 year: 2009 ident: 10.1016/j.eswa.2020.114202_b0260 article-title: A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems publication-title: Soft Computing doi: 10.1007/s00500-008-0347-3 – volume: 197 start-page: 106815 year: 2020 ident: 10.1016/j.eswa.2020.114202_b0110 article-title: Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2020.106815 – volume: 115 start-page: 189 year: 2019 ident: 10.1016/j.eswa.2020.114202_b0215 article-title: Quantum firefly swarms for multimodal dynamic optimization problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.007 – volume: 22 start-page: 474 year: 2014 ident: 10.1016/j.eswa.2020.114202_b0250 article-title: A multi-population electromagnetic algorithm for dynamic optimisation problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.04.032 – volume: 117 start-page: 19 year: 2018 ident: 10.1016/j.eswa.2020.114202_b0245 article-title: A dual-population multi operators harmony search algorithm for dynamic optimization problems publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.01.003 |
| SSID | ssj0017007 |
| Score | 2.4522593 |
| Snippet | [Display omitted]
•Harris Hawk Optimizer (HHO) is extended to deal with dynamic optimization.•Multi-population HHO with exclusion operator is... Dynamic optimization problems (DOPs) have been a subject of considerable research interest mainly due to their widespread application potential. In the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114202 |
| SubjectTerms | Algorithms Dynamic optimization Dynamic tests Evolutionary algorithms Evolutionary computation Genetic algorithms Global optimization Harris Hawk Optimizer Multi-population Optimization Particle swarm optimization Quantum particles Real-valued optimization Statistical analysis Swarm intelligence |
| Title | Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.114202 https://www.proquest.com/docview/2503172567 |
| Volume | 167 |
| WOSCitedRecordID | wos000640531100037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL41OMDeQD4hJlSp00do7r1GqgqgOpQ-VkOY6jfbRpSdp18NfzHNtpN6CCA5ckSvNRvffzy_t-CL2LlSAiTzKfCLBNdN6FzzLtDotTQfO4nYemZf6ADodsPE4-tVorVwtzM6FFwW5vk_l_ZTWcA2br0tl_YHfzUDgBx8B02ALbYftXjP-8BGItp97c5bz5qrgwcf4me_BUlLC4Ybe6rrxqJUrTlsHLzHx6bwaCZGorND07c6a648TXHZIXtg-0q5DbiIU3aT06EN-NJ7Len9SiV-uv3WByvc4LPvtRzb5nxhXbVxfTS6-7LKXtCW5dEqS9kclS-8maWpkvd_yN1I_aZiTPkTLSltHQj6kZkdiIYzOewwrU9m_FvPE4XB0poBDY-KRueUwCsv6ouUD-8Iz3zwcDPuqNR-_n33w9bkyH5e3slQdol9BOAuJw9_hDb_yxCUDRwFTau39t661MauD91_5Jp7n3da9VltET9NjaGvjY4OApaqniGdpzczywFevP0VcLGfwrZLCDDDaQwTVksIEMBshgCxm8CRnsIPMCnfd7o5NT347c8GVI2MIH414PQhGEZURSFopA6RZuOc2jNIwzGsswioIsDUkmWcCinCVRooSgJE1ikXbCl2inmBXqFcKREJLJIEizREUiDZkiMhKhggermESdfdR2ROPS9qPXY1Em3CUeXnFNaK4JzQ2h95HX3DM33Vi2Xt1xvOBWnzR6Igccbb3v0DGO24VdcTAVQNUGA4G-3v7zAXq0XhOHaGdRLtUb9FDeLC6r8q3F2U8WMp_R |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+particles-enhanced+multiple+Harris+Hawks+swarms+for+dynamic+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=G%C3%B6lc%C3%BCk%2C+%C4%B0lker&rft.au=Ozsoydan%2C+Fehmi+Burcin&rft.date=2021-04-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=167&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2020.114202&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |