Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems

[Display omitted] •Harris Hawk Optimizer (HHO) is extended to deal with dynamic optimization.•Multi-population HHO with exclusion operator is developed.•Quantum particles are utilized to balance intensification and diversification.•CEC 2009 dynamic test functions are used and extended.•Different var...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 167; s. 114202
Hlavní autoři: Gölcük, İlker, Ozsoydan, Fehmi Burcin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.04.2021
Elsevier BV
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •Harris Hawk Optimizer (HHO) is extended to deal with dynamic optimization.•Multi-population HHO with exclusion operator is developed.•Quantum particles are utilized to balance intensification and diversification.•CEC 2009 dynamic test functions are used and extended.•Different variants of multi-population HHO are tested.•Improvements over the canonical HHO are achieved. Dynamic optimization problems (DOPs) have been a subject of considerable research interest mainly due to their widespread application potential. In the literature, various mechanisms have been reported to cope with the challenges of DOPs. The proposed mechanisms have usually been adopted by well-known population-based optimization algorithms, such as genetic algorithms or particle swarm optimization. Although new generation swarm-intelligence algorithms are continuously being developed and have much to offer in DOPs, their performance is usually tested on stationary optimization problems. In this study, a recently introduced optimization algorithm, Harris Hawk Optimizer, is redesigned as a multi-population based algorithm to deal with possible multiple optima. Thus, the proposed modification is allowed to search diverse parts of the search space more efficiently, particularly in multimodal environments. Next, it is further enhanced by using quantum particles to tackle with diversification and intensification challenges in DOPs. As shown in the present work, this mechanism can maintain population diversity and intensification depending on a user-supplied parameter. Finally, based on different algorithmic components, four different variants of HHO are proposed. The performances of the developed algorithms are tested on both stationary and dynamic test problems. Dynamic test functions introduced in the IEEE Congress on Evolutionary Computation 2009 (CEC 2009) are used and further extended to test the proposed algorithms' performances. Finally, appropriate statistical analysis is conducted to demonstrate significant improvements over the existing algorithms.
AbstractList Dynamic optimization problems (DOPs) have been a subject of considerable research interest mainly due to their widespread application potential. In the literature, various mechanisms have been reported to cope with the challenges of DOPs. The proposed mechanisms have usually been adopted by well-known population-based optimization algorithms, such as genetic algorithms or particle swarm optimization. Although new generation swarm-intelligence algorithms are continuously being developed and have much to offer in DOPs, their performance is usually tested on stationary optimization problems. In this study, a recently introduced optimization algorithm, Harris Hawk Optimizer, is redesigned as a multi-population based algorithm to deal with possible multiple optima. Thus, the proposed modification is allowed to search diverse parts of the search space more efficiently, particularly in multimodal environments. Next, it is further enhanced by using quantum particles to tackle with diversification and intensification challenges in DOPs. As shown in the present work, this mechanism can maintain population diversity and intensification depending on a user-supplied parameter. Finally, based on different algorithmic components, four different variants of HHO are proposed. The performances of the developed algorithms are tested on both stationary and dynamic test problems. Dynamic test functions introduced in the IEEE Congress on Evolutionary Computation 2009 (CEC 2009) are used and further extended to test the proposed algorithms' performances. Finally, appropriate statistical analysis is conducted to demonstrate significant improvements over the existing algorithms.
[Display omitted] •Harris Hawk Optimizer (HHO) is extended to deal with dynamic optimization.•Multi-population HHO with exclusion operator is developed.•Quantum particles are utilized to balance intensification and diversification.•CEC 2009 dynamic test functions are used and extended.•Different variants of multi-population HHO are tested.•Improvements over the canonical HHO are achieved. Dynamic optimization problems (DOPs) have been a subject of considerable research interest mainly due to their widespread application potential. In the literature, various mechanisms have been reported to cope with the challenges of DOPs. The proposed mechanisms have usually been adopted by well-known population-based optimization algorithms, such as genetic algorithms or particle swarm optimization. Although new generation swarm-intelligence algorithms are continuously being developed and have much to offer in DOPs, their performance is usually tested on stationary optimization problems. In this study, a recently introduced optimization algorithm, Harris Hawk Optimizer, is redesigned as a multi-population based algorithm to deal with possible multiple optima. Thus, the proposed modification is allowed to search diverse parts of the search space more efficiently, particularly in multimodal environments. Next, it is further enhanced by using quantum particles to tackle with diversification and intensification challenges in DOPs. As shown in the present work, this mechanism can maintain population diversity and intensification depending on a user-supplied parameter. Finally, based on different algorithmic components, four different variants of HHO are proposed. The performances of the developed algorithms are tested on both stationary and dynamic test problems. Dynamic test functions introduced in the IEEE Congress on Evolutionary Computation 2009 (CEC 2009) are used and further extended to test the proposed algorithms' performances. Finally, appropriate statistical analysis is conducted to demonstrate significant improvements over the existing algorithms.
ArticleNumber 114202
Author Ozsoydan, Fehmi Burcin
Gölcük, İlker
Author_xml – sequence: 1
  givenname: İlker
  orcidid: 0000-0002-8430-7952
  surname: Gölcük
  fullname: Gölcük, İlker
  email: ilker.golcuk@bakircay.edu.tr
  organization: Department of Industrial Engineering, İzmir Bakırçay University, İzmir 35665, Turkey
– sequence: 2
  givenname: Fehmi Burcin
  orcidid: 0000-0002-6368-4425
  surname: Ozsoydan
  fullname: Ozsoydan, Fehmi Burcin
  email: burcin.ozsoydan@deu.edu.tr
  organization: Department of Industrial Engineering, Faculty of Engineering, Dokuz Eylül University, İzmir 35397, Turkey
BookMark eNp9kE1LAzEURYNUsK3-AVcB11PzNZMMuJGiViiIoAtXIZPJYOp8mWQs9debcVy56OrC453cl7MAs7ZrDQCXGK0wwtn1bmX8Xq0IInGAWcwTMMeC0yTjOZ2BOcpTnjDM2RlYeL9DCHOE-By8PQ-qDUMDe-WC1bXxiWnfVatNCZuhDravDdwo56yPsf_wMPa4xsOqc7A8tKqxGnZ9sI39VsF2LexdV9Sm8efgtFK1Nxd_uQSv93cv602yfXp4XN9uE02JCAnHHNOUKiJKormgChnMc1TxihU0K3mmKWOoLCgptUCCVSJnuVGKkyLPVJHSJbia3o3Fn4PxQe66wbWxUpIUUcxJmvG4JaYt7TrvnamktuH34OCUrSVGchQpd3IUKUeRchIZUfIP7Z1tlDsch24myMSvf1njpNfWjFqtMzrIsrPH8B9zoI8j
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126503
crossref_primary_10_1002_aisy_202500172
crossref_primary_10_1016_j_eswa_2022_118571
crossref_primary_10_1016_j_matcom_2022_09_010
crossref_primary_10_1007_s00366_021_01497_2
crossref_primary_10_3390_electronics11121919
crossref_primary_10_1007_s10462_022_10235_z
crossref_primary_10_3233_JIFS_210459
crossref_primary_10_1016_j_eswa_2022_117255
crossref_primary_10_1016_j_adhoc_2025_103914
crossref_primary_10_1007_s11053_021_09896_4
crossref_primary_10_1016_j_eswa_2023_119815
crossref_primary_10_1007_s10462_022_10280_8
crossref_primary_10_1007_s00366_021_01459_8
crossref_primary_10_1007_s13042_022_01656_x
crossref_primary_10_1007_s00170_023_12167_6
crossref_primary_10_1007_s00521_022_07146_z
crossref_primary_10_1007_s11227_023_05260_w
crossref_primary_10_1016_j_knosys_2023_110274
Cites_doi 10.1016/j.knosys.2020.105586
10.1016/j.ejor.2011.08.031
10.1016/j.swevo.2011.02.002
10.1109/CEC.1999.785502
10.1016/j.ins.2011.04.028
10.1016/j.amc.2015.06.036
10.1016/j.asoc.2020.106526
10.1016/j.asoc.2011.11.027
10.1016/j.cor.2013.06.004
10.1016/j.eswa.2020.113428
10.15672/HJMS.2019.655
10.1016/j.comnet.2020.107371
10.1016/j.ins.2014.02.084
10.1016/j.eswa.2017.11.048
10.1162/evco.2008.16.1.1
10.1016/j.swevo.2020.100697
10.1016/j.physa.2011.12.004
10.1007/BFb0026605
10.1016/j.ins.2014.10.062
10.1016/j.knosys.2015.12.022
10.1016/j.advengsoft.2013.12.007
10.1109/ACCESS.2020.3010127
10.1016/j.advengsoft.2016.01.008
10.1016/j.energy.2020.117804
10.1016/j.eswa.2020.113510
10.1080/09540091.2019.1700912
10.1016/j.advengsoft.2017.07.002
10.1007/s10898-012-9864-9
10.1007/978-3-540-24653-4_50
10.1109/MHS.1995.494215
10.1016/j.future.2020.04.008
10.1016/j.asoc.2020.106620
10.1016/j.future.2019.02.028
10.1016/j.amc.2014.11.064
10.1007/s00500-020-04834-7
10.1016/j.asoc.2018.02.042
10.1007/s10489-011-0317-9
10.1016/j.swevo.2012.05.001
10.1007/s00500-008-0347-3
10.1016/j.ress.2020.106815
10.1016/j.eswa.2018.08.007
10.1016/j.asoc.2014.04.032
10.1016/j.cie.2018.01.003
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Apr 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.114202
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_114202
S0957417420309313
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-7171353a28d2c783a0e1790f7f4b36d76c3440db32dc8084f8949eaa72b96ab53
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640531100037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Mon Nov 10 02:34:34 EST 2025
Sat Nov 29 07:09:23 EST 2025
Tue Nov 18 21:34:47 EST 2025
Fri Feb 23 02:40:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Harris Hawk Optimizer
Quantum particles
Global optimization
Real-valued optimization
Multi-population
Dynamic optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-7171353a28d2c783a0e1790f7f4b36d76c3440db32dc8084f8949eaa72b96ab53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6368-4425
0000-0002-8430-7952
PQID 2503172567
PQPubID 2045477
ParticipantIDs proquest_journals_2503172567
crossref_citationtrail_10_1016_j_eswa_2020_114202
crossref_primary_10_1016_j_eswa_2020_114202
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114202
PublicationCentury 2000
PublicationDate 2021-04-01
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Jiao, Chong, Huang, Hu, Wang, Heidari, Chen, Zhao (b0145) 2020; 203
Branke, J. (1999). Memory enhanced evolutionary algorithms for changing optimization problems. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Vol. 3, pp. 1875-1882).
Golilarz, Mirmozaffari, Gashteroodkhani, Ali, Dolatsara, Boskabadi, Yazdi (b0115) 2020; 8
Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Nagoya, Japan.
Turky, Abdullah, Dawod (b0245) 2018; 117
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0140) 2019; 97
Liu, Wu, Wu, Wang (b0175) 2015; 268
Rossi, Abderrahim, Díaz (b0225) 2008; 16
Gupta, Deep, Heidari, Moayedi, Wang (b0125) 2020; 158
Nguyen, Yang, Branke (b0210) 2012; 6
Törnqvist, Vartia, Vartia (b0240) 1985; 39
Mirjalili, Mirjalili, Lewis (b0200) 2014; 69
Rodríguez-Esparza, Zanella-Calzada, Oliva, Heidari, Zaldivar, Pérez-Cisneros, Foong (b0220) 2020; 155
Turky, Abdullah (b0250) 2014; 22
Wang, Wang, Yang (b0260) 2009; 13
Turky, Abdullah (b0255) 2014; 272
Barshandeh, Piri, Sangani (b0015) 2020
Mirjalili (b0185) 2016; 96
Fu, Yang (b0110) 2020; 197
Ayvaz, Topcuoglu, Gurgen (b0010) 2012; 37
du Plessis, Engelbrecht (b0090) 2012; 55
Baykasoğlu, Gölcük, Özsoydan (b0020) 2019; 48
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0190) 2017; 114
Hamzadayi, Topaloglu, Yelkenci Kose (b0130) 2013; 40
Blackwell, T., & Branke, J. (2004). Multi-swarm Optimization in Dynamic Environments. In (pp. 489-500). Berlin, Heidelberg: Springer Berlin Heidelberg.
Xia, Gui, Zhan (b0270) 2018; 67
Blackwell, Bentley (b0050) 2002
Bhat, Venkata (b0030) 2020; 179
Hatzakis, Wallace (b0135) 2006
Aragón, Esquivel, Coello Coello (b0005) 2011; 181
Talbi (b0235) 2009; Vol. 74
Chen, Heidari, Chen, Wang, Pan, Gandomi (b0070) 2020; 111
Li, Branke, Blackwell (b0165) 2006
Kazemi Kordestani, Meybodi, Rahmani (b0150) 2020; 32
Baykasoğlu, Ozsoydan (b0025) 2018; 96
Li, Nguyen, Yang, Yang, Zeng (b0155) 2015; 296
Mosadegh, Zandieh, Ghomi (b0205) 2012; 12
Wunnava, Naik, Panda, Jena, Abraham (b0265) 2020; 95
Blackwell, Branke, Li (b0045) 2008
Derrac, García, Molina, Herrera (b0080) 2011; 1
Gölcük, Ozsoydan (b0120) 2020; 194
Lipowski, Lipowska (b0170) 2012; 391
Cao, Fan, Zhao, Yang, Muhammad, Tanveer (b0065) 2020; 57
Du, Wang, Hao, Niu, Yang (b0085) 2020; 96
Daneshyari, Yen (b0075) 2011
Salomon, R., & Eggenberger, P. (1998). Adaptation on the evolutionary time scale: A working hypothesis and basic experiments. In (pp. 251-262). Berlin, Heidelberg: Springer Berlin Heidelberg.
Ozsoydan, Baykasoğlu (b0215) 2019; 115
Long, Wu, Wang (b0180) 2015; 251
Mirjalili, Lewis (b0195) 2016; 95
Li, C., Yang, S., Nguyen, T. T., Yu, E. L., Yao, X., Jin, Y., Beyer, H.-G., & Suganthan, P. N. (2008). Benchmark generator for CEC'2009 competition on dynamic optimization. In: Univ. Leicester, Leicester, U.K., Univ. Birmingham, U.K., Nanyang Technological Univ., Singapore.
du Plessis, Engelbrecht (b0095) 2012; 218
Fan, Chen, Xia (b0105) 2020; 24
Blackwell (b0035) 2007
Branke (b0060) 2002; Vol. 3
Törnqvist (10.1016/j.eswa.2020.114202_b0240) 1985; 39
Mirjalili (10.1016/j.eswa.2020.114202_b0195) 2016; 95
Rossi (10.1016/j.eswa.2020.114202_b0225) 2008; 16
Fu (10.1016/j.eswa.2020.114202_b0110) 2020; 197
Kazemi Kordestani (10.1016/j.eswa.2020.114202_b0150) 2020; 32
Golilarz (10.1016/j.eswa.2020.114202_b0115) 2020; 8
Blackwell (10.1016/j.eswa.2020.114202_b0050) 2002
Baykasoğlu (10.1016/j.eswa.2020.114202_b0020) 2019; 48
Fan (10.1016/j.eswa.2020.114202_b0105) 2020; 24
Jiao (10.1016/j.eswa.2020.114202_b0145) 2020; 203
Xia (10.1016/j.eswa.2020.114202_b0270) 2018; 67
Turky (10.1016/j.eswa.2020.114202_b0250) 2014; 22
10.1016/j.eswa.2020.114202_b0100
Baykasoğlu (10.1016/j.eswa.2020.114202_b0025) 2018; 96
Mirjalili (10.1016/j.eswa.2020.114202_b0200) 2014; 69
Ozsoydan (10.1016/j.eswa.2020.114202_b0215) 2019; 115
Derrac (10.1016/j.eswa.2020.114202_b0080) 2011; 1
du Plessis (10.1016/j.eswa.2020.114202_b0095) 2012; 218
Turky (10.1016/j.eswa.2020.114202_b0255) 2014; 272
Talbi (10.1016/j.eswa.2020.114202_b0235) 2009; Vol. 74
Liu (10.1016/j.eswa.2020.114202_b0175) 2015; 268
Heidari (10.1016/j.eswa.2020.114202_b0140) 2019; 97
Hamzadayi (10.1016/j.eswa.2020.114202_b0130) 2013; 40
10.1016/j.eswa.2020.114202_b0230
Hatzakis (10.1016/j.eswa.2020.114202_b0135) 2006
Gölcük (10.1016/j.eswa.2020.114202_b0120) 2020; 194
Aragón (10.1016/j.eswa.2020.114202_b0005) 2011; 181
Branke (10.1016/j.eswa.2020.114202_b0060) 2002; Vol. 3
Daneshyari (10.1016/j.eswa.2020.114202_b0075) 2011
Wang (10.1016/j.eswa.2020.114202_b0260) 2009; 13
Ayvaz (10.1016/j.eswa.2020.114202_b0010) 2012; 37
Blackwell (10.1016/j.eswa.2020.114202_b0035) 2007
Li (10.1016/j.eswa.2020.114202_b0165) 2006
Blackwell (10.1016/j.eswa.2020.114202_b0045) 2008
10.1016/j.eswa.2020.114202_b0160
Rodríguez-Esparza (10.1016/j.eswa.2020.114202_b0220) 2020; 155
10.1016/j.eswa.2020.114202_b0040
Nguyen (10.1016/j.eswa.2020.114202_b0210) 2012; 6
Bhat (10.1016/j.eswa.2020.114202_b0030) 2020; 179
Chen (10.1016/j.eswa.2020.114202_b0070) 2020; 111
Li (10.1016/j.eswa.2020.114202_b0155) 2015; 296
Mosadegh (10.1016/j.eswa.2020.114202_b0205) 2012; 12
Mirjalili (10.1016/j.eswa.2020.114202_b0190) 2017; 114
Barshandeh (10.1016/j.eswa.2020.114202_b0015) 2020
Long (10.1016/j.eswa.2020.114202_b0180) 2015; 251
Du (10.1016/j.eswa.2020.114202_b0085) 2020; 96
Cao (10.1016/j.eswa.2020.114202_b0065) 2020; 57
Lipowski (10.1016/j.eswa.2020.114202_b0170) 2012; 391
Gupta (10.1016/j.eswa.2020.114202_b0125) 2020; 158
Wunnava (10.1016/j.eswa.2020.114202_b0265) 2020; 95
Turky (10.1016/j.eswa.2020.114202_b0245) 2018; 117
du Plessis (10.1016/j.eswa.2020.114202_b0090) 2012; 55
Mirjalili (10.1016/j.eswa.2020.114202_b0185) 2016; 96
10.1016/j.eswa.2020.114202_b0055
References_xml – volume: 96
  year: 2020
  ident: b0085
  article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting
  publication-title: Applied Soft Computing
– start-page: 29
  year: 2007
  end-page: 49
  ident: b0035
  article-title: Particle Swarm Optimization in Dynamic Environments
  publication-title: Evolutionary Computation in Dynamic and Uncertain Environments
– year: 2020
  ident: b0015
  article-title: HMPA: An innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems
  publication-title: Engineering with Computers
– reference: Salomon, R., & Eggenberger, P. (1998). Adaptation on the evolutionary time scale: A working hypothesis and basic experiments. In (pp. 251-262). Berlin, Heidelberg: Springer Berlin Heidelberg.
– reference: Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Nagoya, Japan.
– volume: 67
  start-page: 126
  year: 2018
  end-page: 140
  ident: b0270
  article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting
  publication-title: Applied Soft Computing
– volume: 272
  start-page: 84
  year: 2014
  end-page: 95
  ident: b0255
  article-title: A multi-population harmony search algorithm with external archive for dynamic optimization problems
  publication-title: Information Sciences
– reference: Blackwell, T., & Branke, J. (2004). Multi-swarm Optimization in Dynamic Environments. In (pp. 489-500). Berlin, Heidelberg: Springer Berlin Heidelberg.
– volume: 181
  start-page: 3614
  year: 2011
  end-page: 3637
  ident: b0005
  article-title: A T-cell algorithm for solving dynamic optimization problems
  publication-title: Information Sciences
– volume: 296
  start-page: 95
  year: 2015
  end-page: 118
  ident: b0155
  article-title: Multi-population methods in unconstrained continuous dynamic environments: The challenges
  publication-title: Information Sciences
– reference: Branke, J. (1999). Memory enhanced evolutionary algorithms for changing optimization problems. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Vol. 3, pp. 1875-1882).
– start-page: 509
  year: 2011
  end-page: 516
  ident: b0075
  article-title: Dynamic optimization using cultural based PSO
  publication-title: 2011 IEEE Congress of Evolutionary Computation (CEC)
– volume: 117
  start-page: 19
  year: 2018
  end-page: 28
  ident: b0245
  article-title: A dual-population multi operators harmony search algorithm for dynamic optimization problems
  publication-title: Computers & Industrial Engineering
– volume: 194
  start-page: 105586
  year: 2020
  ident: b0120
  article-title: Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary domains
  publication-title: Knowledge-Based Systems
– volume: 268
  start-page: 246
  year: 2015
  end-page: 269
  ident: b0175
  article-title: A novel differential search algorithm and applications for structure design
  publication-title: Applied Mathematics and Computation
– start-page: 51
  year: 2006
  end-page: 58
  ident: b0165
  publication-title: Particle swarm with speciation and adaptation in a dynamic environment
– volume: 197
  start-page: 106815
  year: 2020
  ident: b0110
  article-title: Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks
  publication-title: Reliability Engineering & System Safety
– volume: 179
  start-page: 107371
  year: 2020
  ident: b0030
  article-title: An optimization based localization with area minimization for heterogeneous wireless sensor networks in anisotropic fields
  publication-title: Computer Networks
– volume: 55
  start-page: 73
  year: 2012
  end-page: 99
  ident: b0090
  article-title: Differential evolution for dynamic environments with unknown numbers of optima
  publication-title: Journal of Global Optimization
– volume: 155
  start-page: 113428
  year: 2020
  ident: b0220
  article-title: An efficient Harris hawks-inspired image segmentation method
  publication-title: Expert Systems with Applications
– volume: 96
  start-page: 157
  year: 2018
  end-page: 174
  ident: b0025
  article-title: Dynamic optimization in binary search spaces via weighted superposition attraction algorithm
  publication-title: Expert Systems with Applications
– volume: Vol. 3
  year: 2002
  ident: b0060
  publication-title: Evolutionary optimization in dynamic environments
– volume: 218
  start-page: 7
  year: 2012
  end-page: 20
  ident: b0095
  article-title: Using Competitive Population Evaluation in a differential evolution algorithm for dynamic environments
  publication-title: European Journal of Operational Research
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b0140
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
– volume: 16
  start-page: 1
  year: 2008
  end-page: 30
  ident: b0225
  article-title: Tracking Moving Optima Using Kalman-Based Predictions
  publication-title: Evolutionary Computation
– volume: 37
  start-page: 130
  year: 2012
  end-page: 144
  ident: b0010
  article-title: Performance evaluation of evolutionary heuristics in dynamic environments
  publication-title: Applied Intelligence
– volume: 203
  start-page: 117804
  year: 2020
  ident: b0145
  article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models
  publication-title: Energy
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0195
  article-title: The Whale Optimization Algorithm
  publication-title: Advances in Engineering Software
– volume: 24
  start-page: 14825
  year: 2020
  end-page: 14843
  ident: b0105
  article-title: A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems
  publication-title: Soft Computing
– volume: 48
  start-page: 859
  year: 2019
  end-page: 882
  ident: b0020
  article-title: Improving fuzzy c-means clustering via quantum-enhanced weighted superposition attraction algorithm
  publication-title: Hacettepe Journal of Mathematics and Statistics
– volume: 13
  start-page: 763
  year: 2009
  end-page: 780
  ident: b0260
  article-title: A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems
  publication-title: Soft Computing
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0190
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0200
  article-title: Grey Wolf Optimizer
  publication-title: Advances in Engineering Software
– volume: 57
  start-page: 100697
  year: 2020
  ident: b0065
  article-title: Quantum-enhanced multiobjective large-scale optimization via parallelism
  publication-title: Swarm and Evolutionary Computation
– volume: 12
  start-page: 1359
  year: 2012
  end-page: 1370
  ident: b0205
  article-title: Simultaneous solving of balancing and sequencing problems with station-dependent assembly times for mixed-model assembly lines
  publication-title: Applied Soft Computing
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0080
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 251
  start-page: 284
  year: 2015
  end-page: 299
  ident: b0180
  article-title: A system of nonsmooth equations solver based upon subgradient method
  publication-title: Applied Mathematics and Computation
– volume: 111
  start-page: 175
  year: 2020
  end-page: 198
  ident: b0070
  article-title: Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies
  publication-title: Future Generation Computer Systems
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b0185
  article-title: SCA: A Sine Cosine Algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
– volume: 22
  start-page: 474
  year: 2014
  end-page: 482
  ident: b0250
  article-title: A multi-population electromagnetic algorithm for dynamic optimisation problems
  publication-title: Applied Soft Computing
– volume: 158
  start-page: 113510
  year: 2020
  ident: b0125
  article-title: Opposition-based learning Harris hawks optimization with advanced transition rules: Principles and analysis
  publication-title: Expert Systems with Applications
– volume: 8
  start-page: 133076
  year: 2020
  end-page: 133085
  ident: b0115
  article-title: Optimized wavelet-based satellite image de-noising with multi-population differential evolution-assisted Harris Hawks optimization algorithm
  publication-title: IEEE Access
– volume: 6
  start-page: 1
  year: 2012
  end-page: 24
  ident: b0210
  article-title: Evolutionary dynamic optimization: A survey of the state of the art
  publication-title: Swarm and Evolutionary Computation
– reference: Li, C., Yang, S., Nguyen, T. T., Yu, E. L., Yao, X., Jin, Y., Beyer, H.-G., & Suganthan, P. N. (2008). Benchmark generator for CEC'2009 competition on dynamic optimization. In: Univ. Leicester, Leicester, U.K., Univ. Birmingham, U.K., Nanyang Technological Univ., Singapore.
– volume: 115
  start-page: 189
  year: 2019
  end-page: 199
  ident: b0215
  article-title: Quantum firefly swarms for multimodal dynamic optimization problems
  publication-title: Expert Systems with Applications
– volume: 391
  start-page: 2193
  year: 2012
  end-page: 2196
  ident: b0170
  article-title: Roulette-wheel selection via stochastic acceptance
  publication-title: Physica A: Statistical Mechanics and its Applications
– start-page: 193
  year: 2008
  end-page: 217
  ident: b0045
  article-title: Particle Swarms for Dynamic Optimization Problems
  publication-title: Swarm Intelligence: Introduction and Applications
– start-page: 19
  year: 2002
  end-page: 26
  ident: b0050
  publication-title: Dynamic search with charged swarms
– volume: 40
  start-page: 2893
  year: 2013
  end-page: 2905
  ident: b0130
  article-title: Nested simulated annealing approach to periodic routing problem of a retail distribution system
  publication-title: Computers & Operations Research
– volume: 39
  start-page: 43
  year: 1985
  end-page: 46
  ident: b0240
  article-title: How Should Relative Changes be Measured?
  publication-title: The American Statistician
– volume: 95
  start-page: 106526
  year: 2020
  ident: b0265
  article-title: An adaptive Harris hawks optimization technique for two dimensional grey gradient based multilevel image thresholding
  publication-title: Applied Soft Computing
– volume: Vol. 74
  year: 2009
  ident: b0235
  publication-title: Metaheuristics: from design to implementation
– volume: 32
  start-page: 239
  year: 2020
  end-page: 263
  ident: b0150
  article-title: A note on the exclusion operator in multi-swarm PSO algorithms for dynamic environments
  publication-title: Connection Science
– start-page: 1201
  year: 2006
  end-page: 1208
  ident: b0135
  article-title: Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach
  publication-title: Proceedings of the 8th annual conference on Genetic and evolutionary computation
– start-page: 19
  year: 2002
  ident: 10.1016/j.eswa.2020.114202_b0050
– volume: 194
  start-page: 105586
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0120
  article-title: Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary domains
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105586
– volume: 218
  start-page: 7
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2020.114202_b0095
  article-title: Using Competitive Population Evaluation in a differential evolution algorithm for dynamic environments
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2011.08.031
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2020.114202_b0080
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– start-page: 1201
  year: 2006
  ident: 10.1016/j.eswa.2020.114202_b0135
  article-title: Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach
– ident: 10.1016/j.eswa.2020.114202_b0055
  doi: 10.1109/CEC.1999.785502
– ident: 10.1016/j.eswa.2020.114202_b0160
– volume: 181
  start-page: 3614
  issue: 17
  year: 2011
  ident: 10.1016/j.eswa.2020.114202_b0005
  article-title: A T-cell algorithm for solving dynamic optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.04.028
– volume: 268
  start-page: 246
  year: 2015
  ident: 10.1016/j.eswa.2020.114202_b0175
  article-title: A novel differential search algorithm and applications for structure design
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2015.06.036
– volume: 95
  start-page: 106526
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0265
  article-title: An adaptive Harris hawks optimization technique for two dimensional grey gradient based multilevel image thresholding
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106526
– volume: 12
  start-page: 1359
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2020.114202_b0205
  article-title: Simultaneous solving of balancing and sequencing problems with station-dependent assembly times for mixed-model assembly lines
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.11.027
– volume: 40
  start-page: 2893
  issue: 12
  year: 2013
  ident: 10.1016/j.eswa.2020.114202_b0130
  article-title: Nested simulated annealing approach to periodic routing problem of a retail distribution system
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2013.06.004
– volume: 155
  start-page: 113428
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0220
  article-title: An efficient Harris hawks-inspired image segmentation method
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113428
– volume: 48
  start-page: 859
  year: 2019
  ident: 10.1016/j.eswa.2020.114202_b0020
  article-title: Improving fuzzy c-means clustering via quantum-enhanced weighted superposition attraction algorithm
  publication-title: Hacettepe Journal of Mathematics and Statistics
  doi: 10.15672/HJMS.2019.655
– volume: 179
  start-page: 107371
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0030
  article-title: An optimization based localization with area minimization for heterogeneous wireless sensor networks in anisotropic fields
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2020.107371
– volume: 272
  start-page: 84
  year: 2014
  ident: 10.1016/j.eswa.2020.114202_b0255
  article-title: A multi-population harmony search algorithm with external archive for dynamic optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.02.084
– start-page: 509
  year: 2011
  ident: 10.1016/j.eswa.2020.114202_b0075
  article-title: Dynamic optimization using cultural based PSO
– volume: 96
  start-page: 157
  year: 2018
  ident: 10.1016/j.eswa.2020.114202_b0025
  article-title: Dynamic optimization in binary search spaces via weighted superposition attraction algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.11.048
– volume: 16
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2020.114202_b0225
  article-title: Tracking Moving Optima Using Kalman-Based Predictions
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.2008.16.1.1
– volume: 57
  start-page: 100697
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0065
  article-title: Quantum-enhanced multiobjective large-scale optimization via parallelism
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100697
– volume: 391
  start-page: 2193
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2020.114202_b0170
  article-title: Roulette-wheel selection via stochastic acceptance
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2011.12.004
– volume: Vol. 74
  year: 2009
  ident: 10.1016/j.eswa.2020.114202_b0235
– ident: 10.1016/j.eswa.2020.114202_b0230
  doi: 10.1007/BFb0026605
– volume: Vol. 3
  year: 2002
  ident: 10.1016/j.eswa.2020.114202_b0060
– volume: 296
  start-page: 95
  year: 2015
  ident: 10.1016/j.eswa.2020.114202_b0155
  article-title: Multi-population methods in unconstrained continuous dynamic environments: The challenges
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.10.062
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.eswa.2020.114202_b0185
  article-title: SCA: A Sine Cosine Algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2020.114202_b0200
  article-title: Grey Wolf Optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 8
  start-page: 133076
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0115
  article-title: Optimized wavelet-based satellite image de-noising with multi-population differential evolution-assisted Harris Hawks optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010127
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2020.114202_b0195
  article-title: The Whale Optimization Algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 203
  start-page: 117804
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0145
  article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117804
– volume: 158
  start-page: 113510
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0125
  article-title: Opposition-based learning Harris hawks optimization with advanced transition rules: Principles and analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113510
– year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0015
  article-title: HMPA: An innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems
  publication-title: Engineering with Computers
– volume: 32
  start-page: 239
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0150
  article-title: A note on the exclusion operator in multi-swarm PSO algorithms for dynamic environments
  publication-title: Connection Science
  doi: 10.1080/09540091.2019.1700912
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.eswa.2020.114202_b0190
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– start-page: 29
  year: 2007
  ident: 10.1016/j.eswa.2020.114202_b0035
  article-title: Particle Swarm Optimization in Dynamic Environments
– volume: 55
  start-page: 73
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2020.114202_b0090
  article-title: Differential evolution for dynamic environments with unknown numbers of optima
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-012-9864-9
– ident: 10.1016/j.eswa.2020.114202_b0040
  doi: 10.1007/978-3-540-24653-4_50
– volume: 39
  start-page: 43
  issue: 1
  year: 1985
  ident: 10.1016/j.eswa.2020.114202_b0240
  article-title: How Should Relative Changes be Measured?
  publication-title: The American Statistician
– ident: 10.1016/j.eswa.2020.114202_b0100
  doi: 10.1109/MHS.1995.494215
– volume: 111
  start-page: 175
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0070
  article-title: Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.04.008
– start-page: 51
  year: 2006
  ident: 10.1016/j.eswa.2020.114202_b0165
– volume: 96
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0085
  article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106620
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.eswa.2020.114202_b0140
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– start-page: 193
  year: 2008
  ident: 10.1016/j.eswa.2020.114202_b0045
  article-title: Particle Swarms for Dynamic Optimization Problems
– volume: 251
  start-page: 284
  year: 2015
  ident: 10.1016/j.eswa.2020.114202_b0180
  article-title: A system of nonsmooth equations solver based upon subgradient method
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2014.11.064
– volume: 24
  start-page: 14825
  issue: 19
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0105
  article-title: A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-04834-7
– volume: 67
  start-page: 126
  year: 2018
  ident: 10.1016/j.eswa.2020.114202_b0270
  article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.02.042
– volume: 37
  start-page: 130
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2020.114202_b0010
  article-title: Performance evaluation of evolutionary heuristics in dynamic environments
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-011-0317-9
– volume: 6
  start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2020.114202_b0210
  article-title: Evolutionary dynamic optimization: A survey of the state of the art
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2012.05.001
– volume: 13
  start-page: 763
  issue: 8-9
  year: 2009
  ident: 10.1016/j.eswa.2020.114202_b0260
  article-title: A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-008-0347-3
– volume: 197
  start-page: 106815
  year: 2020
  ident: 10.1016/j.eswa.2020.114202_b0110
  article-title: Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2020.106815
– volume: 115
  start-page: 189
  year: 2019
  ident: 10.1016/j.eswa.2020.114202_b0215
  article-title: Quantum firefly swarms for multimodal dynamic optimization problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.007
– volume: 22
  start-page: 474
  year: 2014
  ident: 10.1016/j.eswa.2020.114202_b0250
  article-title: A multi-population electromagnetic algorithm for dynamic optimisation problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.04.032
– volume: 117
  start-page: 19
  year: 2018
  ident: 10.1016/j.eswa.2020.114202_b0245
  article-title: A dual-population multi operators harmony search algorithm for dynamic optimization problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.01.003
SSID ssj0017007
Score 2.4522593
Snippet [Display omitted] •Harris Hawk Optimizer (HHO) is extended to deal with dynamic optimization.•Multi-population HHO with exclusion operator is...
Dynamic optimization problems (DOPs) have been a subject of considerable research interest mainly due to their widespread application potential. In the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114202
SubjectTerms Algorithms
Dynamic optimization
Dynamic tests
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Global optimization
Harris Hawk Optimizer
Multi-population
Optimization
Particle swarm optimization
Quantum particles
Real-valued optimization
Statistical analysis
Swarm intelligence
Title Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems
URI https://dx.doi.org/10.1016/j.eswa.2020.114202
https://www.proquest.com/docview/2503172567
Volume 167
WOSCitedRecordID wos000640531100037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL41OMDeQD4hJlSp00do7r1GqgqgOpQ-VkOY6jfbRpSdp18NfzHNtpN6CCA5ckSvNRvffzy_t-CL2LlSAiTzKfCLBNdN6FzzLtDotTQfO4nYemZf6ADodsPE4-tVorVwtzM6FFwW5vk_l_ZTWcA2br0tl_YHfzUDgBx8B02ALbYftXjP-8BGItp97c5bz5qrgwcf4me_BUlLC4Ybe6rrxqJUrTlsHLzHx6bwaCZGorND07c6a648TXHZIXtg-0q5DbiIU3aT06EN-NJ7Len9SiV-uv3WByvc4LPvtRzb5nxhXbVxfTS6-7LKXtCW5dEqS9kclS-8maWpkvd_yN1I_aZiTPkTLSltHQj6kZkdiIYzOewwrU9m_FvPE4XB0poBDY-KRueUwCsv6ouUD-8Iz3zwcDPuqNR-_n33w9bkyH5e3slQdol9BOAuJw9_hDb_yxCUDRwFTau39t661MauD91_5Jp7n3da9VltET9NjaGvjY4OApaqniGdpzczywFevP0VcLGfwrZLCDDDaQwTVksIEMBshgCxm8CRnsIPMCnfd7o5NT347c8GVI2MIH414PQhGEZURSFopA6RZuOc2jNIwzGsswioIsDUkmWcCinCVRooSgJE1ikXbCl2inmBXqFcKREJLJIEizREUiDZkiMhKhggermESdfdR2ROPS9qPXY1Em3CUeXnFNaK4JzQ2h95HX3DM33Vi2Xt1xvOBWnzR6Igccbb3v0DGO24VdcTAVQNUGA4G-3v7zAXq0XhOHaGdRLtUb9FDeLC6r8q3F2U8WMp_R
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+particles-enhanced+multiple+Harris+Hawks+swarms+for+dynamic+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=G%C3%B6lc%C3%BCk%2C+%C4%B0lker&rft.au=Ozsoydan%2C+Fehmi+Burcin&rft.date=2021-04-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=167&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2020.114202&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon