Deep flight track clustering based on spatial–temporal distance and denoising auto-encoding

The rapid development of the aviation industry imposes an urgent need for airspace traffic management. Meaningful clustering of flight tracks is of paramount importance for efficient operation and management of increasingly complex aerial space and traffic. Two key components exist in track clusteri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 198; s. 116733
Hlavní autoři: Liu, Guoqian, Fan, Yuqi, Zhang, Jianjun, Wen, Pengfei, Lyu, Zengwei, Yuan, Xiaohui
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 15.07.2022
Elsevier BV
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rapid development of the aviation industry imposes an urgent need for airspace traffic management. Meaningful clustering of flight tracks is of paramount importance for efficient operation and management of increasingly complex aerial space and traffic. Two key components exist in track clustering: similarity metric and clustering method. Most of the existing studies on track similarity metrics only consider the spatial coordinates of the track points without taking into consideration of the rich information of the track data, such as flight heading and flight speed, on the measurement of track similarity. In addition, temporal properties and the derived features of the flight tracks shall be utilized to reveal the underlying patterns and overcome distortions from noise. In this paper, we propose a track similarity based on the spatial–temporal characteristics of flight tracks and a Deep Temporal Clustering method using a denoising autoencoder. Our proposed method employs the Deep Temporal Denoising Auto-encoding network to extract the latent representations of the track sequences. By extending the idea of k-means clustering, Deep Temporal Clustering groups the flight tracks with a Time Clustering Layer. Experiments are conducted using Automatic Dependent Surveillance-Broadcast track data. In comparison with classical and state-of-the-art methods, among all cases, our Deep Temporal Clustering method achieved a much-improved performance of more than 57.3%. When we introduce noise to the track records and increase its magnitude, the performance of our method degrades but the trend slows down as the noise magnitude increases. The change is less than 7% and, in some cases, is close to zero, which demonstrates the robustness of our method to noise. •A novel metric of track similarity based on the spatial–temporal characteristics.•A deep trajectory clustering model based on the denoising autoencoder.•Improved performance for flight track clustering.
AbstractList The rapid development of the aviation industry imposes an urgent need for airspace traffic management. Meaningful clustering of flight tracks is of paramount importance for efficient operation and management of increasingly complex aerial space and traffic. Two key components exist in track clustering: similarity metric and clustering method. Most of the existing studies on track similarity metrics only consider the spatial coordinates of the track points without taking into consideration of the rich information of the track data, such as flight heading and flight speed, on the measurement of track similarity. In addition, temporal properties and the derived features of the flight tracks shall be utilized to reveal the underlying patterns and overcome distortions from noise. In this paper, we propose a track similarity based on the spatial–temporal characteristics of flight tracks and a Deep Temporal Clustering method using a denoising autoencoder. Our proposed method employs the Deep Temporal Denoising Auto-encoding network to extract the latent representations of the track sequences. By extending the idea of k-means clustering, Deep Temporal Clustering groups the flight tracks with a Time Clustering Layer. Experiments are conducted using Automatic Dependent Surveillance-Broadcast track data. In comparison with classical and state-of-the-art methods, among all cases, our Deep Temporal Clustering method achieved a much-improved performance of more than 57.3%. When we introduce noise to the track records and increase its magnitude, the performance of our method degrades but the trend slows down as the noise magnitude increases. The change is less than 7% and, in some cases, is close to zero, which demonstrates the robustness of our method to noise. •A novel metric of track similarity based on the spatial–temporal characteristics.•A deep trajectory clustering model based on the denoising autoencoder.•Improved performance for flight track clustering.
The rapid development of the aviation industry imposes an urgent need for airspace traffic management. Meaningful clustering of flight tracks is of paramount importance for efficient operation and management of increasingly complex aerial space and traffic. Two key components exist in track clustering: similarity metric and clustering method. Most of the existing studies on track similarity metrics only consider the spatial coordinates of the track points without taking into consideration of the rich information of the track data, such as flight heading and flight speed, on the measurement of track similarity. In addition, temporal properties and the derived features of the flight tracks shall be utilized to reveal the underlying patterns and overcome distortions from noise. In this paper, we propose a track similarity based on the spatial–temporal characteristics of flight tracks and a Deep Temporal Clustering method using a denoising autoencoder. Our proposed method employs the Deep Temporal Denoising Auto-encoding network to extract the latent representations of the track sequences. By extending the idea of k-means clustering, Deep Temporal Clustering groups the flight tracks with a Time Clustering Layer. Experiments are conducted using Automatic Dependent Surveillance-Broadcast track data. In comparison with classical and state-of-the-art methods, among all cases, our Deep Temporal Clustering method achieved a much-improved performance of more than 57.3%. When we introduce noise to the track records and increase its magnitude, the performance of our method degrades but the trend slows down as the noise magnitude increases. The change is less than 7% and, in some cases, is close to zero, which demonstrates the robustness of our method to noise.
ArticleNumber 116733
Author Yuan, Xiaohui
Fan, Yuqi
Wen, Pengfei
Liu, Guoqian
Lyu, Zengwei
Zhang, Jianjun
Author_xml – sequence: 1
  givenname: Guoqian
  surname: Liu
  fullname: Liu, Guoqian
  email: guoqian_liu@mail.hfut.edu.cn
  organization: Hefei University of Technology, Hefei, 230009, China
– sequence: 2
  givenname: Yuqi
  orcidid: 0000-0003-0270-6261
  surname: Fan
  fullname: Fan, Yuqi
  email: yuqi.fan@hfut.edu.cn
  organization: Hefei University of Technology, Hefei, 230009, China
– sequence: 3
  givenname: Jianjun
  surname: Zhang
  fullname: Zhang, Jianjun
  email: jianjun@hfut.edu.cn
  organization: Hefei University of Technology, Hefei, 230009, China
– sequence: 4
  givenname: Pengfei
  surname: Wen
  fullname: Wen, Pengfei
  email: 2017111025@mail.hfut.edu.cn
  organization: Hefei University of Technology, Hefei, 230009, China
– sequence: 5
  givenname: Zengwei
  surname: Lyu
  fullname: Lyu, Zengwei
  email: lzw@hfut.edu.cn
  organization: Hefei University of Technology, Hefei, 230009, China
– sequence: 6
  givenname: Xiaohui
  orcidid: 0000-0001-6897-4563
  surname: Yuan
  fullname: Yuan, Xiaohui
  email: xiaohui.yuan@unt.edu
  organization: University of North Texas, Denton, TX, 76203, USA
BookMark eNp9kMtKBDEQRYMoOD5-wFXAdY959CTT4EbGJwhudCkhnVRrxjZpk4zizn_wD_0S04wrF7MqCu65RZ09tO2DB4SOKJlSQsXJcgrpQ08ZYWxKqZCcb6EJnUteCdnwbTQhzUxWNZX1LtpLaUkIlYTICXo8Bxhw17un54xz1OYFm36VMkTnn3CrE1gcPE6Dzk73P1_fGV6HEHWPrUtZewNYe4st-ODSiOhVDhV4E2zZDtBOp_sEh39zHz1cXtwvrqvbu6ubxdltZTib50oSK4RhhHLeNl3LOtnOGiGErmvaEdvUlllC24bNeGtnnelaQqkRugUDJTHn--h43TvE8LaClNUyrKIvJxUbZUjBmCwptk6ZGFKK0KkhulcdPxUlatSolmrUqEaNaq2xQPN_kHG5yAi-2HL9ZvR0jUJ5_d1BVMm4ogasi2CyssFtwn8BRU-R-w
CitedBy_id crossref_primary_10_1016_j_dt_2025_07_020
crossref_primary_10_3390_rs16111944
crossref_primary_10_1109_TAES_2023_3285203
crossref_primary_10_3390_jmse10091319
crossref_primary_10_1109_TGRS_2023_3250457
crossref_primary_10_1109_OJITS_2025_3574746
crossref_primary_10_1109_JSEN_2024_3505931
crossref_primary_10_1155_2023_3830857
Cites_doi 10.4018/IJCINI.20211001.oa39
10.1109/ACCESS.2019.2922162
10.1109/TITS.2011.2160628
10.23919/JSEE.2021.000040
10.1016/j.eswa.2020.113689
10.1016/j.ins.2020.08.089
10.1016/j.trc.2018.10.021
10.1109/TITS.2016.2547641
10.1007/s11036-019-01353-0
10.1145/3412841.3441935
10.1080/01969722.2018.1448236
10.1016/j.knosys.2020.105711
10.1109/ACCESS.2021.3053012
10.1162/neco.2006.18.7.1527
10.1016/j.ast.2018.11.031
10.1016/j.asoc.2019.106016
10.1002/mrm.1910400211
10.1007/s10489-018-1385-x
10.1145/235968.233324
10.1016/j.eswa.2016.09.015
10.1007/s11042-020-10188-x
10.1016/j.ijepes.2020.106448
10.3390/jmse9060566
10.1109/TIT.1982.1056489
10.2514/6.2016-3760
10.1016/j.neunet.2020.07.014
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2022.116733
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_116733
S0957417422002044
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-70d66c20133b9fb2f7b59666a441f0d94d2d01b9253bd5fcfb011c6abece41f83
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819800100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 06:57:13 EST 2025
Sat Nov 29 07:03:54 EST 2025
Tue Nov 18 22:35:04 EST 2025
Sun Apr 06 06:53:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Denoising auto-encoding
Similarity
Temporal
Clustering
Spatial
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-70d66c20133b9fb2f7b59666a441f0d94d2d01b9253bd5fcfb011c6abece41f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0270-6261
0000-0001-6897-4563
PQID 2673376227
PQPubID 2045477
ParticipantIDs proquest_journals_2673376227
crossref_primary_10_1016_j_eswa_2022_116733
crossref_citationtrail_10_1016_j_eswa_2022_116733
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116733
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Qu, Yang, Guo, Ma, Sun, Ke (b34) 2021; 26
Oliver, Basora, Viry, Alligier (b30) 2020
Dahlbom, Niklasson (b7) 2007
Lin, Kang, Zhang, Tian (b21) 2021
Li (b20) 2021; 547
Sun, Wang (b37) 2021
(pp. 551–558).
Besse, Guillouet, Loubes, Royer (b2) 2016; 17
Krishnapuram, Joshi, Yi (b18) 1999
Yang, Tang, Chen, Wang (b42) 2021
Seal, Karlekar, Krejcar, Gonzalo-Martin (b36) 2020; 88
Lloyd (b24) 1982; 28
Cai, Liu, Wei, Li, Kan (b4) 2021; 80
Enriquez, M. (2013). Identifying temporally persistent flows in the terminal airspace via spectral clustering. In
Ankerst, Breunig, Kriegel, Sander (b1) 1999
Oxenham (b31) 2000
Conde Rocha Murca, M., DeLaura, R., Hansman, R. J., Jordan, R., Reynolds, T., & Balakrishnan, H. (2016). Trajectory clustering and classification for characterization of air traffic flows. In
Eckstein (b9) 2009
Liu, Guo (b22) 2020; 162
Pan, He, Wang, Xiong, Peng (b32) 2016; 66
Zhang, Ramakrishnan, Livny (b44) 1996; 25
Huang, Xu (b16) 2021; 125
Maaten, Hinton (b26) 2008; 9
Ester, Kriegel, Sander, Xu (b11) 1996
Xie, Girshick, Farhadi (b40) 2016; vol. 48
Yan, Razeghi-Jahromi, Homaifar, Erol, Girma, Tunstel (b41) 2019; 7
Zhang, Shi (b45) 2021
Devarakonda, Saidala, Kamarajugadda (b8) 2021; 15
Campello, Moulavi, Sander (b5) 2013
Hinton, Osindero, Teh (b15) 2006; 18
Murça, Hansman, Li, Ren (b27) 2018; 97
Rehm (b35) 2010
Gariel, Srivastava, Feron (b12) 2011; 12
Cai, Lee, Lee (b3) 2018; 49
Kang, Lu, Liang, Bai, Xu (b17) 2020; 131
Lee, Han, Li (b19) 2008
Lv, Kang, Lu, Xu (b25) 2021; 7
Zhong, Liu, Qi (b46) 2021; 9
Gui, Zhang, Peng (b14) 2021; 32
Wang, Chen, Chen, Mou (b39) 2021; 9
Niedermeier, Sanders (b28) 1996
Piciarelli, Foresti, Snidaro (b33) 2005
(pp. 10–13).
Liu, Liu, Jin, Li, Zheng (b23) 2020; 195
Zobel, Moffat (b47) 1998
(p. 3760).
Golay, Kollias, Stoll, Meier, Valavanis, Boesiger (b13) 1998; 40
Yu, Luo, Chen, Chen (b43) 2019; 49
Olive, Morio (b29) 2019; 84
Varlamis, I., Sardianos, C., Bogorny, V., Alvares, L. O., Carvalho, J. T., Renso, C., et al. (2021). A novel similarity measure for multiple aspect trajectory clustering. In
10.1016/j.eswa.2022.116733_b10
Niedermeier (10.1016/j.eswa.2022.116733_b28) 1996
Cai (10.1016/j.eswa.2022.116733_b3) 2018; 49
Zhang (10.1016/j.eswa.2022.116733_b44) 1996; 25
Zhong (10.1016/j.eswa.2022.116733_b46) 2021; 9
Lv (10.1016/j.eswa.2022.116733_b25) 2021; 7
Zhang (10.1016/j.eswa.2022.116733_b45) 2021
Seal (10.1016/j.eswa.2022.116733_b36) 2020; 88
Dahlbom (10.1016/j.eswa.2022.116733_b7) 2007
Besse (10.1016/j.eswa.2022.116733_b2) 2016; 17
Murça (10.1016/j.eswa.2022.116733_b27) 2018; 97
Maaten (10.1016/j.eswa.2022.116733_b26) 2008; 9
Ester (10.1016/j.eswa.2022.116733_b11) 1996
Rehm (10.1016/j.eswa.2022.116733_b35) 2010
Cai (10.1016/j.eswa.2022.116733_b4) 2021; 80
Liu (10.1016/j.eswa.2022.116733_b23) 2020; 195
Pan (10.1016/j.eswa.2022.116733_b32) 2016; 66
Liu (10.1016/j.eswa.2022.116733_b22) 2020; 162
Oliver (10.1016/j.eswa.2022.116733_b30) 2020
Olive (10.1016/j.eswa.2022.116733_b29) 2019; 84
Huang (10.1016/j.eswa.2022.116733_b16) 2021; 125
Campello (10.1016/j.eswa.2022.116733_b5) 2013
Lloyd (10.1016/j.eswa.2022.116733_b24) 1982; 28
Yan (10.1016/j.eswa.2022.116733_b41) 2019; 7
Eckstein (10.1016/j.eswa.2022.116733_b9) 2009
Wang (10.1016/j.eswa.2022.116733_b39) 2021; 9
Xie (10.1016/j.eswa.2022.116733_b40) 2016; vol. 48
Gui (10.1016/j.eswa.2022.116733_b14) 2021; 32
Yu (10.1016/j.eswa.2022.116733_b43) 2019; 49
Li (10.1016/j.eswa.2022.116733_b20) 2021; 547
Kang (10.1016/j.eswa.2022.116733_b17) 2020; 131
Golay (10.1016/j.eswa.2022.116733_b13) 1998; 40
Piciarelli (10.1016/j.eswa.2022.116733_b33) 2005
Sun (10.1016/j.eswa.2022.116733_b37) 2021
Lee (10.1016/j.eswa.2022.116733_b19) 2008
Zobel (10.1016/j.eswa.2022.116733_b47) 1998
10.1016/j.eswa.2022.116733_b6
Yang (10.1016/j.eswa.2022.116733_b42) 2021
Devarakonda (10.1016/j.eswa.2022.116733_b8) 2021; 15
Gariel (10.1016/j.eswa.2022.116733_b12) 2011; 12
Hinton (10.1016/j.eswa.2022.116733_b15) 2006; 18
Krishnapuram (10.1016/j.eswa.2022.116733_b18) 1999
Lin (10.1016/j.eswa.2022.116733_b21) 2021
Qu (10.1016/j.eswa.2022.116733_b34) 2021; 26
Oxenham (10.1016/j.eswa.2022.116733_b31) 2000
10.1016/j.eswa.2022.116733_b38
Ankerst (10.1016/j.eswa.2022.116733_b1) 1999
References_xml – volume: 66
  start-page: 106
  year: 2016
  end-page: 113
  ident: b32
  article-title: Mining regular behaviors based on multidimensional trajectories
  publication-title: Expert Systems with Applications
– volume: 162
  year: 2020
  ident: b22
  article-title: STCCD: Semantic trajectory clustering based on community detection in networks
  publication-title: Expert Systems with Applications
– volume: 84
  start-page: 776
  year: 2019
  end-page: 781
  ident: b29
  article-title: Trajectory clustering of air traffic flows around airports
  publication-title: Aerospace Science and Technology
– volume: 547
  start-page: 592
  year: 2021
  end-page: 608
  ident: b20
  article-title: Time works well: Dynamic time warping based on time weighting for time series data mining
  publication-title: Information Sciences
– volume: 7
  start-page: 184985
  year: 2019
  end-page: 185000
  ident: b41
  article-title: A novel streaming data clustering algorithm based on fitness proportionate sharing
  publication-title: IEEE Access
– volume: 15
  start-page: 1
  year: 2021
  end-page: 25
  ident: b8
  article-title: A hybrid between TOA and Lévy flight trajectory for solving different cluster problems
  publication-title: International Journal of Cognitive Informatics and Natural Intelligence (IJCINI)
– start-page: 140
  year: 2008
  end-page: 149
  ident: b19
  article-title: Trajectory outlier detection: A partition-and-detect framework
  publication-title: 2008 IEEE 24th international conference on data engineering
– year: 1996
  ident: b28
  article-title: On the manhattan distance between points on space filling mesh indexings
– start-page: 18
  year: 1998
  end-page: 34
  ident: b47
  article-title: Exploring the similarity space
  publication-title: Acm sigir forum, Vol. 32
– volume: 7
  start-page: 184985
  year: 2021
  end-page: 185000
  ident: b25
  article-title: Pseudo-supervised deep subspace clustering
  publication-title: IEEE Transactions on Image Processing
– volume: 26
  start-page: 808
  year: 2021
  end-page: 829
  ident: b34
  article-title: A survey on the development of self-organizing maps for unsupervised intrusion detection
  publication-title: Mobile Networks and Applications
– volume: 25
  start-page: 103
  year: 1996
  end-page: 114
  ident: b44
  article-title: BIRCH: An efficient data clustering method for very large databases
  publication-title: ACM SIGMOD Record
– reference: (pp. 551–558).
– start-page: 49
  year: 1999
  end-page: 60
  ident: b1
  article-title: OPTICS: Ordering points to identify the clustering structure
  publication-title: ACM SIGMOD international conference on management of data, Vol.28
– start-page: 1
  year: 2021
  end-page: 12
  ident: b42
  article-title: Spatial-temporal clustering and optimization of aircraft descent and approach trajectories
  publication-title: International Journal of Aeronautical and Space Sciences
– volume: 125
  year: 2021
  ident: b16
  article-title: Electricity theft detection based on stacked sparse denoising autoencoder
  publication-title: International Journal of Electrical Power & Energy Systems
– start-page: 181
  year: 2021
  end-page: 187
  ident: b45
  article-title: Trajectory similarity measure design for ship trajectory clustering
  publication-title: 2021 IEEE 6th international conference on big data analytics
– year: 2020
  ident: b30
  article-title: Deep trajectory clustering with autoencoders
  publication-title: ICRAT 2020
– volume: 195
  year: 2020
  ident: b23
  article-title: An affinity propagation clustering based particle swarm optimizer for dynamic optimization
  publication-title: Knowledge-Based Systems
– start-page: 226
  year: 1996
  end-page: 231
  ident: b11
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD, Vol.96
– volume: 49
  start-page: 2315
  year: 2019
  end-page: 2338
  ident: b43
  article-title: Trajectory similarity clustering based on multi-feature distance measurement
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b15
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– start-page: 1
  year: 2007
  end-page: 8
  ident: b7
  article-title: Trajectory clustering for coastal surveillance
  publication-title: 2007 10th international conference on information fusion
– volume: 88
  year: 2020
  ident: b36
  article-title: Fuzzy c-means clustering using Jeffreys-divergence based similarity measure
  publication-title: Applied Soft Computing
– volume: 49
  start-page: 234
  year: 2018
  end-page: 256
  ident: b3
  article-title: Mining mobility patterns from geotagged photos through semantic trajectory clustering
  publication-title: Cybernetics and Systems
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  ident: b24
  article-title: Least squares quantization in PCM
  publication-title: IEEE Transactions on Information Theory
– reference: Varlamis, I., Sardianos, C., Bogorny, V., Alvares, L. O., Carvalho, J. T., Renso, C., et al. (2021). A novel similarity measure for multiple aspect trajectory clustering. In
– volume: 131
  start-page: 93
  year: 2020
  end-page: 102
  ident: b17
  article-title: Relation-guided representation learning
  publication-title: Neural Networks
– year: 2021
  ident: b37
  article-title: An approach of ship trajectory clustering based on minimum bounding rectangle and buffer similarity
  publication-title: IOP conference series: earth and environmental science, Vol. 769
– start-page: 160
  year: 2013
  end-page: 172
  ident: b5
  article-title: Density-based clustering based on hierarchical density estimates
  publication-title: Pacific-asia conference on knowledge discovery and data mining, Vol. 7819
– volume: vol. 48
  start-page: 478
  year: 2016
  end-page: 487
  ident: b40
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proceedings of the 33rd international conference on machine learning
– volume: 80
  start-page: 11291
  year: 2021
  end-page: 11312
  ident: b4
  article-title: TARDB-Net: triple-attention guided residual dense and BiLSTM networks for hyperspectral image classification
  publication-title: Multimedia Tools and Applications
– start-page: 3412
  year: 2010
  ident: b35
  article-title: Clustering of flight tracks
  publication-title: AIAA infotech@aerospace 2010
– volume: 9
  start-page: 16642
  year: 2021
  end-page: 16648
  ident: b46
  article-title: Analysis of terminal area airspace operation status based on trajectory characteristic point clustering
  publication-title: IEEE Access
– reference: (p. 3760).
– volume: 9
  start-page: 566
  year: 2021
  ident: b39
  article-title: Ship AIS trajectory clustering: An HDBSCAN-based approach
  publication-title: Journal of Marine Science and Engineering
– start-page: 1
  year: 2009
  end-page: 12
  ident: b9
  article-title: Automated flight track taxonomy for measuring benefits from performance based navigation
  publication-title: 2009 integrated communications, navigation and surveillance conference
– start-page: WeD4
  year: 2000
  end-page: 19–WeD4–26
  ident: b31
  article-title: Automatic air target to airlane association
  publication-title: Proceedings of the 3rd international conference on information fusion, Vol. 2
– volume: 12
  start-page: 1511
  year: 2011
  end-page: 1524
  ident: b12
  article-title: Trajectory clustering and an application to airspace monitoring
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Enriquez, M. (2013). Identifying temporally persistent flows in the terminal airspace via spectral clustering. In
– reference: (pp. 10–13).
– start-page: 1281
  year: 1999
  end-page: 1286
  ident: b18
  article-title: A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering
  publication-title: FUZZ-IEEE’99. 1999 IEEE international fuzzy systems. conference proceedings (Cat. No. 99CH36315), Vol. 3
– volume: 17
  start-page: 3306
  year: 2016
  end-page: 3317
  ident: b2
  article-title: Review and perspective for distance-based clustering of vehicle trajectories
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 40
  year: 2005
  end-page: 45
  ident: b33
  article-title: Trajectory clustering and its applications for video surveillance
  publication-title: IEEE conference on advanced video and signal based surveillance
– reference: Conde Rocha Murca, M., DeLaura, R., Hansman, R. J., Jordan, R., Reynolds, T., & Balakrishnan, H. (2016). Trajectory clustering and classification for characterization of air traffic flows. In
– start-page: 1
  year: 2021
  ident: b21
  article-title: Multi-view attributed graph clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering ( Early Access )
– volume: 40
  start-page: 249
  year: 1998
  end-page: 260
  ident: b13
  article-title: A new correlation-based fuzzy logic clustering algorithm for FMRI
  publication-title: Magnetic Resonance in Medicine
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b26
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 32
  start-page: 473
  year: 2021
  end-page: 486
  ident: b14
  article-title: Trajectory clustering for arrival aircraft via new trajectory representation
  publication-title: Journal of Systems Engineering and Electronics
– volume: 97
  start-page: 324
  year: 2018
  end-page: 347
  ident: b27
  article-title: Flight trajectory data analytics for characterization of air traffic flows: A comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 15
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b8
  article-title: A hybrid between TOA and Lévy flight trajectory for solving different cluster problems
  publication-title: International Journal of Cognitive Informatics and Natural Intelligence (IJCINI)
  doi: 10.4018/IJCINI.20211001.oa39
– start-page: 1
  year: 2007
  ident: 10.1016/j.eswa.2022.116733_b7
  article-title: Trajectory clustering for coastal surveillance
– volume: 7
  start-page: 184985
  year: 2019
  ident: 10.1016/j.eswa.2022.116733_b41
  article-title: A novel streaming data clustering algorithm based on fitness proportionate sharing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922162
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b42
  article-title: Spatial-temporal clustering and optimization of aircraft descent and approach trajectories
  publication-title: International Journal of Aeronautical and Space Sciences
– volume: 12
  start-page: 1511
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2022.116733_b12
  article-title: Trajectory clustering and an application to airspace monitoring
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2011.2160628
– volume: 7
  start-page: 184985
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b25
  article-title: Pseudo-supervised deep subspace clustering
  publication-title: IEEE Transactions on Image Processing
– volume: 32
  start-page: 473
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b14
  article-title: Trajectory clustering for arrival aircraft via new trajectory representation
  publication-title: Journal of Systems Engineering and Electronics
  doi: 10.23919/JSEE.2021.000040
– volume: 162
  year: 2020
  ident: 10.1016/j.eswa.2022.116733_b22
  article-title: STCCD: Semantic trajectory clustering based on community detection in networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113689
– volume: 547
  start-page: 592
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b20
  article-title: Time works well: Dynamic time warping based on time weighting for time series data mining
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.08.089
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 10.1016/j.eswa.2022.116733_b26
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– year: 2021
  ident: 10.1016/j.eswa.2022.116733_b37
  article-title: An approach of ship trajectory clustering based on minimum bounding rectangle and buffer similarity
– start-page: 181
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b45
  article-title: Trajectory similarity measure design for ship trajectory clustering
– volume: 97
  start-page: 324
  year: 2018
  ident: 10.1016/j.eswa.2022.116733_b27
  article-title: Flight trajectory data analytics for characterization of air traffic flows: A comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo
  publication-title: Transportation Research Part C (Emerging Technologies)
  doi: 10.1016/j.trc.2018.10.021
– ident: 10.1016/j.eswa.2022.116733_b10
– volume: 17
  start-page: 3306
  issue: 11
  year: 2016
  ident: 10.1016/j.eswa.2022.116733_b2
  article-title: Review and perspective for distance-based clustering of vehicle trajectories
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2016.2547641
– volume: 26
  start-page: 808
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b34
  article-title: A survey on the development of self-organizing maps for unsupervised intrusion detection
  publication-title: Mobile Networks and Applications
  doi: 10.1007/s11036-019-01353-0
– start-page: 140
  year: 2008
  ident: 10.1016/j.eswa.2022.116733_b19
  article-title: Trajectory outlier detection: A partition-and-detect framework
– ident: 10.1016/j.eswa.2022.116733_b38
  doi: 10.1145/3412841.3441935
– volume: 49
  start-page: 234
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2022.116733_b3
  article-title: Mining mobility patterns from geotagged photos through semantic trajectory clustering
  publication-title: Cybernetics and Systems
  doi: 10.1080/01969722.2018.1448236
– volume: 195
  year: 2020
  ident: 10.1016/j.eswa.2022.116733_b23
  article-title: An affinity propagation clustering based particle swarm optimizer for dynamic optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105711
– volume: 9
  start-page: 16642
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b46
  article-title: Analysis of terminal area airspace operation status based on trajectory characteristic point clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053012
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.eswa.2022.116733_b15
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: vol. 48
  start-page: 478
  year: 2016
  ident: 10.1016/j.eswa.2022.116733_b40
  article-title: Unsupervised deep embedding for clustering analysis
– volume: 84
  start-page: 776
  year: 2019
  ident: 10.1016/j.eswa.2022.116733_b29
  article-title: Trajectory clustering of air traffic flows around airports
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2018.11.031
– start-page: 1281
  year: 1999
  ident: 10.1016/j.eswa.2022.116733_b18
  article-title: A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering
– volume: 88
  year: 2020
  ident: 10.1016/j.eswa.2022.116733_b36
  article-title: Fuzzy c-means clustering using Jeffreys-divergence based similarity measure
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.106016
– volume: 40
  start-page: 249
  issue: 2
  year: 1998
  ident: 10.1016/j.eswa.2022.116733_b13
  article-title: A new correlation-based fuzzy logic clustering algorithm for FMRI
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.1910400211
– volume: 49
  start-page: 2315
  issue: 6
  year: 2019
  ident: 10.1016/j.eswa.2022.116733_b43
  article-title: Trajectory similarity clustering based on multi-feature distance measurement
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
  doi: 10.1007/s10489-018-1385-x
– volume: 25
  start-page: 103
  issue: 2
  year: 1996
  ident: 10.1016/j.eswa.2022.116733_b44
  article-title: BIRCH: An efficient data clustering method for very large databases
  publication-title: ACM SIGMOD Record
  doi: 10.1145/235968.233324
– volume: 66
  start-page: 106
  year: 2016
  ident: 10.1016/j.eswa.2022.116733_b32
  article-title: Mining regular behaviors based on multidimensional trajectories
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.09.015
– year: 2020
  ident: 10.1016/j.eswa.2022.116733_b30
  article-title: Deep trajectory clustering with autoencoders
– volume: 80
  start-page: 11291
  issue: 7
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b4
  article-title: TARDB-Net: triple-attention guided residual dense and BiLSTM networks for hyperspectral image classification
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-10188-x
– volume: 125
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b16
  article-title: Electricity theft detection based on stacked sparse denoising autoencoder
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2020.106448
– year: 1996
  ident: 10.1016/j.eswa.2022.116733_b28
– start-page: 49
  year: 1999
  ident: 10.1016/j.eswa.2022.116733_b1
  article-title: OPTICS: Ordering points to identify the clustering structure
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b21
  article-title: Multi-view attributed graph clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering ( Early Access )
– start-page: 40
  year: 2005
  ident: 10.1016/j.eswa.2022.116733_b33
  article-title: Trajectory clustering and its applications for video surveillance
– start-page: 3412
  year: 2010
  ident: 10.1016/j.eswa.2022.116733_b35
  article-title: Clustering of flight tracks
– start-page: WeD4
  year: 2000
  ident: 10.1016/j.eswa.2022.116733_b31
  article-title: Automatic air target to airlane association
– start-page: 226
  year: 1996
  ident: 10.1016/j.eswa.2022.116733_b11
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– start-page: 160
  year: 2013
  ident: 10.1016/j.eswa.2022.116733_b5
  article-title: Density-based clustering based on hierarchical density estimates
– volume: 9
  start-page: 566
  issue: 6
  year: 2021
  ident: 10.1016/j.eswa.2022.116733_b39
  article-title: Ship AIS trajectory clustering: An HDBSCAN-based approach
  publication-title: Journal of Marine Science and Engineering
  doi: 10.3390/jmse9060566
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 10.1016/j.eswa.2022.116733_b24
  article-title: Least squares quantization in PCM
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1982.1056489
– start-page: 18
  year: 1998
  ident: 10.1016/j.eswa.2022.116733_b47
  article-title: Exploring the similarity space
– ident: 10.1016/j.eswa.2022.116733_b6
  doi: 10.2514/6.2016-3760
– volume: 131
  start-page: 93
  year: 2020
  ident: 10.1016/j.eswa.2022.116733_b17
  article-title: Relation-guided representation learning
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.07.014
– start-page: 1
  year: 2009
  ident: 10.1016/j.eswa.2022.116733_b9
  article-title: Automated flight track taxonomy for measuring benefits from performance based navigation
SSID ssj0017007
Score 2.4332457
Snippet The rapid development of the aviation industry imposes an urgent need for airspace traffic management. Meaningful clustering of flight tracks is of paramount...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116733
SubjectTerms ADS-B system
Air traffic management
Airspace
Airspeed
Aviation
Cluster analysis
Clustering
Denoising auto-encoding
Noise
Noise reduction
Similarity
Spatial
Temporal
Vector quantization
Title Deep flight track clustering based on spatial–temporal distance and denoising auto-encoding
URI https://dx.doi.org/10.1016/j.eswa.2022.116733
https://www.proquest.com/docview/2673376227
Volume 198
WOSCitedRecordID wos000819800100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMXKC9RaNEeuEWu4vVj7WMFraBCVQ8FwgFZ3oeRU8tOE7v0iPoX-g_5Jcx6H0lTtaIHLlbkjFcrz-fZeQ9C7yIex0Waxx7xBfdCMHW8PGa-Fyd-KIJA8KIfyfL1Mz06SiaT9HgwuLS1MOcVrevk4iKd_VdWwz1gtiqdvQe73aJwA34D0-EKbIfrPzH-g5SzUVEpo1sNgOCnI151qh2CcgqoQ0uoAMFCZVLnlc11CEyLqj5i07oyAhBKTdl7E_KubTzV9NKddVOXxCfnrekIbWvlVqLiLuOn7HoffNecrSDyQPtfv3dn5Q0X9iHQTTtH-k0LyGNZ_yxkueqtIH1mq67XdG5H6oW-nszjJLAeRG1kqIoM6eYYN8S79jRMd-Xil-oZRcjukvh6L-21M85lHtqktmmm1sjUGple4wHaIDRKkyHa2Pu0Pzl0sSg61kX3duem9EpnCa7v5Db1Zu2g77WXk0302JgdeE_D5SkayPoZemJHemAj4Z-jHwo9WKMH9-jBS_TgHj24qbFBz5_fVxY32OIGA26www2-hpsX6MvB_sn7j56ZwOHxgCStR8cijjnoiEHA0oKRgrII7OM4ByW6GIs0FESMfZaSKGAiKnjB4LjgcQ6CQQJFErxEw7qp5SuESSSAUEQhT1KlFbKUM8b9JJdgcXPKtpBvX1zGTXt6NSWlym5n2RYauWdmujnLndSR5Udm1EutNmYArzuf27bMy8x3vsiI-gcUCUJf32sTb9Cj5WexjYbtvJM76CE_b8vF_K2B3l95wqht
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+flight+track+clustering+based+on+spatial%E2%80%93temporal+distance+and+denoising+auto-encoding&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Guoqian&rft.au=Fan%2C+Yuqi&rft.au=Zhang%2C+Jianjun&rft.au=Wen%2C+Pengfei&rft.date=2022-07-15&rft.issn=0957-4174&rft.volume=198&rft.spage=116733&rft_id=info:doi/10.1016%2Fj.eswa.2022.116733&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_116733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon