Deep flight track clustering based on spatial–temporal distance and denoising auto-encoding
The rapid development of the aviation industry imposes an urgent need for airspace traffic management. Meaningful clustering of flight tracks is of paramount importance for efficient operation and management of increasingly complex aerial space and traffic. Two key components exist in track clusteri...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 198; s. 116733 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
15.07.2022
Elsevier BV |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The rapid development of the aviation industry imposes an urgent need for airspace traffic management. Meaningful clustering of flight tracks is of paramount importance for efficient operation and management of increasingly complex aerial space and traffic. Two key components exist in track clustering: similarity metric and clustering method. Most of the existing studies on track similarity metrics only consider the spatial coordinates of the track points without taking into consideration of the rich information of the track data, such as flight heading and flight speed, on the measurement of track similarity. In addition, temporal properties and the derived features of the flight tracks shall be utilized to reveal the underlying patterns and overcome distortions from noise. In this paper, we propose a track similarity based on the spatial–temporal characteristics of flight tracks and a Deep Temporal Clustering method using a denoising autoencoder. Our proposed method employs the Deep Temporal Denoising Auto-encoding network to extract the latent representations of the track sequences. By extending the idea of k-means clustering, Deep Temporal Clustering groups the flight tracks with a Time Clustering Layer. Experiments are conducted using Automatic Dependent Surveillance-Broadcast track data. In comparison with classical and state-of-the-art methods, among all cases, our Deep Temporal Clustering method achieved a much-improved performance of more than 57.3%. When we introduce noise to the track records and increase its magnitude, the performance of our method degrades but the trend slows down as the noise magnitude increases. The change is less than 7% and, in some cases, is close to zero, which demonstrates the robustness of our method to noise.
•A novel metric of track similarity based on the spatial–temporal characteristics.•A deep trajectory clustering model based on the denoising autoencoder.•Improved performance for flight track clustering. |
|---|---|
| AbstractList | The rapid development of the aviation industry imposes an urgent need for airspace traffic management. Meaningful clustering of flight tracks is of paramount importance for efficient operation and management of increasingly complex aerial space and traffic. Two key components exist in track clustering: similarity metric and clustering method. Most of the existing studies on track similarity metrics only consider the spatial coordinates of the track points without taking into consideration of the rich information of the track data, such as flight heading and flight speed, on the measurement of track similarity. In addition, temporal properties and the derived features of the flight tracks shall be utilized to reveal the underlying patterns and overcome distortions from noise. In this paper, we propose a track similarity based on the spatial–temporal characteristics of flight tracks and a Deep Temporal Clustering method using a denoising autoencoder. Our proposed method employs the Deep Temporal Denoising Auto-encoding network to extract the latent representations of the track sequences. By extending the idea of k-means clustering, Deep Temporal Clustering groups the flight tracks with a Time Clustering Layer. Experiments are conducted using Automatic Dependent Surveillance-Broadcast track data. In comparison with classical and state-of-the-art methods, among all cases, our Deep Temporal Clustering method achieved a much-improved performance of more than 57.3%. When we introduce noise to the track records and increase its magnitude, the performance of our method degrades but the trend slows down as the noise magnitude increases. The change is less than 7% and, in some cases, is close to zero, which demonstrates the robustness of our method to noise.
•A novel metric of track similarity based on the spatial–temporal characteristics.•A deep trajectory clustering model based on the denoising autoencoder.•Improved performance for flight track clustering. The rapid development of the aviation industry imposes an urgent need for airspace traffic management. Meaningful clustering of flight tracks is of paramount importance for efficient operation and management of increasingly complex aerial space and traffic. Two key components exist in track clustering: similarity metric and clustering method. Most of the existing studies on track similarity metrics only consider the spatial coordinates of the track points without taking into consideration of the rich information of the track data, such as flight heading and flight speed, on the measurement of track similarity. In addition, temporal properties and the derived features of the flight tracks shall be utilized to reveal the underlying patterns and overcome distortions from noise. In this paper, we propose a track similarity based on the spatial–temporal characteristics of flight tracks and a Deep Temporal Clustering method using a denoising autoencoder. Our proposed method employs the Deep Temporal Denoising Auto-encoding network to extract the latent representations of the track sequences. By extending the idea of k-means clustering, Deep Temporal Clustering groups the flight tracks with a Time Clustering Layer. Experiments are conducted using Automatic Dependent Surveillance-Broadcast track data. In comparison with classical and state-of-the-art methods, among all cases, our Deep Temporal Clustering method achieved a much-improved performance of more than 57.3%. When we introduce noise to the track records and increase its magnitude, the performance of our method degrades but the trend slows down as the noise magnitude increases. The change is less than 7% and, in some cases, is close to zero, which demonstrates the robustness of our method to noise. |
| ArticleNumber | 116733 |
| Author | Yuan, Xiaohui Fan, Yuqi Wen, Pengfei Liu, Guoqian Lyu, Zengwei Zhang, Jianjun |
| Author_xml | – sequence: 1 givenname: Guoqian surname: Liu fullname: Liu, Guoqian email: guoqian_liu@mail.hfut.edu.cn organization: Hefei University of Technology, Hefei, 230009, China – sequence: 2 givenname: Yuqi orcidid: 0000-0003-0270-6261 surname: Fan fullname: Fan, Yuqi email: yuqi.fan@hfut.edu.cn organization: Hefei University of Technology, Hefei, 230009, China – sequence: 3 givenname: Jianjun surname: Zhang fullname: Zhang, Jianjun email: jianjun@hfut.edu.cn organization: Hefei University of Technology, Hefei, 230009, China – sequence: 4 givenname: Pengfei surname: Wen fullname: Wen, Pengfei email: 2017111025@mail.hfut.edu.cn organization: Hefei University of Technology, Hefei, 230009, China – sequence: 5 givenname: Zengwei surname: Lyu fullname: Lyu, Zengwei email: lzw@hfut.edu.cn organization: Hefei University of Technology, Hefei, 230009, China – sequence: 6 givenname: Xiaohui orcidid: 0000-0001-6897-4563 surname: Yuan fullname: Yuan, Xiaohui email: xiaohui.yuan@unt.edu organization: University of North Texas, Denton, TX, 76203, USA |
| BookMark | eNp9kMtKBDEQRYMoOD5-wFXAdY959CTT4EbGJwhudCkhnVRrxjZpk4zizn_wD_0S04wrF7MqCu65RZ09tO2DB4SOKJlSQsXJcgrpQ08ZYWxKqZCcb6EJnUteCdnwbTQhzUxWNZX1LtpLaUkIlYTICXo8Bxhw17un54xz1OYFm36VMkTnn3CrE1gcPE6Dzk73P1_fGV6HEHWPrUtZewNYe4st-ODSiOhVDhV4E2zZDtBOp_sEh39zHz1cXtwvrqvbu6ubxdltZTib50oSK4RhhHLeNl3LOtnOGiGErmvaEdvUlllC24bNeGtnnelaQqkRugUDJTHn--h43TvE8LaClNUyrKIvJxUbZUjBmCwptk6ZGFKK0KkhulcdPxUlatSolmrUqEaNaq2xQPN_kHG5yAi-2HL9ZvR0jUJ5_d1BVMm4ogasi2CyssFtwn8BRU-R-w |
| CitedBy_id | crossref_primary_10_1016_j_dt_2025_07_020 crossref_primary_10_3390_rs16111944 crossref_primary_10_1109_TAES_2023_3285203 crossref_primary_10_3390_jmse10091319 crossref_primary_10_1109_TGRS_2023_3250457 crossref_primary_10_1109_OJITS_2025_3574746 crossref_primary_10_1109_JSEN_2024_3505931 crossref_primary_10_1155_2023_3830857 |
| Cites_doi | 10.4018/IJCINI.20211001.oa39 10.1109/ACCESS.2019.2922162 10.1109/TITS.2011.2160628 10.23919/JSEE.2021.000040 10.1016/j.eswa.2020.113689 10.1016/j.ins.2020.08.089 10.1016/j.trc.2018.10.021 10.1109/TITS.2016.2547641 10.1007/s11036-019-01353-0 10.1145/3412841.3441935 10.1080/01969722.2018.1448236 10.1016/j.knosys.2020.105711 10.1109/ACCESS.2021.3053012 10.1162/neco.2006.18.7.1527 10.1016/j.ast.2018.11.031 10.1016/j.asoc.2019.106016 10.1002/mrm.1910400211 10.1007/s10489-018-1385-x 10.1145/235968.233324 10.1016/j.eswa.2016.09.015 10.1007/s11042-020-10188-x 10.1016/j.ijepes.2020.106448 10.3390/jmse9060566 10.1109/TIT.1982.1056489 10.2514/6.2016-3760 10.1016/j.neunet.2020.07.014 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jul 15, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jul 15, 2022 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2022.116733 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2022_116733 S0957417422002044 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AAYWO AAYXX ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-70d66c20133b9fb2f7b59666a441f0d94d2d01b9253bd5fcfb011c6abece41f83 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819800100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 09 06:57:13 EST 2025 Sat Nov 29 07:03:54 EST 2025 Tue Nov 18 22:35:04 EST 2025 Sun Apr 06 06:53:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Denoising auto-encoding Similarity Temporal Clustering Spatial |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-70d66c20133b9fb2f7b59666a441f0d94d2d01b9253bd5fcfb011c6abece41f83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0270-6261 0000-0001-6897-4563 |
| PQID | 2673376227 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2673376227 crossref_primary_10_1016_j_eswa_2022_116733 crossref_citationtrail_10_1016_j_eswa_2022_116733 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116733 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-15 |
| PublicationDateYYYYMMDD | 2022-07-15 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Qu, Yang, Guo, Ma, Sun, Ke (b34) 2021; 26 Oliver, Basora, Viry, Alligier (b30) 2020 Dahlbom, Niklasson (b7) 2007 Lin, Kang, Zhang, Tian (b21) 2021 Li (b20) 2021; 547 Sun, Wang (b37) 2021 (pp. 551–558). Besse, Guillouet, Loubes, Royer (b2) 2016; 17 Krishnapuram, Joshi, Yi (b18) 1999 Yang, Tang, Chen, Wang (b42) 2021 Seal, Karlekar, Krejcar, Gonzalo-Martin (b36) 2020; 88 Lloyd (b24) 1982; 28 Cai, Liu, Wei, Li, Kan (b4) 2021; 80 Enriquez, M. (2013). Identifying temporally persistent flows in the terminal airspace via spectral clustering. In Ankerst, Breunig, Kriegel, Sander (b1) 1999 Oxenham (b31) 2000 Conde Rocha Murca, M., DeLaura, R., Hansman, R. J., Jordan, R., Reynolds, T., & Balakrishnan, H. (2016). Trajectory clustering and classification for characterization of air traffic flows. In Eckstein (b9) 2009 Liu, Guo (b22) 2020; 162 Pan, He, Wang, Xiong, Peng (b32) 2016; 66 Zhang, Ramakrishnan, Livny (b44) 1996; 25 Huang, Xu (b16) 2021; 125 Maaten, Hinton (b26) 2008; 9 Ester, Kriegel, Sander, Xu (b11) 1996 Xie, Girshick, Farhadi (b40) 2016; vol. 48 Yan, Razeghi-Jahromi, Homaifar, Erol, Girma, Tunstel (b41) 2019; 7 Zhang, Shi (b45) 2021 Devarakonda, Saidala, Kamarajugadda (b8) 2021; 15 Campello, Moulavi, Sander (b5) 2013 Hinton, Osindero, Teh (b15) 2006; 18 Murça, Hansman, Li, Ren (b27) 2018; 97 Rehm (b35) 2010 Gariel, Srivastava, Feron (b12) 2011; 12 Cai, Lee, Lee (b3) 2018; 49 Kang, Lu, Liang, Bai, Xu (b17) 2020; 131 Lee, Han, Li (b19) 2008 Lv, Kang, Lu, Xu (b25) 2021; 7 Zhong, Liu, Qi (b46) 2021; 9 Gui, Zhang, Peng (b14) 2021; 32 Wang, Chen, Chen, Mou (b39) 2021; 9 Niedermeier, Sanders (b28) 1996 Piciarelli, Foresti, Snidaro (b33) 2005 (pp. 10–13). Liu, Liu, Jin, Li, Zheng (b23) 2020; 195 Zobel, Moffat (b47) 1998 (p. 3760). Golay, Kollias, Stoll, Meier, Valavanis, Boesiger (b13) 1998; 40 Yu, Luo, Chen, Chen (b43) 2019; 49 Olive, Morio (b29) 2019; 84 Varlamis, I., Sardianos, C., Bogorny, V., Alvares, L. O., Carvalho, J. T., Renso, C., et al. (2021). A novel similarity measure for multiple aspect trajectory clustering. In 10.1016/j.eswa.2022.116733_b10 Niedermeier (10.1016/j.eswa.2022.116733_b28) 1996 Cai (10.1016/j.eswa.2022.116733_b3) 2018; 49 Zhang (10.1016/j.eswa.2022.116733_b44) 1996; 25 Zhong (10.1016/j.eswa.2022.116733_b46) 2021; 9 Lv (10.1016/j.eswa.2022.116733_b25) 2021; 7 Zhang (10.1016/j.eswa.2022.116733_b45) 2021 Seal (10.1016/j.eswa.2022.116733_b36) 2020; 88 Dahlbom (10.1016/j.eswa.2022.116733_b7) 2007 Besse (10.1016/j.eswa.2022.116733_b2) 2016; 17 Murça (10.1016/j.eswa.2022.116733_b27) 2018; 97 Maaten (10.1016/j.eswa.2022.116733_b26) 2008; 9 Ester (10.1016/j.eswa.2022.116733_b11) 1996 Rehm (10.1016/j.eswa.2022.116733_b35) 2010 Cai (10.1016/j.eswa.2022.116733_b4) 2021; 80 Liu (10.1016/j.eswa.2022.116733_b23) 2020; 195 Pan (10.1016/j.eswa.2022.116733_b32) 2016; 66 Liu (10.1016/j.eswa.2022.116733_b22) 2020; 162 Oliver (10.1016/j.eswa.2022.116733_b30) 2020 Olive (10.1016/j.eswa.2022.116733_b29) 2019; 84 Huang (10.1016/j.eswa.2022.116733_b16) 2021; 125 Campello (10.1016/j.eswa.2022.116733_b5) 2013 Lloyd (10.1016/j.eswa.2022.116733_b24) 1982; 28 Yan (10.1016/j.eswa.2022.116733_b41) 2019; 7 Eckstein (10.1016/j.eswa.2022.116733_b9) 2009 Wang (10.1016/j.eswa.2022.116733_b39) 2021; 9 Xie (10.1016/j.eswa.2022.116733_b40) 2016; vol. 48 Gui (10.1016/j.eswa.2022.116733_b14) 2021; 32 Yu (10.1016/j.eswa.2022.116733_b43) 2019; 49 Li (10.1016/j.eswa.2022.116733_b20) 2021; 547 Kang (10.1016/j.eswa.2022.116733_b17) 2020; 131 Golay (10.1016/j.eswa.2022.116733_b13) 1998; 40 Piciarelli (10.1016/j.eswa.2022.116733_b33) 2005 Sun (10.1016/j.eswa.2022.116733_b37) 2021 Lee (10.1016/j.eswa.2022.116733_b19) 2008 Zobel (10.1016/j.eswa.2022.116733_b47) 1998 10.1016/j.eswa.2022.116733_b6 Yang (10.1016/j.eswa.2022.116733_b42) 2021 Devarakonda (10.1016/j.eswa.2022.116733_b8) 2021; 15 Gariel (10.1016/j.eswa.2022.116733_b12) 2011; 12 Hinton (10.1016/j.eswa.2022.116733_b15) 2006; 18 Krishnapuram (10.1016/j.eswa.2022.116733_b18) 1999 Lin (10.1016/j.eswa.2022.116733_b21) 2021 Qu (10.1016/j.eswa.2022.116733_b34) 2021; 26 Oxenham (10.1016/j.eswa.2022.116733_b31) 2000 10.1016/j.eswa.2022.116733_b38 Ankerst (10.1016/j.eswa.2022.116733_b1) 1999 |
| References_xml | – volume: 66 start-page: 106 year: 2016 end-page: 113 ident: b32 article-title: Mining regular behaviors based on multidimensional trajectories publication-title: Expert Systems with Applications – volume: 162 year: 2020 ident: b22 article-title: STCCD: Semantic trajectory clustering based on community detection in networks publication-title: Expert Systems with Applications – volume: 84 start-page: 776 year: 2019 end-page: 781 ident: b29 article-title: Trajectory clustering of air traffic flows around airports publication-title: Aerospace Science and Technology – volume: 547 start-page: 592 year: 2021 end-page: 608 ident: b20 article-title: Time works well: Dynamic time warping based on time weighting for time series data mining publication-title: Information Sciences – volume: 7 start-page: 184985 year: 2019 end-page: 185000 ident: b41 article-title: A novel streaming data clustering algorithm based on fitness proportionate sharing publication-title: IEEE Access – volume: 15 start-page: 1 year: 2021 end-page: 25 ident: b8 article-title: A hybrid between TOA and Lévy flight trajectory for solving different cluster problems publication-title: International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) – start-page: 140 year: 2008 end-page: 149 ident: b19 article-title: Trajectory outlier detection: A partition-and-detect framework publication-title: 2008 IEEE 24th international conference on data engineering – year: 1996 ident: b28 article-title: On the manhattan distance between points on space filling mesh indexings – start-page: 18 year: 1998 end-page: 34 ident: b47 article-title: Exploring the similarity space publication-title: Acm sigir forum, Vol. 32 – volume: 7 start-page: 184985 year: 2021 end-page: 185000 ident: b25 article-title: Pseudo-supervised deep subspace clustering publication-title: IEEE Transactions on Image Processing – volume: 26 start-page: 808 year: 2021 end-page: 829 ident: b34 article-title: A survey on the development of self-organizing maps for unsupervised intrusion detection publication-title: Mobile Networks and Applications – volume: 25 start-page: 103 year: 1996 end-page: 114 ident: b44 article-title: BIRCH: An efficient data clustering method for very large databases publication-title: ACM SIGMOD Record – reference: (pp. 551–558). – start-page: 49 year: 1999 end-page: 60 ident: b1 article-title: OPTICS: Ordering points to identify the clustering structure publication-title: ACM SIGMOD international conference on management of data, Vol.28 – start-page: 1 year: 2021 end-page: 12 ident: b42 article-title: Spatial-temporal clustering and optimization of aircraft descent and approach trajectories publication-title: International Journal of Aeronautical and Space Sciences – volume: 125 year: 2021 ident: b16 article-title: Electricity theft detection based on stacked sparse denoising autoencoder publication-title: International Journal of Electrical Power & Energy Systems – start-page: 181 year: 2021 end-page: 187 ident: b45 article-title: Trajectory similarity measure design for ship trajectory clustering publication-title: 2021 IEEE 6th international conference on big data analytics – year: 2020 ident: b30 article-title: Deep trajectory clustering with autoencoders publication-title: ICRAT 2020 – volume: 195 year: 2020 ident: b23 article-title: An affinity propagation clustering based particle swarm optimizer for dynamic optimization publication-title: Knowledge-Based Systems – start-page: 226 year: 1996 end-page: 231 ident: b11 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: KDD, Vol.96 – volume: 49 start-page: 2315 year: 2019 end-page: 2338 ident: b43 article-title: Trajectory similarity clustering based on multi-feature distance measurement publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b15 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation – start-page: 1 year: 2007 end-page: 8 ident: b7 article-title: Trajectory clustering for coastal surveillance publication-title: 2007 10th international conference on information fusion – volume: 88 year: 2020 ident: b36 article-title: Fuzzy c-means clustering using Jeffreys-divergence based similarity measure publication-title: Applied Soft Computing – volume: 49 start-page: 234 year: 2018 end-page: 256 ident: b3 article-title: Mining mobility patterns from geotagged photos through semantic trajectory clustering publication-title: Cybernetics and Systems – volume: 28 start-page: 129 year: 1982 end-page: 137 ident: b24 article-title: Least squares quantization in PCM publication-title: IEEE Transactions on Information Theory – reference: Varlamis, I., Sardianos, C., Bogorny, V., Alvares, L. O., Carvalho, J. T., Renso, C., et al. (2021). A novel similarity measure for multiple aspect trajectory clustering. In – volume: 131 start-page: 93 year: 2020 end-page: 102 ident: b17 article-title: Relation-guided representation learning publication-title: Neural Networks – year: 2021 ident: b37 article-title: An approach of ship trajectory clustering based on minimum bounding rectangle and buffer similarity publication-title: IOP conference series: earth and environmental science, Vol. 769 – start-page: 160 year: 2013 end-page: 172 ident: b5 article-title: Density-based clustering based on hierarchical density estimates publication-title: Pacific-asia conference on knowledge discovery and data mining, Vol. 7819 – volume: vol. 48 start-page: 478 year: 2016 end-page: 487 ident: b40 article-title: Unsupervised deep embedding for clustering analysis publication-title: Proceedings of the 33rd international conference on machine learning – volume: 80 start-page: 11291 year: 2021 end-page: 11312 ident: b4 article-title: TARDB-Net: triple-attention guided residual dense and BiLSTM networks for hyperspectral image classification publication-title: Multimedia Tools and Applications – start-page: 3412 year: 2010 ident: b35 article-title: Clustering of flight tracks publication-title: AIAA infotech@aerospace 2010 – volume: 9 start-page: 16642 year: 2021 end-page: 16648 ident: b46 article-title: Analysis of terminal area airspace operation status based on trajectory characteristic point clustering publication-title: IEEE Access – reference: (p. 3760). – volume: 9 start-page: 566 year: 2021 ident: b39 article-title: Ship AIS trajectory clustering: An HDBSCAN-based approach publication-title: Journal of Marine Science and Engineering – start-page: 1 year: 2009 end-page: 12 ident: b9 article-title: Automated flight track taxonomy for measuring benefits from performance based navigation publication-title: 2009 integrated communications, navigation and surveillance conference – start-page: WeD4 year: 2000 end-page: 19–WeD4–26 ident: b31 article-title: Automatic air target to airlane association publication-title: Proceedings of the 3rd international conference on information fusion, Vol. 2 – volume: 12 start-page: 1511 year: 2011 end-page: 1524 ident: b12 article-title: Trajectory clustering and an application to airspace monitoring publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Enriquez, M. (2013). Identifying temporally persistent flows in the terminal airspace via spectral clustering. In – reference: (pp. 10–13). – start-page: 1281 year: 1999 end-page: 1286 ident: b18 article-title: A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering publication-title: FUZZ-IEEE’99. 1999 IEEE international fuzzy systems. conference proceedings (Cat. No. 99CH36315), Vol. 3 – volume: 17 start-page: 3306 year: 2016 end-page: 3317 ident: b2 article-title: Review and perspective for distance-based clustering of vehicle trajectories publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 40 year: 2005 end-page: 45 ident: b33 article-title: Trajectory clustering and its applications for video surveillance publication-title: IEEE conference on advanced video and signal based surveillance – reference: Conde Rocha Murca, M., DeLaura, R., Hansman, R. J., Jordan, R., Reynolds, T., & Balakrishnan, H. (2016). Trajectory clustering and classification for characterization of air traffic flows. In – start-page: 1 year: 2021 ident: b21 article-title: Multi-view attributed graph clustering publication-title: IEEE Transactions on Knowledge and Data Engineering ( Early Access ) – volume: 40 start-page: 249 year: 1998 end-page: 260 ident: b13 article-title: A new correlation-based fuzzy logic clustering algorithm for FMRI publication-title: Magnetic Resonance in Medicine – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b26 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – volume: 32 start-page: 473 year: 2021 end-page: 486 ident: b14 article-title: Trajectory clustering for arrival aircraft via new trajectory representation publication-title: Journal of Systems Engineering and Electronics – volume: 97 start-page: 324 year: 2018 end-page: 347 ident: b27 article-title: Flight trajectory data analytics for characterization of air traffic flows: A comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo publication-title: Transportation Research Part C (Emerging Technologies) – volume: 15 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.eswa.2022.116733_b8 article-title: A hybrid between TOA and Lévy flight trajectory for solving different cluster problems publication-title: International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) doi: 10.4018/IJCINI.20211001.oa39 – start-page: 1 year: 2007 ident: 10.1016/j.eswa.2022.116733_b7 article-title: Trajectory clustering for coastal surveillance – volume: 7 start-page: 184985 year: 2019 ident: 10.1016/j.eswa.2022.116733_b41 article-title: A novel streaming data clustering algorithm based on fitness proportionate sharing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922162 – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2022.116733_b42 article-title: Spatial-temporal clustering and optimization of aircraft descent and approach trajectories publication-title: International Journal of Aeronautical and Space Sciences – volume: 12 start-page: 1511 issue: 4 year: 2011 ident: 10.1016/j.eswa.2022.116733_b12 article-title: Trajectory clustering and an application to airspace monitoring publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2011.2160628 – volume: 7 start-page: 184985 year: 2021 ident: 10.1016/j.eswa.2022.116733_b25 article-title: Pseudo-supervised deep subspace clustering publication-title: IEEE Transactions on Image Processing – volume: 32 start-page: 473 issue: 2 year: 2021 ident: 10.1016/j.eswa.2022.116733_b14 article-title: Trajectory clustering for arrival aircraft via new trajectory representation publication-title: Journal of Systems Engineering and Electronics doi: 10.23919/JSEE.2021.000040 – volume: 162 year: 2020 ident: 10.1016/j.eswa.2022.116733_b22 article-title: STCCD: Semantic trajectory clustering based on community detection in networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113689 – volume: 547 start-page: 592 year: 2021 ident: 10.1016/j.eswa.2022.116733_b20 article-title: Time works well: Dynamic time warping based on time weighting for time series data mining publication-title: Information Sciences doi: 10.1016/j.ins.2020.08.089 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: 10.1016/j.eswa.2022.116733_b26 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – year: 2021 ident: 10.1016/j.eswa.2022.116733_b37 article-title: An approach of ship trajectory clustering based on minimum bounding rectangle and buffer similarity – start-page: 181 year: 2021 ident: 10.1016/j.eswa.2022.116733_b45 article-title: Trajectory similarity measure design for ship trajectory clustering – volume: 97 start-page: 324 year: 2018 ident: 10.1016/j.eswa.2022.116733_b27 article-title: Flight trajectory data analytics for characterization of air traffic flows: A comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo publication-title: Transportation Research Part C (Emerging Technologies) doi: 10.1016/j.trc.2018.10.021 – ident: 10.1016/j.eswa.2022.116733_b10 – volume: 17 start-page: 3306 issue: 11 year: 2016 ident: 10.1016/j.eswa.2022.116733_b2 article-title: Review and perspective for distance-based clustering of vehicle trajectories publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2016.2547641 – volume: 26 start-page: 808 issue: 2 year: 2021 ident: 10.1016/j.eswa.2022.116733_b34 article-title: A survey on the development of self-organizing maps for unsupervised intrusion detection publication-title: Mobile Networks and Applications doi: 10.1007/s11036-019-01353-0 – start-page: 140 year: 2008 ident: 10.1016/j.eswa.2022.116733_b19 article-title: Trajectory outlier detection: A partition-and-detect framework – ident: 10.1016/j.eswa.2022.116733_b38 doi: 10.1145/3412841.3441935 – volume: 49 start-page: 234 issue: 4 year: 2018 ident: 10.1016/j.eswa.2022.116733_b3 article-title: Mining mobility patterns from geotagged photos through semantic trajectory clustering publication-title: Cybernetics and Systems doi: 10.1080/01969722.2018.1448236 – volume: 195 year: 2020 ident: 10.1016/j.eswa.2022.116733_b23 article-title: An affinity propagation clustering based particle swarm optimizer for dynamic optimization publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.105711 – volume: 9 start-page: 16642 year: 2021 ident: 10.1016/j.eswa.2022.116733_b46 article-title: Analysis of terminal area airspace operation status based on trajectory characteristic point clustering publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053012 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.eswa.2022.116733_b15 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – volume: vol. 48 start-page: 478 year: 2016 ident: 10.1016/j.eswa.2022.116733_b40 article-title: Unsupervised deep embedding for clustering analysis – volume: 84 start-page: 776 year: 2019 ident: 10.1016/j.eswa.2022.116733_b29 article-title: Trajectory clustering of air traffic flows around airports publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2018.11.031 – start-page: 1281 year: 1999 ident: 10.1016/j.eswa.2022.116733_b18 article-title: A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering – volume: 88 year: 2020 ident: 10.1016/j.eswa.2022.116733_b36 article-title: Fuzzy c-means clustering using Jeffreys-divergence based similarity measure publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.106016 – volume: 40 start-page: 249 issue: 2 year: 1998 ident: 10.1016/j.eswa.2022.116733_b13 article-title: A new correlation-based fuzzy logic clustering algorithm for FMRI publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.1910400211 – volume: 49 start-page: 2315 issue: 6 year: 2019 ident: 10.1016/j.eswa.2022.116733_b43 article-title: Trajectory similarity clustering based on multi-feature distance measurement publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies doi: 10.1007/s10489-018-1385-x – volume: 25 start-page: 103 issue: 2 year: 1996 ident: 10.1016/j.eswa.2022.116733_b44 article-title: BIRCH: An efficient data clustering method for very large databases publication-title: ACM SIGMOD Record doi: 10.1145/235968.233324 – volume: 66 start-page: 106 year: 2016 ident: 10.1016/j.eswa.2022.116733_b32 article-title: Mining regular behaviors based on multidimensional trajectories publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.09.015 – year: 2020 ident: 10.1016/j.eswa.2022.116733_b30 article-title: Deep trajectory clustering with autoencoders – volume: 80 start-page: 11291 issue: 7 year: 2021 ident: 10.1016/j.eswa.2022.116733_b4 article-title: TARDB-Net: triple-attention guided residual dense and BiLSTM networks for hyperspectral image classification publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-020-10188-x – volume: 125 year: 2021 ident: 10.1016/j.eswa.2022.116733_b16 article-title: Electricity theft detection based on stacked sparse denoising autoencoder publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2020.106448 – year: 1996 ident: 10.1016/j.eswa.2022.116733_b28 – start-page: 49 year: 1999 ident: 10.1016/j.eswa.2022.116733_b1 article-title: OPTICS: Ordering points to identify the clustering structure – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2022.116733_b21 article-title: Multi-view attributed graph clustering publication-title: IEEE Transactions on Knowledge and Data Engineering ( Early Access ) – start-page: 40 year: 2005 ident: 10.1016/j.eswa.2022.116733_b33 article-title: Trajectory clustering and its applications for video surveillance – start-page: 3412 year: 2010 ident: 10.1016/j.eswa.2022.116733_b35 article-title: Clustering of flight tracks – start-page: WeD4 year: 2000 ident: 10.1016/j.eswa.2022.116733_b31 article-title: Automatic air target to airlane association – start-page: 226 year: 1996 ident: 10.1016/j.eswa.2022.116733_b11 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – start-page: 160 year: 2013 ident: 10.1016/j.eswa.2022.116733_b5 article-title: Density-based clustering based on hierarchical density estimates – volume: 9 start-page: 566 issue: 6 year: 2021 ident: 10.1016/j.eswa.2022.116733_b39 article-title: Ship AIS trajectory clustering: An HDBSCAN-based approach publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse9060566 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 10.1016/j.eswa.2022.116733_b24 article-title: Least squares quantization in PCM publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1982.1056489 – start-page: 18 year: 1998 ident: 10.1016/j.eswa.2022.116733_b47 article-title: Exploring the similarity space – ident: 10.1016/j.eswa.2022.116733_b6 doi: 10.2514/6.2016-3760 – volume: 131 start-page: 93 year: 2020 ident: 10.1016/j.eswa.2022.116733_b17 article-title: Relation-guided representation learning publication-title: Neural Networks doi: 10.1016/j.neunet.2020.07.014 – start-page: 1 year: 2009 ident: 10.1016/j.eswa.2022.116733_b9 article-title: Automated flight track taxonomy for measuring benefits from performance based navigation |
| SSID | ssj0017007 |
| Score | 2.4332457 |
| Snippet | The rapid development of the aviation industry imposes an urgent need for airspace traffic management. Meaningful clustering of flight tracks is of paramount... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116733 |
| SubjectTerms | ADS-B system Air traffic management Airspace Airspeed Aviation Cluster analysis Clustering Denoising auto-encoding Noise Noise reduction Similarity Spatial Temporal Vector quantization |
| Title | Deep flight track clustering based on spatial–temporal distance and denoising auto-encoding |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.116733 https://www.proquest.com/docview/2673376227 |
| Volume | 198 |
| WOSCitedRecordID | wos000819800100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMXKC9RaNEeuEWu4vVj7WMFraBCVQ8FwgFZ3oeRU8tOE7v0iPoX-g_5Jcx6H0lTtaIHLlbkjFcrz-fZeQ9C7yIex0Waxx7xBfdCMHW8PGa-Fyd-KIJA8KIfyfL1Mz06SiaT9HgwuLS1MOcVrevk4iKd_VdWwz1gtiqdvQe73aJwA34D0-EKbIfrPzH-g5SzUVEpo1sNgOCnI151qh2CcgqoQ0uoAMFCZVLnlc11CEyLqj5i07oyAhBKTdl7E_KubTzV9NKddVOXxCfnrekIbWvlVqLiLuOn7HoffNecrSDyQPtfv3dn5Q0X9iHQTTtH-k0LyGNZ_yxkueqtIH1mq67XdG5H6oW-nszjJLAeRG1kqIoM6eYYN8S79jRMd-Xil-oZRcjukvh6L-21M85lHtqktmmm1sjUGple4wHaIDRKkyHa2Pu0Pzl0sSg61kX3duem9EpnCa7v5Db1Zu2g77WXk0302JgdeE_D5SkayPoZemJHemAj4Z-jHwo9WKMH9-jBS_TgHj24qbFBz5_fVxY32OIGA26www2-hpsX6MvB_sn7j56ZwOHxgCStR8cijjnoiEHA0oKRgrII7OM4ByW6GIs0FESMfZaSKGAiKnjB4LjgcQ6CQQJFErxEw7qp5SuESSSAUEQhT1KlFbKUM8b9JJdgcXPKtpBvX1zGTXt6NSWlym5n2RYauWdmujnLndSR5Udm1EutNmYArzuf27bMy8x3vsiI-gcUCUJf32sTb9Cj5WexjYbtvJM76CE_b8vF_K2B3l95wqht |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+flight+track+clustering+based+on+spatial%E2%80%93temporal+distance+and+denoising+auto-encoding&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Guoqian&rft.au=Fan%2C+Yuqi&rft.au=Zhang%2C+Jianjun&rft.au=Wen%2C+Pengfei&rft.date=2022-07-15&rft.issn=0957-4174&rft.volume=198&rft.spage=116733&rft_id=info:doi/10.1016%2Fj.eswa.2022.116733&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_116733 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |