An artificial neural network supported stochastic process for degradation modeling and prediction

•Stochastic process is combined with ANN to handle degradation path uncertainty.•The hyper parameters are evaluated by moment estimation offline.•The process parameters are updated by Bayesian inference for online prediction.•Without path information the ANN supported stochastic process is still pra...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Reliability engineering & system safety Ročník 214; s. 107738
Hlavní autori: Liu, Di, Wang, Shaoping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Barking Elsevier Ltd 01.10.2021
Elsevier BV
Predmet:
ISSN:0951-8320, 1879-0836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Stochastic process is combined with ANN to handle degradation path uncertainty.•The hyper parameters are evaluated by moment estimation offline.•The process parameters are updated by Bayesian inference for online prediction.•Without path information the ANN supported stochastic process is still practical.•The assumption that the initial degradation is zero is also freed. An artificial neural network supported stochastic process for degradation modeling and prediction is proposed in this paper. An artificial neural network is applied to describe the degradation path due to data fitting flexibility and path description considering degradation path uncertainty. The assumption that the initial degradation is zero in the stochastic process is freed. The artificial neural network supported stochastic process is trained by minimizing the minus log-likelihood offline-based on the run-to-failure degradation data. Considering unit-to-unit variance in population degradation modeling, the process parameters are assumed to be randomly distributed. Here, three common distributions describe the process parameters, and Akaike information criteria applied to select distributions of process parameters. The process parameters are evaluated by Bayesian inference based on the trained path, and distributions of process parameters are based on real-time degradation data for online prediction. The proposed method is verified by a simulation experiment based on a Wiener process, which seemed a true model. Furthermore, an actual degradation dataset is also applied to illustrate the effectiveness of the proposed method. Both the simulation experiment and actual example indicate that the proposed stochastic process is capable of degradation modeling and degradation predicting, even without prior information about the degradation path.
AbstractList •Stochastic process is combined with ANN to handle degradation path uncertainty.•The hyper parameters are evaluated by moment estimation offline.•The process parameters are updated by Bayesian inference for online prediction.•Without path information the ANN supported stochastic process is still practical.•The assumption that the initial degradation is zero is also freed. An artificial neural network supported stochastic process for degradation modeling and prediction is proposed in this paper. An artificial neural network is applied to describe the degradation path due to data fitting flexibility and path description considering degradation path uncertainty. The assumption that the initial degradation is zero in the stochastic process is freed. The artificial neural network supported stochastic process is trained by minimizing the minus log-likelihood offline-based on the run-to-failure degradation data. Considering unit-to-unit variance in population degradation modeling, the process parameters are assumed to be randomly distributed. Here, three common distributions describe the process parameters, and Akaike information criteria applied to select distributions of process parameters. The process parameters are evaluated by Bayesian inference based on the trained path, and distributions of process parameters are based on real-time degradation data for online prediction. The proposed method is verified by a simulation experiment based on a Wiener process, which seemed a true model. Furthermore, an actual degradation dataset is also applied to illustrate the effectiveness of the proposed method. Both the simulation experiment and actual example indicate that the proposed stochastic process is capable of degradation modeling and degradation predicting, even without prior information about the degradation path.
An artificial neural network supported stochastic process for degradation modeling and prediction is proposed in this paper. An artificial neural network is applied to describe the degradation path due to data fitting flexibility and path description considering degradation path uncertainty. The assumption that the initial degradation is zero in the stochastic process is freed. The artificial neural network supported stochastic process is trained by minimizing the minus log-likelihood offline-based on the run-to-failure degradation data. Considering unit-to-unit variance in population degradation modeling, the process parameters are assumed to be randomly distributed. Here, three common distributions describe the process parameters, and Akaike information criteria applied to select distributions of process parameters. The process parameters are evaluated by Bayesian inference based on the trained path, and distributions of process parameters are based on real-time degradation data for online prediction. The proposed method is verified by a simulation experiment based on a Wiener process, which seemed a true model. Furthermore, an actual degradation dataset is also applied to illustrate the effectiveness of the proposed method. Both the simulation experiment and actual example indicate that the proposed stochastic process is capable of degradation modeling and degradation predicting, even without prior information about the degradation path.
ArticleNumber 107738
Author Liu, Di
Wang, Shaoping
Author_xml – sequence: 1
  givenname: Di
  surname: Liu
  fullname: Liu, Di
  email: liudi54834@buaa.edu.cn
– sequence: 2
  givenname: Shaoping
  surname: Wang
  fullname: Wang, Shaoping
BookMark eNp9kMtOAyEUhompiW31BVyRuJ4KDAxM4qZpvCVNXOieMMBUagsjUI1vL21duejqJCf_dy7fBIx88BaAa4xmGOHmdj2LNqUZQQSXBue1OANjLHhbIVE3IzBGLcOVqAm6AJOU1ggh2jI-BmruoYrZ9U47tYHe7uKh5O8QP2DaDUOI2RqYctDvKmWn4RCDLstgHyI0dhWVUdkFD7fB2I3zK6i8KSFrnN73L8F5rzbJXv3VKXh9uH9bPFXLl8fnxXxZ6ZqIXDV9gylvtOlqITghGjWCco26uqNGNQazlmrcc9phxhkxfc-FwRhRQmmj6im4OU4t133ubMpyHXbRl4WSMFYLRgTjJUWOKR1DStH2cohuq-KPxEjuRcq13IuUe5HyKLJA4h-kXT68nKNym9Po3RG15fEvZ6NM2lmvi5todZYmuFP4L6nwkc4
CitedBy_id crossref_primary_10_1016_j_engfailanal_2024_108772
crossref_primary_10_1002_qre_3234
crossref_primary_10_1016_j_measurement_2023_113410
crossref_primary_10_1016_j_aei_2025_103376
crossref_primary_10_1016_j_autcon_2023_104831
crossref_primary_10_1016_j_cie_2021_107745
crossref_primary_10_1002_qre_3659
crossref_primary_10_1016_j_ress_2022_108898
crossref_primary_10_1016_j_ress_2022_108811
crossref_primary_10_1016_j_ress_2022_108439
crossref_primary_10_3390_fractalfract8070408
crossref_primary_10_1016_j_ress_2023_109786
crossref_primary_10_1016_j_ress_2022_108335
crossref_primary_10_1016_j_rser_2024_115281
crossref_primary_10_1016_j_ress_2025_111286
crossref_primary_10_1109_ACCESS_2023_3267960
crossref_primary_10_1016_j_ress_2024_110494
crossref_primary_10_1002_ece3_70517
crossref_primary_10_1002_qre_3802
crossref_primary_10_1016_j_asoc_2023_110593
crossref_primary_10_1016_j_asoc_2023_110044
crossref_primary_10_1016_j_ress_2022_108602
crossref_primary_10_3390_app12052622
crossref_primary_10_3390_fractalfract9060375
crossref_primary_10_1016_j_ress_2024_109952
crossref_primary_10_1002_qre_3394
crossref_primary_10_1016_j_ress_2022_109051
Cites_doi 10.1080/24725854.2018.1468121
10.1080/00401706.2013.879077
10.1109/TIE.2018.2844856
10.1016/j.ymssp.2019.03.019
10.1109/ACCESS.2018.2877630
10.1080/0740817X.2013.812270
10.1016/j.cherd.2019.09.027
10.1023/B:LIDA.0000036389.14073.dd
10.1016/j.strusafe.2012.08.003
10.1016/j.microrel.2011.10.017
10.1002/qre.2502
10.1109/TR.2009.2026784
10.1109/TR.2017.2785978
10.1016/j.ress.2018.06.019
10.1198/004017004000000464
10.1016/j.ress.2017.08.004
10.1016/j.ymssp.2018.02.016
10.3390/s16081242
10.1109/TR.2017.2711621
10.3390/s19061472
10.1016/j.triboint.2019.05.040
10.1080/01621459.1997.10473615
10.1177/1687814019853351
10.1016/j.microrel.2012.02.019
10.3390/en10111687
10.1198/TECH.2009.08197
10.1080/01919510701549236
10.1016/j.ress.2014.10.009
10.1109/TII.2018.2869429
10.1080/00401706.2013.830074
10.1016/j.ress.2017.05.047
10.1080/03610927808827599
10.1016/j.nucengdes.2018.08.016
10.1016/j.ress.2019.02.017
10.1016/j.ress.2016.04.005
10.1109/TFUZZ.2017.2738607
10.1109/TIE.2019.2907440
10.1016/j.ress.2019.106610
10.1109/TII.2017.2684821
10.1016/S0951-8320(96)00078-6
10.1016/j.ress.2014.06.005
10.1016/j.ress.2016.07.024
10.1109/TR.2016.2635149
10.1016/j.ress.2015.02.005
10.1080/00949655.2017.1324858
10.1016/S0301-679X(00)00115-8
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Oct 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 2021
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2021.107738
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2021_107738
S0951832021002714
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-6f61476cdb388722c06847c0b3b4da6d1594c1f74b15752dff78d11042446a3
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663912500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Thu Sep 25 02:44:11 EDT 2025
Sat Nov 29 07:05:05 EST 2025
Tue Nov 18 22:12:19 EST 2025
Fri Feb 23 02:41:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Artificial neural network
Stochastic process
Degradation path uncertainty
Degradation prediction
Degradation modeling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-6f61476cdb388722c06847c0b3b4da6d1594c1f74b15752dff78d11042446a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2553852857
PQPubID 2045406
ParticipantIDs proquest_journals_2553852857
crossref_primary_10_1016_j_ress_2021_107738
crossref_citationtrail_10_1016_j_ress_2021_107738
elsevier_sciencedirect_doi_10_1016_j_ress_2021_107738
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Wu, Ma, Li, Kang (bib0022) 2017; 26
Wang, Tang, Bae, Xu (bib0028) 2018; 67
Wang, Zentner, Zio (bib0048) 2018; 338
Zhu, Chen, Peng (bib0049) 2018; 66
Liu, Wang, Zhang, Tomovic (bib0019) 2018; 180
Velten, Reinicke, Friedrich (bib0043) 2000; 33
Peng, Ye, Chen (bib0006) 2018; 15
Altun, Comert (bib0027) 2016; 156
Ma, Wang, Liao, Chao (bib0041) 2019; 35
Baawain, Gamal, Smith (bib0045) 2007; 29
Liu, Liu, Wang, Li, Shao (bib0046) 2019; 152
Argatov, Chai (bib0044) 2019; 138
Liu, Wang, Zhang, Tomovic (bib0002) 2019; 11
Zio, Apostolakis (bib0018) 1996; 54
Bae, Yuan, Ning, Kuo (bib0026) 2015; 134
Sugiura (bib0016) 1978; 7
Bae, Kvam (bib0007) 2004; 46
Kong, Balakrishnan, Cui (bib0029) 2017; 66
Peng, Li, Yang, Mi, Huang (bib0038) 2017; 66
Peng (bib0008) 2015; 57
Peng, Li, Yang, Huang, Zuo (bib0009) 2014; 130
Peng, Tseng (bib0024) 2009; 58
Peng, Li Y, Mi, Yu, Huang (bib0011) 2016; 153
Liu, Yang, Zio, Chen (bib0047) 2018; 108
Wang, Chu (bib0004) 2012; 52
Zhang, Si, Du, Hu, Hu (bib0031) 2019; 19
Kong, Cui (bib0033) 2016; 230
Zhai, Ye (bib0040) 2017; 13
Peng, Ye, Chen (bib0050) 2019; 67
Zhang, Hu, He, Si, Liu, Zhou (bib0037) 2017; 167
Nguyen, Fouladirad, Grall (bib0017) 2018; 169
Wang, Xu (bib0035) 2010; 52
Meeker, Escobar L (bib0023) 1998
Zhang, He, Si, Hu, Zhou (bib0032) 2017; 10
Li, Gebraeel, Lei, Bian, Si (bib0039) 2019; 186
Zhu, Chen, Peng (bib0010) 2018; 66
Hong, Ye Z, Kartika Sari (bib0005) 2018; 50
Wang, Ma, Zhao (bib0012) 2019; 127
Adrian, David, Jennifer (bib0021) 1997; 92
Lawless, Crowder (bib0014) 2004; 10
Rodríguezpicón, Floresochoa, Méndezgonzález, RodríguezMedina (bib0015) 2017; 87
Sun, Liu, Li, Liao (bib0051) 2016; 16
Patil, Das, Pecht (bib0001) 2012; 52
Park, Grandhi (bib0020) 2012; 39
Rafiee, Feng, Coit (bib0036) 2014; 46
Liu, Wang, Zhang (bib0003) 2017
Ma, Wang, Ruiz, Zhang, Liao, Pohl (bib0042) 2020; 193
Ye, Chen (bib0013) 2014; 56
Wang, Zhao, Ma (bib0030) 2018; 6
Hong, Ye, SariJ (bib0025) 2018; 50
Ye, Chen, Shen (bib0034) 2015; 139
Kong (10.1016/j.ress.2021.107738_bib0033) 2016; 230
Rodríguezpicón (10.1016/j.ress.2021.107738_bib0015) 2017; 87
Zhu (10.1016/j.ress.2021.107738_bib0010) 2018; 66
Velten (10.1016/j.ress.2021.107738_bib0043) 2000; 33
Nguyen (10.1016/j.ress.2021.107738_bib0017) 2018; 169
Zhang (10.1016/j.ress.2021.107738_bib0032) 2017; 10
Zhang (10.1016/j.ress.2021.107738_bib0031) 2019; 19
Wang (10.1016/j.ress.2021.107738_bib0030) 2018; 6
Rafiee (10.1016/j.ress.2021.107738_bib0036) 2014; 46
Sugiura (10.1016/j.ress.2021.107738_bib0016) 1978; 7
Zhai (10.1016/j.ress.2021.107738_bib0040) 2017; 13
Peng (10.1016/j.ress.2021.107738_bib0008) 2015; 57
Liu (10.1016/j.ress.2021.107738_bib0002) 2019; 11
Wang (10.1016/j.ress.2021.107738_bib0048) 2018; 338
Li (10.1016/j.ress.2021.107738_bib0022) 2017; 26
Wang (10.1016/j.ress.2021.107738_bib0004) 2012; 52
Li (10.1016/j.ress.2021.107738_bib0039) 2019; 186
Peng (10.1016/j.ress.2021.107738_bib0024) 2009; 58
Peng (10.1016/j.ress.2021.107738_bib0038) 2017; 66
Park (10.1016/j.ress.2021.107738_bib0020) 2012; 39
Ye (10.1016/j.ress.2021.107738_bib0013) 2014; 56
Peng (10.1016/j.ress.2021.107738_bib0050) 2019; 67
Hong (10.1016/j.ress.2021.107738_bib0025) 2018; 50
Bae (10.1016/j.ress.2021.107738_bib0026) 2015; 134
Zhu (10.1016/j.ress.2021.107738_bib0049) 2018; 66
Peng (10.1016/j.ress.2021.107738_bib0006) 2018; 15
Kong (10.1016/j.ress.2021.107738_bib0029) 2017; 66
Liu (10.1016/j.ress.2021.107738_bib0046) 2019; 152
Meeker (10.1016/j.ress.2021.107738_bib0023) 1998
Bae (10.1016/j.ress.2021.107738_bib0007) 2004; 46
Ma (10.1016/j.ress.2021.107738_bib0041) 2019; 35
Zhang (10.1016/j.ress.2021.107738_bib0037) 2017; 167
Hong (10.1016/j.ress.2021.107738_bib0005) 2018; 50
Adrian (10.1016/j.ress.2021.107738_bib0021) 1997; 92
Patil (10.1016/j.ress.2021.107738_bib0001) 2012; 52
Liu (10.1016/j.ress.2021.107738_bib0019) 2018; 180
Peng (10.1016/j.ress.2021.107738_bib0011) 2016; 153
Ma (10.1016/j.ress.2021.107738_bib0042) 2020; 193
Sun (10.1016/j.ress.2021.107738_bib0051) 2016; 16
Liu (10.1016/j.ress.2021.107738_bib0047) 2018; 108
Liu (10.1016/j.ress.2021.107738_bib0003) 2017
Baawain (10.1016/j.ress.2021.107738_bib0045) 2007; 29
Wang (10.1016/j.ress.2021.107738_bib0012) 2019; 127
Wang (10.1016/j.ress.2021.107738_bib0035) 2010; 52
Altun (10.1016/j.ress.2021.107738_bib0027) 2016; 156
Lawless (10.1016/j.ress.2021.107738_bib0014) 2004; 10
Ye (10.1016/j.ress.2021.107738_bib0034) 2015; 139
Wang (10.1016/j.ress.2021.107738_bib0028) 2018; 67
Peng (10.1016/j.ress.2021.107738_bib0009) 2014; 130
Zio (10.1016/j.ress.2021.107738_bib0018) 1996; 54
Argatov (10.1016/j.ress.2021.107738_bib0044) 2019; 138
References_xml – volume: 10
  start-page: 213
  year: 2004
  end-page: 227
  ident: bib0014
  article-title: Covariates and random effects in a gamma process model with application to degradation and failure
  publication-title: Lifetime Data Anal
– volume: 127
  start-page: 370
  year: 2019
  end-page: 387
  ident: bib0012
  article-title: An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction
  publication-title: Mech Syst Sig Process
– volume: 180
  start-page: 25
  year: 2018
  end-page: 38
  ident: bib0019
  article-title: Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process
  publication-title: Reliab Eng Syst Saf
– volume: 138
  start-page: 211
  year: 2019
  end-page: 214
  ident: bib0044
  article-title: An artificial neural network supported regression model for wear rate
  publication-title: Tribol Int
– volume: 16
  start-page: 1242
  year: 2016
  ident: bib0051
  article-title: Stochastic modeling and analysis of multiple nonlinear accelerated degradation processes through information fusion
  publication-title: Sensors
– volume: 58
  start-page: 444
  year: 2009
  end-page: 455
  ident: bib0024
  article-title: Mis-specification analysis of linear degradation models
  publication-title: IEEE Trans Reliab
– volume: 230
  start-page: 18
  year: 2016
  end-page: 33
  ident: bib0033
  article-title: Bayesian inference of multi-stage reliability for degradation systems with calibrations
  publication-title: J Risk Reliab
– volume: 13
  start-page: 2911
  year: 2017
  end-page: 2921
  ident: bib0040
  article-title: RUL prediction of deteriorating products using an adaptive Wiener process model
  publication-title: IEEE Trans Ind Inf
– volume: 10
  start-page: 1687
  year: 2017
  ident: bib0032
  article-title: A novel multi-phase stochastic model for lithium-ion batteries’ degradation with regeneration phenomena
  publication-title: Energies
– volume: 54
  start-page: 225
  year: 1996
  end-page: 241
  ident: bib0018
  article-title: Two methods for the structured assessment of model uncertainty by experts in performance assessments of radioactive waste repositories
  publication-title: Reliab Eng Syst Saf
– volume: 15
  start-page: 2870
  year: 2018
  end-page: 2878
  ident: bib0006
  article-title: Joint online RUL prediction for multivariate deteriorating systems
  publication-title: IEEE Trans Ind Inf
– volume: 67
  start-page: 688
  year: 2018
  end-page: 700
  ident: bib0028
  article-title: Bayesian approach for two-phase degradation data based on change-point Wiener process with measurement errors
  publication-title: IEEE Trans Reliab
– volume: 87
  start-page: 2207
  year: 2017
  end-page: 2226
  ident: bib0015
  article-title: Bivariate degradation modelling with marginal heterogeneous stochastic processes
  publication-title: J Stat Comput Simul
– volume: 193
  year: 2020
  ident: bib0042
  article-title: Reliability estimation from two types of accelerated testing data considering measurement error
  publication-title: Reliab Eng Syst Saf
– volume: 50
  start-page: 1043
  year: 2018
  end-page: 1057
  ident: bib0005
  article-title: Interval estimation for Wiener processes based on accelerated degradation test data
  publication-title: IISE Trans
– volume: 66
  start-page: 1345
  year: 2017
  end-page: 1360
  ident: bib0029
  article-title: Two-phase degradation process model with abrupt jump at change point governed by Wiener process
  publication-title: IEEE Trans Reliab
– volume: 167
  start-page: 338
  year: 2017
  end-page: 350
  ident: bib0037
  article-title: Lifetime prognostics for furnace wall degradation with time-varying random jumps
  publication-title: Reliab Eng Syst Saf
– volume: 11
  year: 2019
  ident: bib0002
  article-title: Bayesian model averaging based storage lifetime assessment method for rubber sealing rings
  publication-title: Adv Mech Eng
– volume: 35
  start-page: 2278
  year: 2019
  end-page: 2296
  ident: bib0041
  article-title: Engineering-driven performance degradation analysis of hydraulic piston pump based on the inverse Gaussian process
  publication-title: Qual Reliab Eng Int
– volume: 19
  start-page: 1472
  year: 2019
  ident: bib0031
  article-title: Lifetime estimation for multi-phase deteriorating process with random abrupt jumps
  publication-title: Sensors
– volume: 50
  start-page: 1043
  year: 2018
  end-page: 1057
  ident: bib0025
  article-title: Interval estimation for Wiener processes based on accelerated degradation test data
  publication-title: IISE Trans
– volume: 134
  start-page: 66
  year: 2015
  end-page: 74
  ident: bib0026
  article-title: A Bayesian approach to modeling two-phase degradation using change-point regression
  publication-title: Reliab Eng Syst Saf
– volume: 33
  start-page: 731
  year: 2000
  end-page: 736
  ident: bib0043
  article-title: Wear volume prediction with artificial neural networks
  publication-title: Tribol Int
– volume: 92
  start-page: 179
  year: 1997
  end-page: 191
  ident: bib0021
  article-title: Bayesian model averaging for linear regression models
  publication-title: J Am Statist Assoc
– volume: 139
  start-page: 58
  year: 2015
  end-page: 67
  ident: bib0034
  article-title: A new class of Wiener process models for degradation analysis
  publication-title: Reliab Eng Syst Saf
– volume: 39
  start-page: 44
  year: 2012
  end-page: 51
  ident: bib0020
  article-title: Quantification of model-form and parametric uncertainty using evidence theory
  publication-title: Struct Saf
– volume: 52
  start-page: 188
  year: 2010
  end-page: 197
  ident: bib0035
  article-title: An inverse Gaussian process model for degradation data
  publication-title: Technometrics
– volume: 26
  start-page: 1638
  year: 2017
  end-page: 1650
  ident: bib0022
  article-title: A random fuzzy accelerated degradation model and statistical analysis
  publication-title: IEEE Trans Fuzzy Syst
– volume: 66
  start-page: 3208
  year: 2018
  end-page: 3216
  ident: bib0010
  article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network
  publication-title: IEEE Trans Indust Electron
– volume: 156
  start-page: 175
  year: 2016
  end-page: 184
  ident: bib0027
  article-title: A change-point based reliability prediction model using field return data
  publication-title: Reliab Eng Syst Saf
– volume: 7
  start-page: 13
  year: 1978
  end-page: 26
  ident: bib0016
  article-title: Further analysis of the data by Akaike's information criterion and the finite corrections
  publication-title: Commun Stat Theory Methods
– volume: 152
  start-page: 38
  year: 2019
  end-page: 47
  ident: bib0046
  article-title: Artificial neural network modeling on the prediction of mass transfer coefficient for ozone absorption in RPB
  publication-title: Chem Eng Res Des
– volume: 52
  start-page: 482
  year: 2012
  end-page: 488
  ident: bib0001
  article-title: A prognostic approach for non-punch through and field stop IGBTs
  publication-title: Microelectron Reliab
– year: 1998
  ident: bib0023
  article-title: Statistical Methods for Reliability Data
– volume: 46
  start-page: 460
  year: 2004
  end-page: 469
  ident: bib0007
  article-title: A nonlinear random-coefficients model for degradation testing
  publication-title: Technometrics
– volume: 130
  start-page: 175
  year: 2014
  end-page: 189
  ident: bib0009
  article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective
  publication-title: Reliab Eng Syst Saf
– volume: 6
  start-page: 65227
  year: 2018
  end-page: 65238
  ident: bib0030
  article-title: Remaining useful life prediction using a novel two-stage wiener process with stage correlation
  publication-title: IEEE Access
– volume: 186
  start-page: 88
  year: 2019
  end-page: 100
  ident: bib0039
  article-title: Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model
  publication-title: Reliab Eng Syst Saf
– volume: 66
  start-page: 84
  year: 2017
  end-page: 96
  ident: bib0038
  article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates
  publication-title: IEEE Trans Reliab
– volume: 29
  start-page: 343
  year: 2007
  end-page: 352
  ident: bib0045
  article-title: Artificial neural networks modeling of ozone bubble columns: mass transfer coefficient, gas hold-up, and bubble size
  publication-title: Ozone Sci Eng
– volume: 66
  start-page: 3208
  year: 2018
  end-page: 3216
  ident: bib0049
  article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network
  publication-title: IEEE Trans Indust Electron
– volume: 67
  start-page: 2283
  year: 2019
  end-page: 2293
  ident: bib0050
  article-title: Bayesian deep learning based health prognostics towards prognostics uncertainty
  publication-title: IEEE Trans Indust Electron
– volume: 52
  start-page: 1332
  year: 2012
  end-page: 1336
  ident: bib0004
  article-title: Lifetime predictions of LED-based light bars by accelerated degradation test
  publication-title: Microelectron Reliab
– volume: 57
  start-page: 100
  year: 2015
  end-page: 111
  ident: bib0008
  article-title: Inverse Gaussian processes with random effects and explanatory variables for degradation data
  publication-title: Technometrics
– volume: 56
  start-page: 302
  year: 2014
  end-page: 311
  ident: bib0013
  article-title: The inverse Gaussian process as a degradation model
  publication-title: Technometrics
– volume: 108
  start-page: 33
  year: 2018
  end-page: 47
  ident: bib0047
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech Syst Sig Process
– volume: 169
  start-page: 105
  year: 2018
  end-page: 116
  ident: bib0017
  article-title: Model selection for degradation modeling and prognosis with health monitoring data
  publication-title: Reliab Eng Syst Saf
– volume: 338
  start-page: 232
  year: 2018
  end-page: 246
  ident: bib0048
  article-title: A Bayesian framework for estimating fragility curves based on seismic damage data and numerical simulations by adaptive neural networks
  publication-title: Nucl Eng Des
– start-page: 387
  year: 2017
  end-page: 392
  ident: bib0003
  article-title: Performance degradation analysis of mechanical seal based on vibration signal processing
  publication-title: Proceedings of the international conference on sensing, diagnostics, prognostics, and control
– volume: 153
  start-page: 75
  year: 2016
  end-page: 87
  ident: bib0011
  article-title: Reliability of complex systems under dynamic conditions: a Bayesian multivariate degradation perspective
  publication-title: Reliab Eng Syst Saf
– volume: 46
  start-page: 483
  year: 2014
  end-page: 496
  ident: bib0036
  article-title: Reliability modeling for dependent competing failure processes with changing degradation rate
  publication-title: IIE Trans
– start-page: 387
  year: 2017
  ident: 10.1016/j.ress.2021.107738_bib0003
  article-title: Performance degradation analysis of mechanical seal based on vibration signal processing
– volume: 50
  start-page: 1043
  issue: 12
  year: 2018
  ident: 10.1016/j.ress.2021.107738_bib0025
  article-title: Interval estimation for Wiener processes based on accelerated degradation test data
  publication-title: IISE Trans
  doi: 10.1080/24725854.2018.1468121
– volume: 57
  start-page: 100
  issue: 1
  year: 2015
  ident: 10.1016/j.ress.2021.107738_bib0008
  article-title: Inverse Gaussian processes with random effects and explanatory variables for degradation data
  publication-title: Technometrics
  doi: 10.1080/00401706.2013.879077
– volume: 66
  start-page: 3208
  issue: 4
  year: 2018
  ident: 10.1016/j.ress.2021.107738_bib0010
  article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network
  publication-title: IEEE Trans Indust Electron
  doi: 10.1109/TIE.2018.2844856
– volume: 127
  start-page: 370
  year: 2019
  ident: 10.1016/j.ress.2021.107738_bib0012
  article-title: An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2019.03.019
– volume: 6
  start-page: 65227
  year: 2018
  ident: 10.1016/j.ress.2021.107738_bib0030
  article-title: Remaining useful life prediction using a novel two-stage wiener process with stage correlation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877630
– volume: 46
  start-page: 483
  issue: 5
  year: 2014
  ident: 10.1016/j.ress.2021.107738_bib0036
  article-title: Reliability modeling for dependent competing failure processes with changing degradation rate
  publication-title: IIE Trans
  doi: 10.1080/0740817X.2013.812270
– volume: 152
  start-page: 38
  year: 2019
  ident: 10.1016/j.ress.2021.107738_bib0046
  article-title: Artificial neural network modeling on the prediction of mass transfer coefficient for ozone absorption in RPB
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2019.09.027
– volume: 10
  start-page: 213
  year: 2004
  ident: 10.1016/j.ress.2021.107738_bib0014
  article-title: Covariates and random effects in a gamma process model with application to degradation and failure
  publication-title: Lifetime Data Anal
  doi: 10.1023/B:LIDA.0000036389.14073.dd
– volume: 39
  start-page: 44
  year: 2012
  ident: 10.1016/j.ress.2021.107738_bib0020
  article-title: Quantification of model-form and parametric uncertainty using evidence theory
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2012.08.003
– volume: 52
  start-page: 482
  year: 2012
  ident: 10.1016/j.ress.2021.107738_bib0001
  article-title: A prognostic approach for non-punch through and field stop IGBTs
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2011.10.017
– volume: 35
  start-page: 2278
  issue: 7
  year: 2019
  ident: 10.1016/j.ress.2021.107738_bib0041
  article-title: Engineering-driven performance degradation analysis of hydraulic piston pump based on the inverse Gaussian process
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2502
– volume: 58
  start-page: 444
  issue: 3
  year: 2009
  ident: 10.1016/j.ress.2021.107738_bib0024
  article-title: Mis-specification analysis of linear degradation models
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2009.2026784
– volume: 50
  start-page: 1043
  issue: 12
  year: 2018
  ident: 10.1016/j.ress.2021.107738_bib0005
  article-title: Interval estimation for Wiener processes based on accelerated degradation test data
  publication-title: IISE Trans
  doi: 10.1080/24725854.2018.1468121
– volume: 67
  start-page: 688
  issue: 2
  year: 2018
  ident: 10.1016/j.ress.2021.107738_bib0028
  article-title: Bayesian approach for two-phase degradation data based on change-point Wiener process with measurement errors
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2017.2785978
– volume: 180
  start-page: 25
  year: 2018
  ident: 10.1016/j.ress.2021.107738_bib0019
  article-title: Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.06.019
– volume: 46
  start-page: 460
  year: 2004
  ident: 10.1016/j.ress.2021.107738_bib0007
  article-title: A nonlinear random-coefficients model for degradation testing
  publication-title: Technometrics
  doi: 10.1198/004017004000000464
– volume: 169
  start-page: 105
  year: 2018
  ident: 10.1016/j.ress.2021.107738_bib0017
  article-title: Model selection for degradation modeling and prognosis with health monitoring data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.08.004
– volume: 108
  start-page: 33
  year: 2018
  ident: 10.1016/j.ress.2021.107738_bib0047
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 16
  start-page: 1242
  issue: 8
  year: 2016
  ident: 10.1016/j.ress.2021.107738_bib0051
  article-title: Stochastic modeling and analysis of multiple nonlinear accelerated degradation processes through information fusion
  publication-title: Sensors
  doi: 10.3390/s16081242
– volume: 66
  start-page: 1345
  issue: 4
  year: 2017
  ident: 10.1016/j.ress.2021.107738_bib0029
  article-title: Two-phase degradation process model with abrupt jump at change point governed by Wiener process
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2017.2711621
– volume: 66
  start-page: 3208
  year: 2018
  ident: 10.1016/j.ress.2021.107738_bib0049
  article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network
  publication-title: IEEE Trans Indust Electron
  doi: 10.1109/TIE.2018.2844856
– volume: 19
  start-page: 1472
  issue: 6
  year: 2019
  ident: 10.1016/j.ress.2021.107738_bib0031
  article-title: Lifetime estimation for multi-phase deteriorating process with random abrupt jumps
  publication-title: Sensors
  doi: 10.3390/s19061472
– volume: 138
  start-page: 211
  year: 2019
  ident: 10.1016/j.ress.2021.107738_bib0044
  article-title: An artificial neural network supported regression model for wear rate
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.05.040
– volume: 92
  start-page: 179
  year: 1997
  ident: 10.1016/j.ress.2021.107738_bib0021
  article-title: Bayesian model averaging for linear regression models
  publication-title: J Am Statist Assoc
  doi: 10.1080/01621459.1997.10473615
– volume: 11
  issue: 5
  year: 2019
  ident: 10.1016/j.ress.2021.107738_bib0002
  article-title: Bayesian model averaging based storage lifetime assessment method for rubber sealing rings
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814019853351
– volume: 52
  start-page: 1332
  year: 2012
  ident: 10.1016/j.ress.2021.107738_bib0004
  article-title: Lifetime predictions of LED-based light bars by accelerated degradation test
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2012.02.019
– volume: 10
  start-page: 1687
  issue: 11
  year: 2017
  ident: 10.1016/j.ress.2021.107738_bib0032
  article-title: A novel multi-phase stochastic model for lithium-ion batteries’ degradation with regeneration phenomena
  publication-title: Energies
  doi: 10.3390/en10111687
– volume: 52
  start-page: 188
  year: 2010
  ident: 10.1016/j.ress.2021.107738_bib0035
  article-title: An inverse Gaussian process model for degradation data
  publication-title: Technometrics
  doi: 10.1198/TECH.2009.08197
– volume: 29
  start-page: 343
  issue: 5
  year: 2007
  ident: 10.1016/j.ress.2021.107738_bib0045
  article-title: Artificial neural networks modeling of ozone bubble columns: mass transfer coefficient, gas hold-up, and bubble size
  publication-title: Ozone Sci Eng
  doi: 10.1080/01919510701549236
– volume: 134
  start-page: 66
  year: 2015
  ident: 10.1016/j.ress.2021.107738_bib0026
  article-title: A Bayesian approach to modeling two-phase degradation using change-point regression
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.10.009
– volume: 15
  start-page: 2870
  issue: 5
  year: 2018
  ident: 10.1016/j.ress.2021.107738_bib0006
  article-title: Joint online RUL prediction for multivariate deteriorating systems
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2869429
– volume: 56
  start-page: 302
  year: 2014
  ident: 10.1016/j.ress.2021.107738_bib0013
  article-title: The inverse Gaussian process as a degradation model
  publication-title: Technometrics
  doi: 10.1080/00401706.2013.830074
– volume: 167
  start-page: 338
  year: 2017
  ident: 10.1016/j.ress.2021.107738_bib0037
  article-title: Lifetime prognostics for furnace wall degradation with time-varying random jumps
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.05.047
– volume: 230
  start-page: 18
  issue: 1
  year: 2016
  ident: 10.1016/j.ress.2021.107738_bib0033
  article-title: Bayesian inference of multi-stage reliability for degradation systems with calibrations
  publication-title: J Risk Reliab
– volume: 7
  start-page: 13
  year: 1978
  ident: 10.1016/j.ress.2021.107738_bib0016
  article-title: Further analysis of the data by Akaike's information criterion and the finite corrections
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610927808827599
– volume: 338
  start-page: 232
  year: 2018
  ident: 10.1016/j.ress.2021.107738_bib0048
  article-title: A Bayesian framework for estimating fragility curves based on seismic damage data and numerical simulations by adaptive neural networks
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2018.08.016
– year: 1998
  ident: 10.1016/j.ress.2021.107738_bib0023
– volume: 186
  start-page: 88
  year: 2019
  ident: 10.1016/j.ress.2021.107738_bib0039
  article-title: Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.02.017
– volume: 153
  start-page: 75
  year: 2016
  ident: 10.1016/j.ress.2021.107738_bib0011
  article-title: Reliability of complex systems under dynamic conditions: a Bayesian multivariate degradation perspective
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.04.005
– volume: 26
  start-page: 1638
  issue: 3
  year: 2017
  ident: 10.1016/j.ress.2021.107738_bib0022
  article-title: A random fuzzy accelerated degradation model and statistical analysis
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2017.2738607
– volume: 67
  start-page: 2283
  issue: 3
  year: 2019
  ident: 10.1016/j.ress.2021.107738_bib0050
  article-title: Bayesian deep learning based health prognostics towards prognostics uncertainty
  publication-title: IEEE Trans Indust Electron
  doi: 10.1109/TIE.2019.2907440
– volume: 193
  year: 2020
  ident: 10.1016/j.ress.2021.107738_bib0042
  article-title: Reliability estimation from two types of accelerated testing data considering measurement error
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.106610
– volume: 13
  start-page: 2911
  issue: 6
  year: 2017
  ident: 10.1016/j.ress.2021.107738_bib0040
  article-title: RUL prediction of deteriorating products using an adaptive Wiener process model
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2684821
– volume: 54
  start-page: 225
  year: 1996
  ident: 10.1016/j.ress.2021.107738_bib0018
  article-title: Two methods for the structured assessment of model uncertainty by experts in performance assessments of radioactive waste repositories
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/S0951-8320(96)00078-6
– volume: 130
  start-page: 175
  year: 2014
  ident: 10.1016/j.ress.2021.107738_bib0009
  article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.06.005
– volume: 156
  start-page: 175
  year: 2016
  ident: 10.1016/j.ress.2021.107738_bib0027
  article-title: A change-point based reliability prediction model using field return data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.07.024
– volume: 66
  start-page: 84
  issue: 1
  year: 2017
  ident: 10.1016/j.ress.2021.107738_bib0038
  article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2016.2635149
– volume: 139
  start-page: 58
  year: 2015
  ident: 10.1016/j.ress.2021.107738_bib0034
  article-title: A new class of Wiener process models for degradation analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.02.005
– volume: 87
  start-page: 2207
  year: 2017
  ident: 10.1016/j.ress.2021.107738_bib0015
  article-title: Bivariate degradation modelling with marginal heterogeneous stochastic processes
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2017.1324858
– volume: 33
  start-page: 731
  year: 2000
  ident: 10.1016/j.ress.2021.107738_bib0043
  article-title: Wear volume prediction with artificial neural networks
  publication-title: Tribol Int
  doi: 10.1016/S0301-679X(00)00115-8
SSID ssj0004957
Score 2.4971178
Snippet •Stochastic process is combined with ANN to handle degradation path uncertainty.•The hyper parameters are evaluated by moment estimation offline.•The process...
An artificial neural network supported stochastic process for degradation modeling and prediction is proposed in this paper. An artificial neural network is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107738
SubjectTerms Artificial neural network
Artificial neural networks
Bayesian analysis
Degradation
Degradation modeling
Degradation path uncertainty
Degradation prediction
Information processing
Mathematical models
Modelling
Neural networks
Predictions
Process parameters
Reliability engineering
Statistical inference
Stochastic models
Stochastic process
Stochastic processes
Title An artificial neural network supported stochastic process for degradation modeling and prediction
URI https://dx.doi.org/10.1016/j.ress.2021.107738
https://www.proquest.com/docview/2553852857
Volume 214
WOSCitedRecordID wos000663912500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT4QwEG509aAH4zO-04M3wmaBQuG4MRr1YEz0sDfSlhLXGCT7MPrvnT6guEajBy9AoDTNfh_tdHbmG4TOBKyBpBAMEEgIbFBY6nMpuU8EJSXPVHiT0MUm6O1tOhpldzZ-fqrLCdCqSt_esvpfoYZ7ALZKnf0D3G2ncAOuAXQ4Auxw_BXww0oJF42tMoTSq9QnHe3tTee1VjIvPDD6xCNTKs1ebZIFdMRhocQjTJ0lUyWnSWKsJ-ovnRbGRtMbGhil73dPOmlDTSgjEu1NWWm1RnTgz3iup7mx8-Rbh_Uj07lbXTdEGLQBbc6fGPgwPQy6U2sYkM7kCDtNaqRcvszbxoXw1Fcuhr7qvu8afxbJXli82pDCJlrtKVd95KqP3PSxjFZCGmdpD60Mry9GNy5tNjNCsM3IbU6VCf9bHMl3dsvCCq7NkodNtGH3E3hoeLCFlmS1jdY7KpM7iA0r7BiBDSOwZQRuGYEdI7BlBAZG4A4jcMMIDIzAjhG76P7y4uH8yreVNXwRhenMT0qwymgiCh7BIhOGYpCAlSIGPOKkYEkBNi4RQUkJD8CcD4uypGkBhqLKikxYtId61Usl9xGmagNM4QlnktBSZCJJeCZimklJ0yg6QEHzq-XCis6r2ifP-fd4HSCvfac2kis_to4bMHJrNBpjMAdu_fjecYNcbr9eeB7D-h-HaUwP_zSII7Tmvolj1JtN5vIErYrX2Xg6ObW8-wDevpr3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+artificial+neural+network+supported+stochastic+process+for+degradation+modeling+and+prediction&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Liu%2C+Di&rft.au=Wang%2C+Shaoping&rft.date=2021-10-01&rft.issn=0951-8320&rft.volume=214&rft.spage=107738&rft_id=info:doi/10.1016%2Fj.ress.2021.107738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2021_107738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon