An artificial neural network supported stochastic process for degradation modeling and prediction
•Stochastic process is combined with ANN to handle degradation path uncertainty.•The hyper parameters are evaluated by moment estimation offline.•The process parameters are updated by Bayesian inference for online prediction.•Without path information the ANN supported stochastic process is still pra...
Uložené v:
| Vydané v: | Reliability engineering & system safety Ročník 214; s. 107738 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Barking
Elsevier Ltd
01.10.2021
Elsevier BV |
| Predmet: | |
| ISSN: | 0951-8320, 1879-0836 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Stochastic process is combined with ANN to handle degradation path uncertainty.•The hyper parameters are evaluated by moment estimation offline.•The process parameters are updated by Bayesian inference for online prediction.•Without path information the ANN supported stochastic process is still practical.•The assumption that the initial degradation is zero is also freed.
An artificial neural network supported stochastic process for degradation modeling and prediction is proposed in this paper. An artificial neural network is applied to describe the degradation path due to data fitting flexibility and path description considering degradation path uncertainty. The assumption that the initial degradation is zero in the stochastic process is freed. The artificial neural network supported stochastic process is trained by minimizing the minus log-likelihood offline-based on the run-to-failure degradation data. Considering unit-to-unit variance in population degradation modeling, the process parameters are assumed to be randomly distributed. Here, three common distributions describe the process parameters, and Akaike information criteria applied to select distributions of process parameters. The process parameters are evaluated by Bayesian inference based on the trained path, and distributions of process parameters are based on real-time degradation data for online prediction. The proposed method is verified by a simulation experiment based on a Wiener process, which seemed a true model. Furthermore, an actual degradation dataset is also applied to illustrate the effectiveness of the proposed method. Both the simulation experiment and actual example indicate that the proposed stochastic process is capable of degradation modeling and degradation predicting, even without prior information about the degradation path. |
|---|---|
| AbstractList | •Stochastic process is combined with ANN to handle degradation path uncertainty.•The hyper parameters are evaluated by moment estimation offline.•The process parameters are updated by Bayesian inference for online prediction.•Without path information the ANN supported stochastic process is still practical.•The assumption that the initial degradation is zero is also freed.
An artificial neural network supported stochastic process for degradation modeling and prediction is proposed in this paper. An artificial neural network is applied to describe the degradation path due to data fitting flexibility and path description considering degradation path uncertainty. The assumption that the initial degradation is zero in the stochastic process is freed. The artificial neural network supported stochastic process is trained by minimizing the minus log-likelihood offline-based on the run-to-failure degradation data. Considering unit-to-unit variance in population degradation modeling, the process parameters are assumed to be randomly distributed. Here, three common distributions describe the process parameters, and Akaike information criteria applied to select distributions of process parameters. The process parameters are evaluated by Bayesian inference based on the trained path, and distributions of process parameters are based on real-time degradation data for online prediction. The proposed method is verified by a simulation experiment based on a Wiener process, which seemed a true model. Furthermore, an actual degradation dataset is also applied to illustrate the effectiveness of the proposed method. Both the simulation experiment and actual example indicate that the proposed stochastic process is capable of degradation modeling and degradation predicting, even without prior information about the degradation path. An artificial neural network supported stochastic process for degradation modeling and prediction is proposed in this paper. An artificial neural network is applied to describe the degradation path due to data fitting flexibility and path description considering degradation path uncertainty. The assumption that the initial degradation is zero in the stochastic process is freed. The artificial neural network supported stochastic process is trained by minimizing the minus log-likelihood offline-based on the run-to-failure degradation data. Considering unit-to-unit variance in population degradation modeling, the process parameters are assumed to be randomly distributed. Here, three common distributions describe the process parameters, and Akaike information criteria applied to select distributions of process parameters. The process parameters are evaluated by Bayesian inference based on the trained path, and distributions of process parameters are based on real-time degradation data for online prediction. The proposed method is verified by a simulation experiment based on a Wiener process, which seemed a true model. Furthermore, an actual degradation dataset is also applied to illustrate the effectiveness of the proposed method. Both the simulation experiment and actual example indicate that the proposed stochastic process is capable of degradation modeling and degradation predicting, even without prior information about the degradation path. |
| ArticleNumber | 107738 |
| Author | Liu, Di Wang, Shaoping |
| Author_xml | – sequence: 1 givenname: Di surname: Liu fullname: Liu, Di email: liudi54834@buaa.edu.cn – sequence: 2 givenname: Shaoping surname: Wang fullname: Wang, Shaoping |
| BookMark | eNp9kMtOAyEUhompiW31BVyRuJ4KDAxM4qZpvCVNXOieMMBUagsjUI1vL21duejqJCf_dy7fBIx88BaAa4xmGOHmdj2LNqUZQQSXBue1OANjLHhbIVE3IzBGLcOVqAm6AJOU1ggh2jI-BmruoYrZ9U47tYHe7uKh5O8QP2DaDUOI2RqYctDvKmWn4RCDLstgHyI0dhWVUdkFD7fB2I3zK6i8KSFrnN73L8F5rzbJXv3VKXh9uH9bPFXLl8fnxXxZ6ZqIXDV9gylvtOlqITghGjWCco26uqNGNQazlmrcc9phxhkxfc-FwRhRQmmj6im4OU4t133ubMpyHXbRl4WSMFYLRgTjJUWOKR1DStH2cohuq-KPxEjuRcq13IuUe5HyKLJA4h-kXT68nKNym9Po3RG15fEvZ6NM2lmvi5todZYmuFP4L6nwkc4 |
| CitedBy_id | crossref_primary_10_1016_j_engfailanal_2024_108772 crossref_primary_10_1002_qre_3234 crossref_primary_10_1016_j_measurement_2023_113410 crossref_primary_10_1016_j_aei_2025_103376 crossref_primary_10_1016_j_autcon_2023_104831 crossref_primary_10_1016_j_cie_2021_107745 crossref_primary_10_1002_qre_3659 crossref_primary_10_1016_j_ress_2022_108898 crossref_primary_10_1016_j_ress_2022_108811 crossref_primary_10_1016_j_ress_2022_108439 crossref_primary_10_3390_fractalfract8070408 crossref_primary_10_1016_j_ress_2023_109786 crossref_primary_10_1016_j_ress_2022_108335 crossref_primary_10_1016_j_rser_2024_115281 crossref_primary_10_1016_j_ress_2025_111286 crossref_primary_10_1109_ACCESS_2023_3267960 crossref_primary_10_1016_j_ress_2024_110494 crossref_primary_10_1002_ece3_70517 crossref_primary_10_1002_qre_3802 crossref_primary_10_1016_j_asoc_2023_110593 crossref_primary_10_1016_j_asoc_2023_110044 crossref_primary_10_1016_j_ress_2022_108602 crossref_primary_10_3390_app12052622 crossref_primary_10_3390_fractalfract9060375 crossref_primary_10_1016_j_ress_2024_109952 crossref_primary_10_1002_qre_3394 crossref_primary_10_1016_j_ress_2022_109051 |
| Cites_doi | 10.1080/24725854.2018.1468121 10.1080/00401706.2013.879077 10.1109/TIE.2018.2844856 10.1016/j.ymssp.2019.03.019 10.1109/ACCESS.2018.2877630 10.1080/0740817X.2013.812270 10.1016/j.cherd.2019.09.027 10.1023/B:LIDA.0000036389.14073.dd 10.1016/j.strusafe.2012.08.003 10.1016/j.microrel.2011.10.017 10.1002/qre.2502 10.1109/TR.2009.2026784 10.1109/TR.2017.2785978 10.1016/j.ress.2018.06.019 10.1198/004017004000000464 10.1016/j.ress.2017.08.004 10.1016/j.ymssp.2018.02.016 10.3390/s16081242 10.1109/TR.2017.2711621 10.3390/s19061472 10.1016/j.triboint.2019.05.040 10.1080/01621459.1997.10473615 10.1177/1687814019853351 10.1016/j.microrel.2012.02.019 10.3390/en10111687 10.1198/TECH.2009.08197 10.1080/01919510701549236 10.1016/j.ress.2014.10.009 10.1109/TII.2018.2869429 10.1080/00401706.2013.830074 10.1016/j.ress.2017.05.047 10.1080/03610927808827599 10.1016/j.nucengdes.2018.08.016 10.1016/j.ress.2019.02.017 10.1016/j.ress.2016.04.005 10.1109/TFUZZ.2017.2738607 10.1109/TIE.2019.2907440 10.1016/j.ress.2019.106610 10.1109/TII.2017.2684821 10.1016/S0951-8320(96)00078-6 10.1016/j.ress.2014.06.005 10.1016/j.ress.2016.07.024 10.1109/TR.2016.2635149 10.1016/j.ress.2015.02.005 10.1080/00949655.2017.1324858 10.1016/S0301-679X(00)00115-8 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Oct 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Oct 2021 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
| DOI | 10.1016/j.ress.2021.107738 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| ExternalDocumentID | 10_1016_j_ress_2021_107738 S0951832021002714 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TB 8FD C1K FR3 SOI |
| ID | FETCH-LOGICAL-c328t-6f61476cdb388722c06847c0b3b4da6d1594c1f74b15752dff78d11042446a3 |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663912500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Thu Sep 25 02:44:11 EDT 2025 Sat Nov 29 07:05:05 EST 2025 Tue Nov 18 22:12:19 EST 2025 Fri Feb 23 02:41:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Artificial neural network Stochastic process Degradation path uncertainty Degradation prediction Degradation modeling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-6f61476cdb388722c06847c0b3b4da6d1594c1f74b15752dff78d11042446a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2553852857 |
| PQPubID | 2045406 |
| ParticipantIDs | proquest_journals_2553852857 crossref_primary_10_1016_j_ress_2021_107738 crossref_citationtrail_10_1016_j_ress_2021_107738 elsevier_sciencedirect_doi_10_1016_j_ress_2021_107738 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Li, Wu, Ma, Li, Kang (bib0022) 2017; 26 Wang, Tang, Bae, Xu (bib0028) 2018; 67 Wang, Zentner, Zio (bib0048) 2018; 338 Zhu, Chen, Peng (bib0049) 2018; 66 Liu, Wang, Zhang, Tomovic (bib0019) 2018; 180 Velten, Reinicke, Friedrich (bib0043) 2000; 33 Peng, Ye, Chen (bib0006) 2018; 15 Altun, Comert (bib0027) 2016; 156 Ma, Wang, Liao, Chao (bib0041) 2019; 35 Baawain, Gamal, Smith (bib0045) 2007; 29 Liu, Liu, Wang, Li, Shao (bib0046) 2019; 152 Argatov, Chai (bib0044) 2019; 138 Liu, Wang, Zhang, Tomovic (bib0002) 2019; 11 Zio, Apostolakis (bib0018) 1996; 54 Bae, Yuan, Ning, Kuo (bib0026) 2015; 134 Sugiura (bib0016) 1978; 7 Bae, Kvam (bib0007) 2004; 46 Kong, Balakrishnan, Cui (bib0029) 2017; 66 Peng, Li, Yang, Mi, Huang (bib0038) 2017; 66 Peng (bib0008) 2015; 57 Peng, Li, Yang, Huang, Zuo (bib0009) 2014; 130 Peng, Tseng (bib0024) 2009; 58 Peng, Li Y, Mi, Yu, Huang (bib0011) 2016; 153 Liu, Yang, Zio, Chen (bib0047) 2018; 108 Wang, Chu (bib0004) 2012; 52 Zhang, Si, Du, Hu, Hu (bib0031) 2019; 19 Kong, Cui (bib0033) 2016; 230 Zhai, Ye (bib0040) 2017; 13 Peng, Ye, Chen (bib0050) 2019; 67 Zhang, Hu, He, Si, Liu, Zhou (bib0037) 2017; 167 Nguyen, Fouladirad, Grall (bib0017) 2018; 169 Wang, Xu (bib0035) 2010; 52 Meeker, Escobar L (bib0023) 1998 Zhang, He, Si, Hu, Zhou (bib0032) 2017; 10 Li, Gebraeel, Lei, Bian, Si (bib0039) 2019; 186 Zhu, Chen, Peng (bib0010) 2018; 66 Hong, Ye Z, Kartika Sari (bib0005) 2018; 50 Wang, Ma, Zhao (bib0012) 2019; 127 Adrian, David, Jennifer (bib0021) 1997; 92 Lawless, Crowder (bib0014) 2004; 10 Rodríguezpicón, Floresochoa, Méndezgonzález, RodríguezMedina (bib0015) 2017; 87 Sun, Liu, Li, Liao (bib0051) 2016; 16 Patil, Das, Pecht (bib0001) 2012; 52 Park, Grandhi (bib0020) 2012; 39 Rafiee, Feng, Coit (bib0036) 2014; 46 Liu, Wang, Zhang (bib0003) 2017 Ma, Wang, Ruiz, Zhang, Liao, Pohl (bib0042) 2020; 193 Ye, Chen (bib0013) 2014; 56 Wang, Zhao, Ma (bib0030) 2018; 6 Hong, Ye, SariJ (bib0025) 2018; 50 Ye, Chen, Shen (bib0034) 2015; 139 Kong (10.1016/j.ress.2021.107738_bib0033) 2016; 230 Rodríguezpicón (10.1016/j.ress.2021.107738_bib0015) 2017; 87 Zhu (10.1016/j.ress.2021.107738_bib0010) 2018; 66 Velten (10.1016/j.ress.2021.107738_bib0043) 2000; 33 Nguyen (10.1016/j.ress.2021.107738_bib0017) 2018; 169 Zhang (10.1016/j.ress.2021.107738_bib0032) 2017; 10 Zhang (10.1016/j.ress.2021.107738_bib0031) 2019; 19 Wang (10.1016/j.ress.2021.107738_bib0030) 2018; 6 Rafiee (10.1016/j.ress.2021.107738_bib0036) 2014; 46 Sugiura (10.1016/j.ress.2021.107738_bib0016) 1978; 7 Zhai (10.1016/j.ress.2021.107738_bib0040) 2017; 13 Peng (10.1016/j.ress.2021.107738_bib0008) 2015; 57 Liu (10.1016/j.ress.2021.107738_bib0002) 2019; 11 Wang (10.1016/j.ress.2021.107738_bib0048) 2018; 338 Li (10.1016/j.ress.2021.107738_bib0022) 2017; 26 Wang (10.1016/j.ress.2021.107738_bib0004) 2012; 52 Li (10.1016/j.ress.2021.107738_bib0039) 2019; 186 Peng (10.1016/j.ress.2021.107738_bib0024) 2009; 58 Peng (10.1016/j.ress.2021.107738_bib0038) 2017; 66 Park (10.1016/j.ress.2021.107738_bib0020) 2012; 39 Ye (10.1016/j.ress.2021.107738_bib0013) 2014; 56 Peng (10.1016/j.ress.2021.107738_bib0050) 2019; 67 Hong (10.1016/j.ress.2021.107738_bib0025) 2018; 50 Bae (10.1016/j.ress.2021.107738_bib0026) 2015; 134 Zhu (10.1016/j.ress.2021.107738_bib0049) 2018; 66 Peng (10.1016/j.ress.2021.107738_bib0006) 2018; 15 Kong (10.1016/j.ress.2021.107738_bib0029) 2017; 66 Liu (10.1016/j.ress.2021.107738_bib0046) 2019; 152 Meeker (10.1016/j.ress.2021.107738_bib0023) 1998 Bae (10.1016/j.ress.2021.107738_bib0007) 2004; 46 Ma (10.1016/j.ress.2021.107738_bib0041) 2019; 35 Zhang (10.1016/j.ress.2021.107738_bib0037) 2017; 167 Hong (10.1016/j.ress.2021.107738_bib0005) 2018; 50 Adrian (10.1016/j.ress.2021.107738_bib0021) 1997; 92 Patil (10.1016/j.ress.2021.107738_bib0001) 2012; 52 Liu (10.1016/j.ress.2021.107738_bib0019) 2018; 180 Peng (10.1016/j.ress.2021.107738_bib0011) 2016; 153 Ma (10.1016/j.ress.2021.107738_bib0042) 2020; 193 Sun (10.1016/j.ress.2021.107738_bib0051) 2016; 16 Liu (10.1016/j.ress.2021.107738_bib0047) 2018; 108 Liu (10.1016/j.ress.2021.107738_bib0003) 2017 Baawain (10.1016/j.ress.2021.107738_bib0045) 2007; 29 Wang (10.1016/j.ress.2021.107738_bib0012) 2019; 127 Wang (10.1016/j.ress.2021.107738_bib0035) 2010; 52 Altun (10.1016/j.ress.2021.107738_bib0027) 2016; 156 Lawless (10.1016/j.ress.2021.107738_bib0014) 2004; 10 Ye (10.1016/j.ress.2021.107738_bib0034) 2015; 139 Wang (10.1016/j.ress.2021.107738_bib0028) 2018; 67 Peng (10.1016/j.ress.2021.107738_bib0009) 2014; 130 Zio (10.1016/j.ress.2021.107738_bib0018) 1996; 54 Argatov (10.1016/j.ress.2021.107738_bib0044) 2019; 138 |
| References_xml | – volume: 10 start-page: 213 year: 2004 end-page: 227 ident: bib0014 article-title: Covariates and random effects in a gamma process model with application to degradation and failure publication-title: Lifetime Data Anal – volume: 127 start-page: 370 year: 2019 end-page: 387 ident: bib0012 article-title: An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction publication-title: Mech Syst Sig Process – volume: 180 start-page: 25 year: 2018 end-page: 38 ident: bib0019 article-title: Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process publication-title: Reliab Eng Syst Saf – volume: 138 start-page: 211 year: 2019 end-page: 214 ident: bib0044 article-title: An artificial neural network supported regression model for wear rate publication-title: Tribol Int – volume: 16 start-page: 1242 year: 2016 ident: bib0051 article-title: Stochastic modeling and analysis of multiple nonlinear accelerated degradation processes through information fusion publication-title: Sensors – volume: 58 start-page: 444 year: 2009 end-page: 455 ident: bib0024 article-title: Mis-specification analysis of linear degradation models publication-title: IEEE Trans Reliab – volume: 230 start-page: 18 year: 2016 end-page: 33 ident: bib0033 article-title: Bayesian inference of multi-stage reliability for degradation systems with calibrations publication-title: J Risk Reliab – volume: 13 start-page: 2911 year: 2017 end-page: 2921 ident: bib0040 article-title: RUL prediction of deteriorating products using an adaptive Wiener process model publication-title: IEEE Trans Ind Inf – volume: 10 start-page: 1687 year: 2017 ident: bib0032 article-title: A novel multi-phase stochastic model for lithium-ion batteries’ degradation with regeneration phenomena publication-title: Energies – volume: 54 start-page: 225 year: 1996 end-page: 241 ident: bib0018 article-title: Two methods for the structured assessment of model uncertainty by experts in performance assessments of radioactive waste repositories publication-title: Reliab Eng Syst Saf – volume: 15 start-page: 2870 year: 2018 end-page: 2878 ident: bib0006 article-title: Joint online RUL prediction for multivariate deteriorating systems publication-title: IEEE Trans Ind Inf – volume: 67 start-page: 688 year: 2018 end-page: 700 ident: bib0028 article-title: Bayesian approach for two-phase degradation data based on change-point Wiener process with measurement errors publication-title: IEEE Trans Reliab – volume: 87 start-page: 2207 year: 2017 end-page: 2226 ident: bib0015 article-title: Bivariate degradation modelling with marginal heterogeneous stochastic processes publication-title: J Stat Comput Simul – volume: 193 year: 2020 ident: bib0042 article-title: Reliability estimation from two types of accelerated testing data considering measurement error publication-title: Reliab Eng Syst Saf – volume: 50 start-page: 1043 year: 2018 end-page: 1057 ident: bib0005 article-title: Interval estimation for Wiener processes based on accelerated degradation test data publication-title: IISE Trans – volume: 66 start-page: 1345 year: 2017 end-page: 1360 ident: bib0029 article-title: Two-phase degradation process model with abrupt jump at change point governed by Wiener process publication-title: IEEE Trans Reliab – volume: 167 start-page: 338 year: 2017 end-page: 350 ident: bib0037 article-title: Lifetime prognostics for furnace wall degradation with time-varying random jumps publication-title: Reliab Eng Syst Saf – volume: 11 year: 2019 ident: bib0002 article-title: Bayesian model averaging based storage lifetime assessment method for rubber sealing rings publication-title: Adv Mech Eng – volume: 35 start-page: 2278 year: 2019 end-page: 2296 ident: bib0041 article-title: Engineering-driven performance degradation analysis of hydraulic piston pump based on the inverse Gaussian process publication-title: Qual Reliab Eng Int – volume: 19 start-page: 1472 year: 2019 ident: bib0031 article-title: Lifetime estimation for multi-phase deteriorating process with random abrupt jumps publication-title: Sensors – volume: 50 start-page: 1043 year: 2018 end-page: 1057 ident: bib0025 article-title: Interval estimation for Wiener processes based on accelerated degradation test data publication-title: IISE Trans – volume: 134 start-page: 66 year: 2015 end-page: 74 ident: bib0026 article-title: A Bayesian approach to modeling two-phase degradation using change-point regression publication-title: Reliab Eng Syst Saf – volume: 33 start-page: 731 year: 2000 end-page: 736 ident: bib0043 article-title: Wear volume prediction with artificial neural networks publication-title: Tribol Int – volume: 92 start-page: 179 year: 1997 end-page: 191 ident: bib0021 article-title: Bayesian model averaging for linear regression models publication-title: J Am Statist Assoc – volume: 139 start-page: 58 year: 2015 end-page: 67 ident: bib0034 article-title: A new class of Wiener process models for degradation analysis publication-title: Reliab Eng Syst Saf – volume: 39 start-page: 44 year: 2012 end-page: 51 ident: bib0020 article-title: Quantification of model-form and parametric uncertainty using evidence theory publication-title: Struct Saf – volume: 52 start-page: 188 year: 2010 end-page: 197 ident: bib0035 article-title: An inverse Gaussian process model for degradation data publication-title: Technometrics – volume: 26 start-page: 1638 year: 2017 end-page: 1650 ident: bib0022 article-title: A random fuzzy accelerated degradation model and statistical analysis publication-title: IEEE Trans Fuzzy Syst – volume: 66 start-page: 3208 year: 2018 end-page: 3216 ident: bib0010 article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network publication-title: IEEE Trans Indust Electron – volume: 156 start-page: 175 year: 2016 end-page: 184 ident: bib0027 article-title: A change-point based reliability prediction model using field return data publication-title: Reliab Eng Syst Saf – volume: 7 start-page: 13 year: 1978 end-page: 26 ident: bib0016 article-title: Further analysis of the data by Akaike's information criterion and the finite corrections publication-title: Commun Stat Theory Methods – volume: 152 start-page: 38 year: 2019 end-page: 47 ident: bib0046 article-title: Artificial neural network modeling on the prediction of mass transfer coefficient for ozone absorption in RPB publication-title: Chem Eng Res Des – volume: 52 start-page: 482 year: 2012 end-page: 488 ident: bib0001 article-title: A prognostic approach for non-punch through and field stop IGBTs publication-title: Microelectron Reliab – year: 1998 ident: bib0023 article-title: Statistical Methods for Reliability Data – volume: 46 start-page: 460 year: 2004 end-page: 469 ident: bib0007 article-title: A nonlinear random-coefficients model for degradation testing publication-title: Technometrics – volume: 130 start-page: 175 year: 2014 end-page: 189 ident: bib0009 article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective publication-title: Reliab Eng Syst Saf – volume: 6 start-page: 65227 year: 2018 end-page: 65238 ident: bib0030 article-title: Remaining useful life prediction using a novel two-stage wiener process with stage correlation publication-title: IEEE Access – volume: 186 start-page: 88 year: 2019 end-page: 100 ident: bib0039 article-title: Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model publication-title: Reliab Eng Syst Saf – volume: 66 start-page: 84 year: 2017 end-page: 96 ident: bib0038 article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates publication-title: IEEE Trans Reliab – volume: 29 start-page: 343 year: 2007 end-page: 352 ident: bib0045 article-title: Artificial neural networks modeling of ozone bubble columns: mass transfer coefficient, gas hold-up, and bubble size publication-title: Ozone Sci Eng – volume: 66 start-page: 3208 year: 2018 end-page: 3216 ident: bib0049 article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network publication-title: IEEE Trans Indust Electron – volume: 67 start-page: 2283 year: 2019 end-page: 2293 ident: bib0050 article-title: Bayesian deep learning based health prognostics towards prognostics uncertainty publication-title: IEEE Trans Indust Electron – volume: 52 start-page: 1332 year: 2012 end-page: 1336 ident: bib0004 article-title: Lifetime predictions of LED-based light bars by accelerated degradation test publication-title: Microelectron Reliab – volume: 57 start-page: 100 year: 2015 end-page: 111 ident: bib0008 article-title: Inverse Gaussian processes with random effects and explanatory variables for degradation data publication-title: Technometrics – volume: 56 start-page: 302 year: 2014 end-page: 311 ident: bib0013 article-title: The inverse Gaussian process as a degradation model publication-title: Technometrics – volume: 108 start-page: 33 year: 2018 end-page: 47 ident: bib0047 article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review publication-title: Mech Syst Sig Process – volume: 169 start-page: 105 year: 2018 end-page: 116 ident: bib0017 article-title: Model selection for degradation modeling and prognosis with health monitoring data publication-title: Reliab Eng Syst Saf – volume: 338 start-page: 232 year: 2018 end-page: 246 ident: bib0048 article-title: A Bayesian framework for estimating fragility curves based on seismic damage data and numerical simulations by adaptive neural networks publication-title: Nucl Eng Des – start-page: 387 year: 2017 end-page: 392 ident: bib0003 article-title: Performance degradation analysis of mechanical seal based on vibration signal processing publication-title: Proceedings of the international conference on sensing, diagnostics, prognostics, and control – volume: 153 start-page: 75 year: 2016 end-page: 87 ident: bib0011 article-title: Reliability of complex systems under dynamic conditions: a Bayesian multivariate degradation perspective publication-title: Reliab Eng Syst Saf – volume: 46 start-page: 483 year: 2014 end-page: 496 ident: bib0036 article-title: Reliability modeling for dependent competing failure processes with changing degradation rate publication-title: IIE Trans – start-page: 387 year: 2017 ident: 10.1016/j.ress.2021.107738_bib0003 article-title: Performance degradation analysis of mechanical seal based on vibration signal processing – volume: 50 start-page: 1043 issue: 12 year: 2018 ident: 10.1016/j.ress.2021.107738_bib0025 article-title: Interval estimation for Wiener processes based on accelerated degradation test data publication-title: IISE Trans doi: 10.1080/24725854.2018.1468121 – volume: 57 start-page: 100 issue: 1 year: 2015 ident: 10.1016/j.ress.2021.107738_bib0008 article-title: Inverse Gaussian processes with random effects and explanatory variables for degradation data publication-title: Technometrics doi: 10.1080/00401706.2013.879077 – volume: 66 start-page: 3208 issue: 4 year: 2018 ident: 10.1016/j.ress.2021.107738_bib0010 article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network publication-title: IEEE Trans Indust Electron doi: 10.1109/TIE.2018.2844856 – volume: 127 start-page: 370 year: 2019 ident: 10.1016/j.ress.2021.107738_bib0012 article-title: An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2019.03.019 – volume: 6 start-page: 65227 year: 2018 ident: 10.1016/j.ress.2021.107738_bib0030 article-title: Remaining useful life prediction using a novel two-stage wiener process with stage correlation publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877630 – volume: 46 start-page: 483 issue: 5 year: 2014 ident: 10.1016/j.ress.2021.107738_bib0036 article-title: Reliability modeling for dependent competing failure processes with changing degradation rate publication-title: IIE Trans doi: 10.1080/0740817X.2013.812270 – volume: 152 start-page: 38 year: 2019 ident: 10.1016/j.ress.2021.107738_bib0046 article-title: Artificial neural network modeling on the prediction of mass transfer coefficient for ozone absorption in RPB publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2019.09.027 – volume: 10 start-page: 213 year: 2004 ident: 10.1016/j.ress.2021.107738_bib0014 article-title: Covariates and random effects in a gamma process model with application to degradation and failure publication-title: Lifetime Data Anal doi: 10.1023/B:LIDA.0000036389.14073.dd – volume: 39 start-page: 44 year: 2012 ident: 10.1016/j.ress.2021.107738_bib0020 article-title: Quantification of model-form and parametric uncertainty using evidence theory publication-title: Struct Saf doi: 10.1016/j.strusafe.2012.08.003 – volume: 52 start-page: 482 year: 2012 ident: 10.1016/j.ress.2021.107738_bib0001 article-title: A prognostic approach for non-punch through and field stop IGBTs publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2011.10.017 – volume: 35 start-page: 2278 issue: 7 year: 2019 ident: 10.1016/j.ress.2021.107738_bib0041 article-title: Engineering-driven performance degradation analysis of hydraulic piston pump based on the inverse Gaussian process publication-title: Qual Reliab Eng Int doi: 10.1002/qre.2502 – volume: 58 start-page: 444 issue: 3 year: 2009 ident: 10.1016/j.ress.2021.107738_bib0024 article-title: Mis-specification analysis of linear degradation models publication-title: IEEE Trans Reliab doi: 10.1109/TR.2009.2026784 – volume: 50 start-page: 1043 issue: 12 year: 2018 ident: 10.1016/j.ress.2021.107738_bib0005 article-title: Interval estimation for Wiener processes based on accelerated degradation test data publication-title: IISE Trans doi: 10.1080/24725854.2018.1468121 – volume: 67 start-page: 688 issue: 2 year: 2018 ident: 10.1016/j.ress.2021.107738_bib0028 article-title: Bayesian approach for two-phase degradation data based on change-point Wiener process with measurement errors publication-title: IEEE Trans Reliab doi: 10.1109/TR.2017.2785978 – volume: 180 start-page: 25 year: 2018 ident: 10.1016/j.ress.2021.107738_bib0019 article-title: Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.06.019 – volume: 46 start-page: 460 year: 2004 ident: 10.1016/j.ress.2021.107738_bib0007 article-title: A nonlinear random-coefficients model for degradation testing publication-title: Technometrics doi: 10.1198/004017004000000464 – volume: 169 start-page: 105 year: 2018 ident: 10.1016/j.ress.2021.107738_bib0017 article-title: Model selection for degradation modeling and prognosis with health monitoring data publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.08.004 – volume: 108 start-page: 33 year: 2018 ident: 10.1016/j.ress.2021.107738_bib0047 article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2018.02.016 – volume: 16 start-page: 1242 issue: 8 year: 2016 ident: 10.1016/j.ress.2021.107738_bib0051 article-title: Stochastic modeling and analysis of multiple nonlinear accelerated degradation processes through information fusion publication-title: Sensors doi: 10.3390/s16081242 – volume: 66 start-page: 1345 issue: 4 year: 2017 ident: 10.1016/j.ress.2021.107738_bib0029 article-title: Two-phase degradation process model with abrupt jump at change point governed by Wiener process publication-title: IEEE Trans Reliab doi: 10.1109/TR.2017.2711621 – volume: 66 start-page: 3208 year: 2018 ident: 10.1016/j.ress.2021.107738_bib0049 article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network publication-title: IEEE Trans Indust Electron doi: 10.1109/TIE.2018.2844856 – volume: 19 start-page: 1472 issue: 6 year: 2019 ident: 10.1016/j.ress.2021.107738_bib0031 article-title: Lifetime estimation for multi-phase deteriorating process with random abrupt jumps publication-title: Sensors doi: 10.3390/s19061472 – volume: 138 start-page: 211 year: 2019 ident: 10.1016/j.ress.2021.107738_bib0044 article-title: An artificial neural network supported regression model for wear rate publication-title: Tribol Int doi: 10.1016/j.triboint.2019.05.040 – volume: 92 start-page: 179 year: 1997 ident: 10.1016/j.ress.2021.107738_bib0021 article-title: Bayesian model averaging for linear regression models publication-title: J Am Statist Assoc doi: 10.1080/01621459.1997.10473615 – volume: 11 issue: 5 year: 2019 ident: 10.1016/j.ress.2021.107738_bib0002 article-title: Bayesian model averaging based storage lifetime assessment method for rubber sealing rings publication-title: Adv Mech Eng doi: 10.1177/1687814019853351 – volume: 52 start-page: 1332 year: 2012 ident: 10.1016/j.ress.2021.107738_bib0004 article-title: Lifetime predictions of LED-based light bars by accelerated degradation test publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2012.02.019 – volume: 10 start-page: 1687 issue: 11 year: 2017 ident: 10.1016/j.ress.2021.107738_bib0032 article-title: A novel multi-phase stochastic model for lithium-ion batteries’ degradation with regeneration phenomena publication-title: Energies doi: 10.3390/en10111687 – volume: 52 start-page: 188 year: 2010 ident: 10.1016/j.ress.2021.107738_bib0035 article-title: An inverse Gaussian process model for degradation data publication-title: Technometrics doi: 10.1198/TECH.2009.08197 – volume: 29 start-page: 343 issue: 5 year: 2007 ident: 10.1016/j.ress.2021.107738_bib0045 article-title: Artificial neural networks modeling of ozone bubble columns: mass transfer coefficient, gas hold-up, and bubble size publication-title: Ozone Sci Eng doi: 10.1080/01919510701549236 – volume: 134 start-page: 66 year: 2015 ident: 10.1016/j.ress.2021.107738_bib0026 article-title: A Bayesian approach to modeling two-phase degradation using change-point regression publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.10.009 – volume: 15 start-page: 2870 issue: 5 year: 2018 ident: 10.1016/j.ress.2021.107738_bib0006 article-title: Joint online RUL prediction for multivariate deteriorating systems publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2869429 – volume: 56 start-page: 302 year: 2014 ident: 10.1016/j.ress.2021.107738_bib0013 article-title: The inverse Gaussian process as a degradation model publication-title: Technometrics doi: 10.1080/00401706.2013.830074 – volume: 167 start-page: 338 year: 2017 ident: 10.1016/j.ress.2021.107738_bib0037 article-title: Lifetime prognostics for furnace wall degradation with time-varying random jumps publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.05.047 – volume: 230 start-page: 18 issue: 1 year: 2016 ident: 10.1016/j.ress.2021.107738_bib0033 article-title: Bayesian inference of multi-stage reliability for degradation systems with calibrations publication-title: J Risk Reliab – volume: 7 start-page: 13 year: 1978 ident: 10.1016/j.ress.2021.107738_bib0016 article-title: Further analysis of the data by Akaike's information criterion and the finite corrections publication-title: Commun Stat Theory Methods doi: 10.1080/03610927808827599 – volume: 338 start-page: 232 year: 2018 ident: 10.1016/j.ress.2021.107738_bib0048 article-title: A Bayesian framework for estimating fragility curves based on seismic damage data and numerical simulations by adaptive neural networks publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2018.08.016 – year: 1998 ident: 10.1016/j.ress.2021.107738_bib0023 – volume: 186 start-page: 88 year: 2019 ident: 10.1016/j.ress.2021.107738_bib0039 article-title: Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2019.02.017 – volume: 153 start-page: 75 year: 2016 ident: 10.1016/j.ress.2021.107738_bib0011 article-title: Reliability of complex systems under dynamic conditions: a Bayesian multivariate degradation perspective publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.04.005 – volume: 26 start-page: 1638 issue: 3 year: 2017 ident: 10.1016/j.ress.2021.107738_bib0022 article-title: A random fuzzy accelerated degradation model and statistical analysis publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2017.2738607 – volume: 67 start-page: 2283 issue: 3 year: 2019 ident: 10.1016/j.ress.2021.107738_bib0050 article-title: Bayesian deep learning based health prognostics towards prognostics uncertainty publication-title: IEEE Trans Indust Electron doi: 10.1109/TIE.2019.2907440 – volume: 193 year: 2020 ident: 10.1016/j.ress.2021.107738_bib0042 article-title: Reliability estimation from two types of accelerated testing data considering measurement error publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2019.106610 – volume: 13 start-page: 2911 issue: 6 year: 2017 ident: 10.1016/j.ress.2021.107738_bib0040 article-title: RUL prediction of deteriorating products using an adaptive Wiener process model publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2017.2684821 – volume: 54 start-page: 225 year: 1996 ident: 10.1016/j.ress.2021.107738_bib0018 article-title: Two methods for the structured assessment of model uncertainty by experts in performance assessments of radioactive waste repositories publication-title: Reliab Eng Syst Saf doi: 10.1016/S0951-8320(96)00078-6 – volume: 130 start-page: 175 year: 2014 ident: 10.1016/j.ress.2021.107738_bib0009 article-title: Inverse Gaussian process models for degradation analysis: a Bayesian perspective publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.06.005 – volume: 156 start-page: 175 year: 2016 ident: 10.1016/j.ress.2021.107738_bib0027 article-title: A change-point based reliability prediction model using field return data publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.07.024 – volume: 66 start-page: 84 issue: 1 year: 2017 ident: 10.1016/j.ress.2021.107738_bib0038 article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates publication-title: IEEE Trans Reliab doi: 10.1109/TR.2016.2635149 – volume: 139 start-page: 58 year: 2015 ident: 10.1016/j.ress.2021.107738_bib0034 article-title: A new class of Wiener process models for degradation analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.02.005 – volume: 87 start-page: 2207 year: 2017 ident: 10.1016/j.ress.2021.107738_bib0015 article-title: Bivariate degradation modelling with marginal heterogeneous stochastic processes publication-title: J Stat Comput Simul doi: 10.1080/00949655.2017.1324858 – volume: 33 start-page: 731 year: 2000 ident: 10.1016/j.ress.2021.107738_bib0043 article-title: Wear volume prediction with artificial neural networks publication-title: Tribol Int doi: 10.1016/S0301-679X(00)00115-8 |
| SSID | ssj0004957 |
| Score | 2.4971178 |
| Snippet | •Stochastic process is combined with ANN to handle degradation path uncertainty.•The hyper parameters are evaluated by moment estimation offline.•The process... An artificial neural network supported stochastic process for degradation modeling and prediction is proposed in this paper. An artificial neural network is... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107738 |
| SubjectTerms | Artificial neural network Artificial neural networks Bayesian analysis Degradation Degradation modeling Degradation path uncertainty Degradation prediction Information processing Mathematical models Modelling Neural networks Predictions Process parameters Reliability engineering Statistical inference Stochastic models Stochastic process Stochastic processes |
| Title | An artificial neural network supported stochastic process for degradation modeling and prediction |
| URI | https://dx.doi.org/10.1016/j.ress.2021.107738 https://www.proquest.com/docview/2553852857 |
| Volume | 214 |
| WOSCitedRecordID | wos000663912500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT4QwEG509aAH4zO-04M3wmaBQuG4MRr1YEz0sDfSlhLXGCT7MPrvnT6guEajBy9AoDTNfh_tdHbmG4TOBKyBpBAMEEgIbFBY6nMpuU8EJSXPVHiT0MUm6O1tOhpldzZ-fqrLCdCqSt_esvpfoYZ7ALZKnf0D3G2ncAOuAXQ4Auxw_BXww0oJF42tMoTSq9QnHe3tTee1VjIvPDD6xCNTKs1ebZIFdMRhocQjTJ0lUyWnSWKsJ-ovnRbGRtMbGhil73dPOmlDTSgjEu1NWWm1RnTgz3iup7mx8-Rbh_Uj07lbXTdEGLQBbc6fGPgwPQy6U2sYkM7kCDtNaqRcvszbxoXw1Fcuhr7qvu8afxbJXli82pDCJlrtKVd95KqP3PSxjFZCGmdpD60Mry9GNy5tNjNCsM3IbU6VCf9bHMl3dsvCCq7NkodNtGH3E3hoeLCFlmS1jdY7KpM7iA0r7BiBDSOwZQRuGYEdI7BlBAZG4A4jcMMIDIzAjhG76P7y4uH8yreVNXwRhenMT0qwymgiCh7BIhOGYpCAlSIGPOKkYEkBNi4RQUkJD8CcD4uypGkBhqLKikxYtId61Usl9xGmagNM4QlnktBSZCJJeCZimklJ0yg6QEHzq-XCis6r2ifP-fd4HSCvfac2kis_to4bMHJrNBpjMAdu_fjecYNcbr9eeB7D-h-HaUwP_zSII7Tmvolj1JtN5vIErYrX2Xg6ObW8-wDevpr3 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+artificial+neural+network+supported+stochastic+process+for+degradation+modeling+and+prediction&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Liu%2C+Di&rft.au=Wang%2C+Shaoping&rft.date=2021-10-01&rft.issn=0951-8320&rft.volume=214&rft.spage=107738&rft_id=info:doi/10.1016%2Fj.ress.2021.107738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2021_107738 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |