Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm

•An ensemble forecasting system is developed for short-term wind speed.•A comprehensive indicator is proposed to determine the best sub-models adaptively.•Point and interval prediction are conducted for more intelligent grid management.•Optimal distribution is used effectively to measure the uncerta...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 177; p. 114974
Main Authors: Liu, Zhenkun, Jiang, Ping, Wang, Jianzhou, Zhang, Lifang
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.09.2021
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •An ensemble forecasting system is developed for short-term wind speed.•A comprehensive indicator is proposed to determine the best sub-models adaptively.•Point and interval prediction are conducted for more intelligent grid management.•Optimal distribution is used effectively to measure the uncertainty.•Multi-objective version of Mayfly Algorithm is proposed for ensemble forecasting. Wind energy has attracted considerable attention in the past decades as a low-carbon, environmentally friendly, and efficient renewable energy. However, the irregularity of wind speed makes it difficult to integrate wind energy into smart grids. Thus, achieving credible and effective wind speed forecasting results is crucial for the operation and management of wind energy. In this study, we propose an ensemble forecasting system that integrates data decomposition technology, sub-model selection, a novel multi-objective version of the Mayfly algorithm, and different predictors to better demonstrate the stochasticity and fluctuation of wind speed data. After decomposition using the data decomposition technology, each decomposed wind speed series is considered as the input to multiple predictors, from which the optimal forecasting model for each sub-series is determined based on sub-model selection. To obtain reliable forecasting results, a novel multi-objective version of the Mayfly algorithm is proposed to estimate the optimal weight coefficients for integrating the forecasting values of the sub-series. Based on three experiments and four analyses, the proposed ensemble system is verified as effective for obtaining accurate and stable point forecasting and interval forecasting performances, thus aiding in the planning and dispatching of power grids.
AbstractList Wind energy has attracted considerable attention in the past decades as a low-carbon, environmentally friendly, and efficient renewable energy. However, the irregularity of wind speed makes it difficult to integrate wind energy into smart grids. Thus, achieving credible and effective wind speed forecasting results is crucial for the operation and management of wind energy. In this study, we propose an ensemble forecasting system that integrates data decomposition technology, sub-model selection, a novel multi-objective version of the Mayfly algorithm, and different predictors to better demonstrate the stochasticity and fluctuation of wind speed data. After decomposition using the data decomposition technology, each decomposed wind speed series is considered as the input to multiple predictors, from which the optimal forecasting model for each sub-series is determined based on sub-model selection. To obtain reliable forecasting results, a novel multi-objective version of the Mayfly algorithm is proposed to estimate the optimal weight coefficients for integrating the forecasting values of the sub-series. Based on three experiments and four analyses, the proposed ensemble system is verified as effective for obtaining accurate and stable point forecasting and interval forecasting performances, thus aiding in the planning and dispatching of power grids.
•An ensemble forecasting system is developed for short-term wind speed.•A comprehensive indicator is proposed to determine the best sub-models adaptively.•Point and interval prediction are conducted for more intelligent grid management.•Optimal distribution is used effectively to measure the uncertainty.•Multi-objective version of Mayfly Algorithm is proposed for ensemble forecasting. Wind energy has attracted considerable attention in the past decades as a low-carbon, environmentally friendly, and efficient renewable energy. However, the irregularity of wind speed makes it difficult to integrate wind energy into smart grids. Thus, achieving credible and effective wind speed forecasting results is crucial for the operation and management of wind energy. In this study, we propose an ensemble forecasting system that integrates data decomposition technology, sub-model selection, a novel multi-objective version of the Mayfly algorithm, and different predictors to better demonstrate the stochasticity and fluctuation of wind speed data. After decomposition using the data decomposition technology, each decomposed wind speed series is considered as the input to multiple predictors, from which the optimal forecasting model for each sub-series is determined based on sub-model selection. To obtain reliable forecasting results, a novel multi-objective version of the Mayfly algorithm is proposed to estimate the optimal weight coefficients for integrating the forecasting values of the sub-series. Based on three experiments and four analyses, the proposed ensemble system is verified as effective for obtaining accurate and stable point forecasting and interval forecasting performances, thus aiding in the planning and dispatching of power grids.
ArticleNumber 114974
Author Wang, Jianzhou
Jiang, Ping
Zhang, Lifang
Liu, Zhenkun
Author_xml – sequence: 1
  givenname: Zhenkun
  surname: Liu
  fullname: Liu, Zhenkun
  email: zhenkunliudufe@163.com
  organization: School of Statistics, Dongbei University of Finance and Economics, No. 217, Jianshan Road, Shahekou District, Dalian, Liaoning Province 116025, China
– sequence: 2
  givenname: Ping
  surname: Jiang
  fullname: Jiang, Ping
  email: pjiang@dufe.edu.cn
  organization: School of Statistics, Dongbei University of Finance and Economics, No. 217, Jianshan Road, Shahekou District, Dalian, Liaoning Province 116025, China
– sequence: 3
  givenname: Jianzhou
  surname: Wang
  fullname: Wang, Jianzhou
  email: wangjz@dufe.edu.cn
  organization: School of Statistics, Dongbei University of Finance and Economics, No. 217, Jianshan Road, Shahekou District, Dalian, Liaoning Province 116025, China
– sequence: 4
  givenname: Lifang
  surname: Zhang
  fullname: Zhang, Lifang
  organization: School of Statistics, Dongbei University of Finance and Economics, No. 217, Jianshan Road, Shahekou District, Dalian, Liaoning Province 116025, China
BookMark eNp9kc9u1DAQxi1UJLYLL8DJEucsdvwvkbigqhSkSlzgbDnOpHWUxIvHu9XyOrwoDuECh55sfTO_GX3zXZOrJS5AyFvODpxx_X48AD65Q81qfuBctka-IDveGFFp04orsmOtMpXkRr4i14gjY9wwZnbk1-2CMHcT0CEm8A5zWB4oXjDDvEoUH2PKVYY006ew9BSPAP0_zZ3DosSFxmMOs5sonrpqjj2UH0zgcyg1V9D5NOVQxW5ctTPQMyRca3Ggs7sM02WbEH66DZkeYgr5cX5NXg5uQnjz992T759uv918ru6_3n25-XhfeVE3udLQewW67oRrORjpTa-E6kRbC9XXimkBwvDBlxtpL7VuABothFQDNF47Lvbk3Tb3mOKPE2C2Yzylpay0tZJMyaYtx9yTeuvyKSImGOwxFdvpYjmzaxh2tGsYdg3DbmEUqPkP8iH_sZmTC9Pz6IcNhWL9HCBZ9AEWD30oGWTbx_Ac_hvPFquf
CitedBy_id crossref_primary_10_1007_s41870_024_01761_w
crossref_primary_10_1016_j_eswa_2023_123054
crossref_primary_10_1016_j_asoc_2023_111090
crossref_primary_10_3389_fenrg_2022_928063
crossref_primary_10_1007_s40313_021_00862_2
crossref_primary_10_1016_j_chaos_2023_113692
crossref_primary_10_1016_j_eswa_2024_124829
crossref_primary_10_1109_ACCESS_2022_3160714
crossref_primary_10_1016_j_renene_2022_08_079
crossref_primary_10_1007_s13369_025_10481_7
crossref_primary_10_1007_s10639_023_11645_4
crossref_primary_10_1016_j_apenergy_2022_118796
crossref_primary_10_1007_s11227_023_05400_2
crossref_primary_10_1007_s10489_023_04906_9
crossref_primary_10_1016_j_energy_2023_129618
crossref_primary_10_3389_fbioe_2022_830037
crossref_primary_10_3390_en15186545
crossref_primary_10_1016_j_apenergy_2022_118725
crossref_primary_10_1007_s00521_022_07261_x
crossref_primary_10_1016_j_eswa_2022_119063
crossref_primary_10_1016_j_eswa_2022_119184
crossref_primary_10_1155_2022_9928836
crossref_primary_10_1016_j_compeleceng_2024_109904
crossref_primary_10_1002_for_2785
crossref_primary_10_1016_j_eswa_2023_119765
crossref_primary_10_1016_j_energy_2024_130606
crossref_primary_10_1016_j_energy_2022_123644
crossref_primary_10_1016_j_enconman_2021_114162
crossref_primary_10_1108_IJSI_08_2024_0129
crossref_primary_10_1007_s40435_021_00892_3
crossref_primary_10_1016_j_eswa_2023_120354
crossref_primary_10_1038_s41598_025_90006_2
crossref_primary_10_1016_j_energy_2025_137229
crossref_primary_10_1016_j_seta_2022_102186
crossref_primary_10_1016_j_epsr_2022_108186
crossref_primary_10_1016_j_enconman_2022_116579
crossref_primary_10_1016_j_ins_2022_11_145
crossref_primary_10_1016_j_jenvman_2021_113051
crossref_primary_10_1007_s12652_021_03595_x
crossref_primary_10_1007_s00366_021_01554_w
crossref_primary_10_1007_s11760_024_03325_8
crossref_primary_10_1016_j_asoc_2022_108544
crossref_primary_10_1007_s00202_023_02037_5
crossref_primary_10_1016_j_eswa_2022_116509
crossref_primary_10_1016_j_cscee_2023_100594
crossref_primary_10_1016_j_eswa_2024_124560
crossref_primary_10_3390_en16145281
crossref_primary_10_1016_j_oceaneng_2023_115614
crossref_primary_10_1016_j_energy_2024_132320
crossref_primary_10_3390_en16083531
crossref_primary_10_1016_j_apenergy_2025_126615
crossref_primary_10_1007_s11227_022_04998_z
crossref_primary_10_1155_2022_7456333
crossref_primary_10_1016_j_apenergy_2024_125108
crossref_primary_10_1016_j_energy_2022_124750
crossref_primary_10_1016_j_asoc_2023_110865
crossref_primary_10_1016_j_asoc_2021_108110
crossref_primary_10_1111_joes_70005
crossref_primary_10_3390_en15124361
crossref_primary_10_1007_s41939_024_00553_w
crossref_primary_10_1016_j_resourpol_2021_102222
crossref_primary_10_1007_s11227_022_04883_9
crossref_primary_10_1016_j_energy_2024_133524
crossref_primary_10_1016_j_resourpol_2022_102714
crossref_primary_10_1007_s10489_024_05350_z
crossref_primary_10_1007_s41939_024_00413_7
crossref_primary_10_1016_j_compbiomed_2022_105349
crossref_primary_10_1016_j_eswa_2024_123819
crossref_primary_10_1016_j_oceaneng_2025_122518
crossref_primary_10_1002_ente_202100700
crossref_primary_10_3390_su151712914
crossref_primary_10_1016_j_awe_2025_100055
crossref_primary_10_1016_j_renene_2022_06_143
crossref_primary_10_1016_j_energy_2023_129898
crossref_primary_10_1016_j_jenvman_2023_119807
crossref_primary_10_1016_j_cie_2023_109237
crossref_primary_10_1016_j_renene_2021_07_113
crossref_primary_10_1007_s13042_022_01617_4
crossref_primary_10_1016_j_chaos_2022_111982
crossref_primary_10_1016_j_enconman_2024_118343
crossref_primary_10_1016_j_energy_2023_128048
crossref_primary_10_1007_s12652_022_04423_6
crossref_primary_10_1007_s12145_023_00938_4
crossref_primary_10_1515_cppm_2024_0115
crossref_primary_10_1016_j_energy_2022_123960
crossref_primary_10_1016_j_energy_2022_124378
crossref_primary_10_1080_15325008_2023_2220688
crossref_primary_10_1016_j_engappai_2023_107034
crossref_primary_10_61435_ijred_2024_60387
crossref_primary_10_1016_j_asoc_2023_110527
crossref_primary_10_1007_s00521_023_08807_3
crossref_primary_10_3390_en17040777
crossref_primary_10_1049_tje2_12409
crossref_primary_10_1016_j_jhydrol_2022_128469
crossref_primary_10_1016_j_rser_2024_114781
crossref_primary_10_1016_j_apenergy_2021_117449
crossref_primary_10_3233_JIFS_221161
crossref_primary_10_3390_atmos13050758
crossref_primary_10_1007_s12083_023_01541_6
crossref_primary_10_1016_j_energy_2022_124664
crossref_primary_10_1016_j_energy_2025_136060
crossref_primary_10_1016_j_techfore_2021_121181
crossref_primary_10_1007_s41939_024_00663_5
crossref_primary_10_1016_j_eswa_2022_117358
crossref_primary_10_3389_fenrg_2021_764635
crossref_primary_10_1007_s10489_022_04265_x
crossref_primary_10_1007_s12652_024_04889_6
crossref_primary_10_1016_j_energy_2021_122128
crossref_primary_10_1016_j_resourpol_2022_102734
crossref_primary_10_1016_j_enconman_2025_119752
crossref_primary_10_1007_s11356_022_23773_4
crossref_primary_10_3390_app131911112
crossref_primary_10_1007_s10489_025_06720_x
crossref_primary_10_1007_s11356_022_24570_9
crossref_primary_10_1016_j_seta_2022_102535
crossref_primary_10_1038_s41598_024_51252_y
crossref_primary_10_1016_j_rineng_2024_103407
crossref_primary_10_1016_j_egyr_2023_05_034
crossref_primary_10_1109_TETCI_2024_3400852
crossref_primary_10_1016_j_apenergy_2023_121049
crossref_primary_10_1016_j_epsr_2022_108765
crossref_primary_10_1007_s11276_023_03262_3
Cites_doi 10.1016/j.jclepro.2020.121027
10.1016/j.eswa.2020.113338
10.1016/j.renene.2020.03.168
10.1109/CEC.2002.1004388
10.1016/j.apenergy.2019.114137
10.1016/j.asoc.2020.106509
10.1016/j.cie.2020.106559
10.1016/j.renene.2020.09.032
10.1016/j.renene.2019.01.031
10.1016/j.energy.2020.119361
10.1080/07350015.1995.10524599
10.1109/3477.484436
10.1016/j.measurement.2019.106971
10.1016/j.apenergy.2019.05.016
10.1016/j.apm.2019.10.022
10.1016/j.renene.2018.02.092
10.1016/j.enconman.2018.02.012
10.1109/TNNLS.2020.2973293
10.1016/j.asoc.2017.09.035
10.1016/j.apenergy.2019.114243
10.1016/j.asoc.2019.105765
10.1109/4235.996017
10.1016/j.apm.2020.07.019
10.1016/j.atmosres.2012.10.018
10.1023/A:1008202821328
10.1016/j.eswa.2015.10.039
10.1109/TSP.2013.2288675
10.1016/j.energy.2020.117794
10.1016/j.knosys.2013.11.015
10.1016/j.apenergy.2020.115975
10.1016/j.asoc.2019.105972
10.1016/j.seta.2020.100802
10.1016/j.scs.2020.102036
10.1089/big.2020.0051
10.1016/j.enconman.2017.11.049
10.1016/S1364-0321(00)00004-6
10.1016/j.enconman.2019.111914
10.1016/j.asoc.2019.105587
10.1016/j.engappai.2020.103783
10.1007/s12065-019-00212-x
10.1016/j.jweia.2008.03.013
10.1109/4235.585893
10.3389/fenrg.2019.00130
10.1016/j.patrec.2019.10.011
10.1016/j.asoc.2020.106620
10.1016/j.asoc.2018.11.032
10.1016/j.enconman.2015.05.065
10.1007/s00521-015-1920-1
10.1016/j.renene.2018.01.113
10.1016/j.eswa.2017.12.016
10.1016/j.solener.2004.09.013
10.1016/j.asoc.2020.106294
10.1007/s10489-020-01727-y
10.1016/j.renene.2017.11.089
10.1016/j.asoc.2020.106392
10.1016/j.advengsoft.2017.07.002
10.1016/j.cie.2019.07.046
10.1016/j.apenergy.2017.10.031
10.1016/j.jclepro.2019.03.036
10.1007/s10489-017-1019-8
10.1016/j.energy.2018.09.118
10.1016/j.asoc.2020.106809
10.1016/j.enconman.2018.10.068
10.1016/j.jenvman.2019.109855
10.1016/j.apenergy.2020.115561
10.1016/j.atmosres.2019.04.011
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Sep 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.114974
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_114974
S0957417421004152
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-6edc5e62b3a91e74c7d535b39235d25063e371fc0216c4668ee863345fe8c6a13
ISICitedReferencesCount 144
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663299900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 30 04:43:40 EST 2025
Sat Nov 29 07:08:34 EST 2025
Tue Nov 18 22:31:01 EST 2025
Fri Feb 23 02:47:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective version of Mayfly algorithm
Sub-model selection
Short-term wind speed forecasting
Ensemble model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-6edc5e62b3a91e74c7d535b39235d25063e371fc0216c4668ee863345fe8c6a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2540548979
PQPubID 2045477
ParticipantIDs proquest_journals_2540548979
crossref_primary_10_1016_j_eswa_2021_114974
crossref_citationtrail_10_1016_j_eswa_2021_114974
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114974
PublicationCentury 2000
PublicationDate 2021-09-01
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhou, Wang, Zhang (b0355) 2019; 250
Luo, Li, Wang, Hu (b0195) 2021; 89
Zhang, Li (b0345) 2007
Liu, Mi, Li (b0175) 2018; 123
Ackermann, Söder (b0010) 2000
Torres, García, De Blas, De Francisco (b0270) 2005
Liu, Duan, Chen (b0155) 2020; 280
Harifi, Khalilian, Mohammadzadeh, Ebrahimnejad (b0110) 2019; 12
Du, Wang, Yang, Niu (b0080) 2018; 122
Li, Jiang, Yang, Li (b0145) 2020; 55
Mirjalili, Mirjalili, Saremi, Faris, Aljarah (b0215) 2018; 48
Yuan, Chen, Yuan, Huang, Tan (b0330) 2015; 101
Wang, Du, Niu, Yang (b0280) 2017; 208
Jahani, Chizari (b0120) 2018; 62
Ghafil, Jármai (b0100) 2020; 93
Budak, Cömert, Rashid, Şengür, Çıbuk (b0030) 2019; 85
Tian, Hao (b0265) 2020; 79
Cheng, Wang (b0040) 2020; 92
Dragomiretskiy, Zosso (b0070) 2014; 62
Wang, Niu, Liu, Zhang (b0290) 2020; 94
Du, Wang, Hao, Niu, Yang (b0075) 2020; 96
Martínez-Álvarez, Asencio-Cortés, Torres, Gutiérrez-Avilés, Melgar-García, Pérez-Chacón, Troncoso (b0200) 2020; 8
Chen, He, Shang, Li, Li, Xu (b0035) 2019; 179
Aasim, Singh, Mohapatra (b0005) 2019; 136
Ren, An, Wang, Li, Hu, Shang (b0255) 2014; 56
Liu, Jiang, Zhang, Niu (b0170) 2020; 259
Wang, Niu, Du, Yang (b0285) 2020; 95
Jiang, Liu, Niu, Zhang (b0135) 2021; 217
Mirjalili (b0205) 2016; 27
Louka, Galanis, Siebert, Kariniotakis, Katsafados, Pytharoulis, Kallos (b0190) 2008; 96
Liu, Duan, Wu, Li, Dong (b0165) 2019; 148
Jiang, Liu (b0130) 2019; 82
Wang, Du, Hao, Ma, Niu, Yang (b0275) 2020; 255
Foroughi Nematollahi, Rahiminejad, Vahidi (b0095) 2019; 75
Duan, Liu (b0085) 2019; 198
Liu, Duan, Han, Li (b0160) 2018; 156
Moreno, dos Santos Coelho (b0225) 2018; 126
Zervoudakis, Tsafarakis (b0335) 2020; 145
Al-Dahidi, Ayadi, Adeeb, Louzazni (b0015) 2019; 7
Holland, J. H. (1975). Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor University of Michigan Press 1975.
Yang, Zhu, Li, Li (b0325) 2020; 87
Zhang, Cao, Wang, Kou, Shao, Li, Shen (b0340) 2019; 2019
Diebold, Mariano (b0060) 1995; 13
Araya, Valle, Allende (b0025) 2020; 136
Guan, Zhao, Shi (b0105) 2019
Wolpert, Macready (b0310) 1997; 1
Jiang, Li, Liu, Gao (b0125) 2020; 260
Mirjalili, Saremi, Mirjalili, Coelho (b0220) 2016; 47
Storn, Price (b0260) 1997
Wang, Yang, Du, Niu (b0305) 2018; 163
Zhang, Zhang, Wang, Niu (b0350) 2020; 277
Di, Ao, Duan, Wang, Gong, Shen, Liu (b0055) 2019; 226
Nie, Jiang, Zhang (b0230) 2020; 97
Li, Nie, Huang (b0150) 2018; 96
Wang, Wang, Li (b0300) 2020; 260
Qais, Hasanien, Alghuwainem (b0250) 2020; 50
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0210) 2017; 114
Liu, Zhang, Lu (b0185) 2020; 31
Dorigo, Maniezzo, Colorni (b0065) 1996; 26
Yang, Wang, Lu, Niu, Du (b0320) 2019; 222
Coello Coello, C. A., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002. DOI:10.1109/CEC.2002.1004388.
Khishe, Mosavi (b0140) 2020; 149
Deb, Pratap, Agarwal, Meyarivan (b0050) 2002
Xu, Liu, Cheng, Zhou, Xia, Gong, Liu (b0315) 2021; 163
Aly (b0020) 2020; 41
Peng, Zhang, Zhou, Nazir (b0240) 2020; 156
Wang, Qi, Liu, Song (b0295) 2018; 165
Posada, García-Ortega, Sánchez, López (b0245) 2013; 122
Pakzad-Moghaddam, Mina, Mostafazadeh (b0235) 2019; 136
Eberhart, Kennedy (b0090) 1995
Liu, Yu, Wu, Duan, Yan (b0180) 2020; 202
Yuan (10.1016/j.eswa.2021.114974_b0330) 2015; 101
Storn (10.1016/j.eswa.2021.114974_b0260) 1997
Wang (10.1016/j.eswa.2021.114974_b0290) 2020; 94
Torres (10.1016/j.eswa.2021.114974_b0270) 2005
Zhang (10.1016/j.eswa.2021.114974_b0340) 2019; 2019
Chen (10.1016/j.eswa.2021.114974_b0035) 2019; 179
Deb (10.1016/j.eswa.2021.114974_b0050) 2002
Du (10.1016/j.eswa.2021.114974_b0075) 2020; 96
Martínez-Álvarez (10.1016/j.eswa.2021.114974_b0200) 2020; 8
Dorigo (10.1016/j.eswa.2021.114974_b0065) 1996; 26
10.1016/j.eswa.2021.114974_b0045
Mirjalili (10.1016/j.eswa.2021.114974_b0210) 2017; 114
Qais (10.1016/j.eswa.2021.114974_b0250) 2020; 50
Liu (10.1016/j.eswa.2021.114974_b0165) 2019; 148
Louka (10.1016/j.eswa.2021.114974_b0190) 2008; 96
Mirjalili (10.1016/j.eswa.2021.114974_b0205) 2016; 27
Jiang (10.1016/j.eswa.2021.114974_b0125) 2020; 260
Zervoudakis (10.1016/j.eswa.2021.114974_b0335) 2020; 145
Moreno (10.1016/j.eswa.2021.114974_b0225) 2018; 126
Pakzad-Moghaddam (10.1016/j.eswa.2021.114974_b0235) 2019; 136
Wang (10.1016/j.eswa.2021.114974_b0285) 2020; 95
Aly (10.1016/j.eswa.2021.114974_b0020) 2020; 41
Jiang (10.1016/j.eswa.2021.114974_b0130) 2019; 82
Yang (10.1016/j.eswa.2021.114974_b0320) 2019; 222
Wang (10.1016/j.eswa.2021.114974_b0305) 2018; 163
Du (10.1016/j.eswa.2021.114974_b0080) 2018; 122
Khishe (10.1016/j.eswa.2021.114974_b0140) 2020; 149
Yang (10.1016/j.eswa.2021.114974_b0325) 2020; 87
Duan (10.1016/j.eswa.2021.114974_b0085) 2019; 198
Li (10.1016/j.eswa.2021.114974_b0145) 2020; 55
10.1016/j.eswa.2021.114974_b0115
Cheng (10.1016/j.eswa.2021.114974_b0040) 2020; 92
Wang (10.1016/j.eswa.2021.114974_b0300) 2020; 260
Guan (10.1016/j.eswa.2021.114974_b0105) 2019
Liu (10.1016/j.eswa.2021.114974_b0180) 2020; 202
Zhang (10.1016/j.eswa.2021.114974_b0350) 2020; 277
Li (10.1016/j.eswa.2021.114974_b0150) 2018; 96
Mirjalili (10.1016/j.eswa.2021.114974_b0220) 2016; 47
Eberhart (10.1016/j.eswa.2021.114974_b0090) 1995
Nie (10.1016/j.eswa.2021.114974_b0230) 2020; 97
Wang (10.1016/j.eswa.2021.114974_b0275) 2020; 255
Diebold (10.1016/j.eswa.2021.114974_b0060) 1995; 13
Zhang (10.1016/j.eswa.2021.114974_b0345) 2007
Ghafil (10.1016/j.eswa.2021.114974_b0100) 2020; 93
Zhou (10.1016/j.eswa.2021.114974_b0355) 2019; 250
Al-Dahidi (10.1016/j.eswa.2021.114974_b0015) 2019; 7
Foroughi Nematollahi (10.1016/j.eswa.2021.114974_b0095) 2019; 75
Wang (10.1016/j.eswa.2021.114974_b0280) 2017; 208
Araya (10.1016/j.eswa.2021.114974_b0025) 2020; 136
Peng (10.1016/j.eswa.2021.114974_b0240) 2020; 156
Jiang (10.1016/j.eswa.2021.114974_b0135) 2021; 217
Ren (10.1016/j.eswa.2021.114974_b0255) 2014; 56
Liu (10.1016/j.eswa.2021.114974_b0170) 2020; 259
Di (10.1016/j.eswa.2021.114974_b0055) 2019; 226
Tian (10.1016/j.eswa.2021.114974_b0265) 2020; 79
Posada (10.1016/j.eswa.2021.114974_b0245) 2013; 122
Aasim (10.1016/j.eswa.2021.114974_b0005) 2019; 136
Harifi (10.1016/j.eswa.2021.114974_b0110) 2019; 12
Xu (10.1016/j.eswa.2021.114974_b0315) 2021; 163
Liu (10.1016/j.eswa.2021.114974_b0175) 2018; 123
Wolpert (10.1016/j.eswa.2021.114974_b0310) 1997; 1
Mirjalili (10.1016/j.eswa.2021.114974_b0215) 2018; 48
Liu (10.1016/j.eswa.2021.114974_b0160) 2018; 156
Dragomiretskiy (10.1016/j.eswa.2021.114974_b0070) 2014; 62
Ackermann (10.1016/j.eswa.2021.114974_b0010) 2000
Wang (10.1016/j.eswa.2021.114974_b0295) 2018; 165
Budak (10.1016/j.eswa.2021.114974_b0030) 2019; 85
Jahani (10.1016/j.eswa.2021.114974_b0120) 2018; 62
Luo (10.1016/j.eswa.2021.114974_b0195) 2021; 89
Liu (10.1016/j.eswa.2021.114974_b0185) 2020; 31
Liu (10.1016/j.eswa.2021.114974_b0155) 2020; 280
References_xml – volume: 126
  start-page: 736
  year: 2018
  end-page: 754
  ident: b0225
  article-title: Wind speed forecasting approach based on Singular Spectrum Analysis and Adaptive Neuro Fuzzy Inference System
  publication-title: Renewable Energy
– volume: 156
  start-page: 525
  year: 2018
  end-page: 541
  ident: b0160
  article-title: Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm
  publication-title: Energy Conversion and Management
– volume: 97
  start-page: 106809
  year: 2020
  ident: b0230
  article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting
  publication-title: Applied Soft Computing
– volume: 41
  start-page: 100802
  year: 2020
  ident: b0020
  article-title: An intelligent hybrid model of neuro Wavelet, time series and Recurrent Kalman Filter for wind speed forecasting
  publication-title: Sustainable Energy Technologies and Assessments
– volume: 136
  start-page: 758
  year: 2019
  end-page: 768
  ident: b0005
  article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting
  publication-title: Renewable Energy
– year: 2019
  ident: b0105
  article-title: Research on E-commerce precision poverty alleviation
  publication-title: Economic Science Press
– volume: 255
  start-page: 109855
  year: 2020
  ident: b0275
  article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting
  publication-title: Journal of Environmental Management
– year: 2007
  ident: b0345
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 208
  start-page: 344
  year: 2017
  end-page: 360
  ident: b0280
  article-title: A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting
  publication-title: Applied Energy
– volume: 165
  start-page: 840
  year: 2018
  end-page: 852
  ident: b0295
  article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting
  publication-title: Energy
– volume: 222
  start-page: 942
  year: 2019
  end-page: 959
  ident: b0320
  article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China
  publication-title: Journal of Cleaner Production
– volume: 48
  start-page: 805
  year: 2018
  end-page: 820
  ident: b0215
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Applied Intelligence
– volume: 179
  start-page: 13
  year: 2019
  end-page: 29
  ident: b0035
  article-title: A novel combined model based on echo state network for multi-step ahead wind speed forecasting: A case study of NREL
  publication-title: Energy Conversion and Management
– volume: 95
  start-page: 106509
  year: 2020
  ident: b0285
  article-title: Ensemble probabilistic prediction approach for modeling uncertainty in crude oil price
  publication-title: Applied Soft Computing Journal
– year: 2000
  ident: b0010
  article-title: Wind energy technology and current status: A review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 123
  start-page: 694
  year: 2018
  end-page: 705
  ident: b0175
  article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm
  publication-title: Renewable Energy
– volume: 85
  start-page: 105765
  year: 2019
  ident: b0030
  article-title: Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images
  publication-title: Applied Soft Computing Journal
– volume: 136
  start-page: 333
  year: 2020
  end-page: 340
  ident: b0025
  article-title: A Multi-Scale Model based on the Long Short-Term Memory for day ahead hourly wind speed forecasting
  publication-title: Pattern Recognition Letters
– volume: 145
  start-page: 106559
  year: 2020
  ident: b0335
  article-title: A mayfly optimization algorithm
  publication-title: Computers and Industrial Engineering
– volume: 93
  start-page: 106392
  year: 2020
  ident: b0100
  article-title: Dynamic differential annealed optimization: New metaheuristic optimization algorithm for engineering applications
  publication-title: Applied Soft Computing Journal
– volume: 89
  start-page: 49
  year: 2021
  end-page: 72
  ident: b0195
  article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach
  publication-title: Applied Mathematical Modelling
– volume: 163
  start-page: 772
  year: 2021
  end-page: 782
  ident: b0315
  article-title: Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy
  publication-title: Renewable Energy
– volume: 280
  start-page: 115975
  year: 2020
  ident: b0155
  article-title: Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder
  publication-title: Applied Energy
– volume: 122
  start-page: 174
  year: 2013
  end-page: 182
  ident: b0245
  article-title: Verification of the MM5 model using radiosonde data from Madrid-Barajas Airport
  publication-title: Atmospheric Research
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0070
  article-title: Variational mode decomposition
  publication-title: IEEE Transactions on Signal Processing
– volume: 156
  start-page: 804
  year: 2020
  end-page: 819
  ident: b0240
  article-title: Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting
  publication-title: Renewable Energy
– volume: 96
  start-page: 106620
  year: 2020
  ident: b0075
  article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting
  publication-title: Applied Soft Computing Journal
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: b0065
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
– volume: 47
  start-page: 106
  year: 2016
  end-page: 119
  ident: b0220
  article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Systems with Applications
– volume: 250
  start-page: 1559
  year: 2019
  end-page: 1580
  ident: b0355
  article-title: Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems
  publication-title: Applied Energy
– reference: Holland, J. H. (1975). Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor University of Michigan Press 1975.
– volume: 217
  start-page: 119361
  year: 2021
  ident: b0135
  article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting
  publication-title: Energy
– volume: 148
  start-page: 106971
  year: 2019
  ident: b0165
  article-title: Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network
  publication-title: Measurement: Journal of the International Measurement Confederation
– volume: 202
  start-page: 117794
  year: 2020
  ident: b0180
  article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting
  publication-title: Energy
– year: 2002
  ident: b0050
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 149
  start-page: 113338
  year: 2020
  ident: b0140
  article-title: Chimp optimization algorithm
  publication-title: Expert Systems with Applications
– volume: 56
  start-page: 226
  year: 2014
  end-page: 239
  ident: b0255
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting
  publication-title: Knowledge-Based Systems
– volume: 277
  start-page: 115561
  year: 2020
  ident: b0350
  article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting
  publication-title: Applied Energy
– volume: 198
  start-page: 111914
  year: 2019
  ident: b0085
  article-title: An evolution-dependent multi-objective ensemble model of vanishing moment with adversarial auto-encoder for short-term wind speed forecasting in Xinjiang wind farm, China
  publication-title: Energy Conversion and Management
– volume: 94
  start-page: 103783
  year: 2020
  ident: b0290
  article-title: Analysis of the influence of international benchmark oil price on China’s real exchange rate forecasting
  publication-title: Engineering Applications of Artificial Intelligence
– year: 2005
  ident: b0270
  article-title: Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
  publication-title: Solar Energy
– volume: 259
  start-page: 114137
  year: 2020
  ident: b0170
  article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting
  publication-title: Applied Energy
– reference: Coello Coello, C. A., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002. DOI:10.1109/CEC.2002.1004388.
– volume: 96
  start-page: 261
  year: 2018
  end-page: 270
  ident: b0150
  article-title: Web spam classification method based on deep belief networks
  publication-title: Expert Systems with Applications
– volume: 96
  start-page: 2348
  year: 2008
  end-page: 2362
  ident: b0190
  article-title: Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– volume: 7
  start-page: 1
  year: 2019
  end-page: 18
  ident: b0015
  article-title: Assessment of artificial neural networks learning algorithms and training datasets for solar photovoltaic power production prediction
  publication-title: Frontiers in Energy Research
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b0205
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: b0060
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business and Economic Statistics
– start-page: 39
  year: 1995
  end-page: 43
  ident: b0090
  article-title: New optimizer using particle swarm theory
  publication-title: Proceedings of the International Symposium on Micro Machine and Human Science
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0310
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 92
  start-page: 106294
  year: 2020
  ident: b0040
  article-title: A new combined model based on multi-objective salp swarm optimization for wind speed forecasting
  publication-title: Applied Soft Computing
– volume: 87
  start-page: 105972
  year: 2020
  ident: b0325
  article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight
  publication-title: Applied Soft Computing Journal
– volume: 55
  start-page: 102036
  year: 2020
  ident: b0145
  article-title: A novel hybrid forecasting scheme for electricity demand time series
  publication-title: Sustainable Cities and Society
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 13
  ident: b0340
  article-title: Delay-free tracking differentiator design based on variational mode decomposition: Application on MEMS gyroscope denoising
  publication-title: Journal of Sensors
– year: 1997
  ident: b0260
  article-title: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 79
  start-page: 126
  year: 2020
  end-page: 144
  ident: b0265
  article-title: Point and interval forecasting for carbon price based on an improved analysis-forecast system
  publication-title: Applied Mathematical Modelling
– volume: 101
  start-page: 393
  year: 2015
  end-page: 401
  ident: b0330
  article-title: Short-term wind power prediction based on LSSVM-GSA model
  publication-title: Energy Conversion and Management
– volume: 12
  start-page: 211
  year: 2019
  end-page: 226
  ident: b0110
  article-title: Emperor Penguins Colony: A new metaheuristic algorithm for optimization
  publication-title: Evolutionary Intelligence
– volume: 8
  start-page: 308
  year: 2020
  end-page: 322
  ident: b0200
  article-title: Coronavirus optimization algorithm: A bioinspired metaheuristic based on the COVID-19 propagation model
  publication-title: Big Data
– volume: 163
  start-page: 134
  year: 2018
  end-page: 150
  ident: b0305
  article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm
  publication-title: Energy Conversion and Management
– volume: 75
  start-page: 404
  year: 2019
  end-page: 427
  ident: b0095
  article-title: A novel multi-objective optimization algorithm based on Lightning Attachment Procedure Optimization algorithm
  publication-title: Applied Soft Computing Journal
– volume: 136
  start-page: 591
  year: 2019
  end-page: 613
  ident: b0235
  article-title: A novel optimization booster algorithm
  publication-title: Computers and Industrial Engineering
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0210
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– volume: 82
  start-page: 105587
  year: 2019
  ident: b0130
  article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting
  publication-title: Applied Soft Computing
– volume: 62
  start-page: 987
  year: 2018
  end-page: 1002
  ident: b0120
  article-title: Tackling global optimization problems with a novel algorithm – Mouth Brooding Fish algorithm
  publication-title: Applied Soft Computing Journal
– volume: 31
  start-page: 5588
  year: 2020
  end-page: 5602
  ident: b0185
  article-title: Heterogeneous domain adaptation: An unsupervised approach
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 50
  start-page: 3926
  year: 2020
  end-page: 3941
  ident: b0250
  article-title: Transient search optimization: A new meta-heuristic optimization algorithm
  publication-title: Applied Intelligence
– volume: 226
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0055
  article-title: Improving WRF model turbine-height wind-speed forecasting using a surrogate- based automatic optimization method
  publication-title: Atmospheric Research
– volume: 260
  start-page: 114243
  year: 2020
  ident: b0125
  article-title: A novel composite electricity demand forecasting framework by data processing and optimized support vector machine
  publication-title: Applied Energy
– volume: 260
  start-page: 121027
  year: 2020
  ident: b0300
  article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China
  publication-title: Journal of Cleaner Production
– volume: 122
  start-page: 533
  year: 2018
  end-page: 550
  ident: b0080
  article-title: Multi-step ahead forecasting in electrical power system using a hybrid forecasting system
  publication-title: Renewable Energy
– volume: 260
  start-page: 121027
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0300
  article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.121027
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0340
  article-title: Delay-free tracking differentiator design based on variational mode decomposition: Application on MEMS gyroscope denoising
  publication-title: Journal of Sensors
– volume: 149
  start-page: 113338
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0140
  article-title: Chimp optimization algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113338
– volume: 156
  start-page: 804
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0240
  article-title: Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.03.168
– ident: 10.1016/j.eswa.2021.114974_b0045
  doi: 10.1109/CEC.2002.1004388
– volume: 259
  start-page: 114137
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0170
  article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.114137
– volume: 95
  start-page: 106509
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0285
  article-title: Ensemble probabilistic prediction approach for modeling uncertainty in crude oil price
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2020.106509
– volume: 145
  start-page: 106559
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0335
  article-title: A mayfly optimization algorithm
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2020.106559
– volume: 163
  start-page: 772
  year: 2021
  ident: 10.1016/j.eswa.2021.114974_b0315
  article-title: Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.09.032
– volume: 136
  start-page: 758
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0005
  article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.01.031
– volume: 217
  start-page: 119361
  year: 2021
  ident: 10.1016/j.eswa.2021.114974_b0135
  article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119361
– volume: 13
  start-page: 253
  issue: 3
  year: 1995
  ident: 10.1016/j.eswa.2021.114974_b0060
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business and Economic Statistics
  doi: 10.1080/07350015.1995.10524599
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/j.eswa.2021.114974_b0065
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  doi: 10.1109/3477.484436
– volume: 148
  start-page: 106971
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0165
  article-title: Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2019.106971
– volume: 250
  start-page: 1559
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0355
  article-title: Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.05.016
– volume: 79
  start-page: 126
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0265
  article-title: Point and interval forecasting for carbon price based on an improved analysis-forecast system
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2019.10.022
– volume: 123
  start-page: 694
  year: 2018
  ident: 10.1016/j.eswa.2021.114974_b0175
  article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.02.092
– volume: 163
  start-page: 134
  year: 2018
  ident: 10.1016/j.eswa.2021.114974_b0305
  article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.02.012
– volume: 31
  start-page: 5588
  issue: 12
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0185
  article-title: Heterogeneous domain adaptation: An unsupervised approach
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.2973293
– volume: 62
  start-page: 987
  year: 2018
  ident: 10.1016/j.eswa.2021.114974_b0120
  article-title: Tackling global optimization problems with a novel algorithm – Mouth Brooding Fish algorithm
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2017.09.035
– volume: 260
  start-page: 114243
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0125
  article-title: A novel composite electricity demand forecasting framework by data processing and optimized support vector machine
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.114243
– ident: 10.1016/j.eswa.2021.114974_b0115
– year: 2007
  ident: 10.1016/j.eswa.2021.114974_b0345
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 85
  start-page: 105765
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0030
  article-title: Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.105765
– year: 2002
  ident: 10.1016/j.eswa.2021.114974_b0050
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 89
  start-page: 49
  year: 2021
  ident: 10.1016/j.eswa.2021.114974_b0195
  article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2020.07.019
– volume: 122
  start-page: 174
  year: 2013
  ident: 10.1016/j.eswa.2021.114974_b0245
  article-title: Verification of the MM5 model using radiosonde data from Madrid-Barajas Airport
  publication-title: Atmospheric Research
  doi: 10.1016/j.atmosres.2012.10.018
– year: 1997
  ident: 10.1016/j.eswa.2021.114974_b0260
  article-title: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 47
  start-page: 106
  year: 2016
  ident: 10.1016/j.eswa.2021.114974_b0220
  article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.039
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2021.114974_b0070
  article-title: Variational mode decomposition
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2013.2288675
– volume: 202
  start-page: 117794
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0180
  article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117794
– volume: 56
  start-page: 226
  year: 2014
  ident: 10.1016/j.eswa.2021.114974_b0255
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.11.015
– volume: 280
  start-page: 115975
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0155
  article-title: Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2020.115975
– volume: 87
  start-page: 105972
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0325
  article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.105972
– volume: 41
  start-page: 100802
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0020
  article-title: An intelligent hybrid model of neuro Wavelet, time series and Recurrent Kalman Filter for wind speed forecasting
  publication-title: Sustainable Energy Technologies and Assessments
  doi: 10.1016/j.seta.2020.100802
– volume: 55
  start-page: 102036
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0145
  article-title: A novel hybrid forecasting scheme for electricity demand time series
  publication-title: Sustainable Cities and Society
  doi: 10.1016/j.scs.2020.102036
– volume: 8
  start-page: 308
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0200
  article-title: Coronavirus optimization algorithm: A bioinspired metaheuristic based on the COVID-19 propagation model
  publication-title: Big Data
  doi: 10.1089/big.2020.0051
– volume: 156
  start-page: 525
  year: 2018
  ident: 10.1016/j.eswa.2021.114974_b0160
  article-title: Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2017.11.049
– year: 2000
  ident: 10.1016/j.eswa.2021.114974_b0010
  article-title: Wind energy technology and current status: A review
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/S1364-0321(00)00004-6
– volume: 198
  start-page: 111914
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0085
  article-title: An evolution-dependent multi-objective ensemble model of vanishing moment with adversarial auto-encoder for short-term wind speed forecasting in Xinjiang wind farm, China
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.111914
– volume: 82
  start-page: 105587
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0130
  article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105587
– volume: 94
  start-page: 103783
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0290
  article-title: Analysis of the influence of international benchmark oil price on China’s real exchange rate forecasting
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103783
– volume: 12
  start-page: 211
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0110
  article-title: Emperor Penguins Colony: A new metaheuristic algorithm for optimization
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-019-00212-x
– volume: 96
  start-page: 2348
  issue: 12
  year: 2008
  ident: 10.1016/j.eswa.2021.114974_b0190
  article-title: Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/j.jweia.2008.03.013
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2021.114974_b0310
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 7
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0015
  article-title: Assessment of artificial neural networks learning algorithms and training datasets for solar photovoltaic power production prediction
  publication-title: Frontiers in Energy Research
  doi: 10.3389/fenrg.2019.00130
– volume: 136
  start-page: 333
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0025
  article-title: A Multi-Scale Model based on the Long Short-Term Memory for day ahead hourly wind speed forecasting
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2019.10.011
– volume: 96
  start-page: 106620
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0075
  article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2020.106620
– volume: 75
  start-page: 404
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0095
  article-title: A novel multi-objective optimization algorithm based on Lightning Attachment Procedure Optimization algorithm
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2018.11.032
– year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0105
  article-title: Research on E-commerce precision poverty alleviation
  publication-title: Economic Science Press
– volume: 101
  start-page: 393
  year: 2015
  ident: 10.1016/j.eswa.2021.114974_b0330
  article-title: Short-term wind power prediction based on LSSVM-GSA model
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2015.05.065
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2021.114974_b0205
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1920-1
– volume: 122
  start-page: 533
  year: 2018
  ident: 10.1016/j.eswa.2021.114974_b0080
  article-title: Multi-step ahead forecasting in electrical power system using a hybrid forecasting system
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.01.113
– volume: 96
  start-page: 261
  year: 2018
  ident: 10.1016/j.eswa.2021.114974_b0150
  article-title: Web spam classification method based on deep belief networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.12.016
– year: 2005
  ident: 10.1016/j.eswa.2021.114974_b0270
  article-title: Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2004.09.013
– volume: 92
  start-page: 106294
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0040
  article-title: A new combined model based on multi-objective salp swarm optimization for wind speed forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106294
– volume: 50
  start-page: 3926
  issue: 11
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0250
  article-title: Transient search optimization: A new meta-heuristic optimization algorithm
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-020-01727-y
– volume: 126
  start-page: 736
  year: 2018
  ident: 10.1016/j.eswa.2021.114974_b0225
  article-title: Wind speed forecasting approach based on Singular Spectrum Analysis and Adaptive Neuro Fuzzy Inference System
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.11.089
– volume: 93
  start-page: 106392
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0100
  article-title: Dynamic differential annealed optimization: New metaheuristic optimization algorithm for engineering applications
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2020.106392
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.eswa.2021.114974_b0210
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 136
  start-page: 591
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0235
  article-title: A novel optimization booster algorithm
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2019.07.046
– volume: 208
  start-page: 344
  year: 2017
  ident: 10.1016/j.eswa.2021.114974_b0280
  article-title: A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.10.031
– volume: 222
  start-page: 942
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0320
  article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.03.036
– volume: 48
  start-page: 805
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2021.114974_b0215
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-017-1019-8
– start-page: 39
  year: 1995
  ident: 10.1016/j.eswa.2021.114974_b0090
  article-title: New optimizer using particle swarm theory
– volume: 165
  start-page: 840
  year: 2018
  ident: 10.1016/j.eswa.2021.114974_b0295
  article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.118
– volume: 97
  start-page: 106809
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0230
  article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106809
– volume: 179
  start-page: 13
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0035
  article-title: A novel combined model based on echo state network for multi-step ahead wind speed forecasting: A case study of NREL
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.10.068
– volume: 255
  start-page: 109855
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0275
  article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2019.109855
– volume: 277
  start-page: 115561
  year: 2020
  ident: 10.1016/j.eswa.2021.114974_b0350
  article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2020.115561
– volume: 226
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.114974_b0055
  article-title: Improving WRF model turbine-height wind-speed forecasting using a surrogate- based automatic optimization method
  publication-title: Atmospheric Research
  doi: 10.1016/j.atmosres.2019.04.011
SSID ssj0017007
Score 2.6491816
Snippet •An ensemble forecasting system is developed for short-term wind speed.•A comprehensive indicator is proposed to determine the best sub-models...
Wind energy has attracted considerable attention in the past decades as a low-carbon, environmentally friendly, and efficient renewable energy. However, the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114974
SubjectTerms Algorithms
Decomposition
Electric power grids
Ensemble model
Forecasting
Mathematical models
Multi-objective version of Mayfly algorithm
Multiple objective analysis
Optimization
Short-term wind speed forecasting
Smart grid
Sub-model selection
Wind power
Wind speed
Title Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm
URI https://dx.doi.org/10.1016/j.eswa.2021.114974
https://www.proquest.com/docview/2540548979
Volume 177
WOSCitedRecordID wos000663299900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMv3BGDgfzAW-WpSRw7eZxQEUzTNIkh9S2KHYe2tEnVtN3G3-F38N84vqWXiQmQeIkix7GjnC_nnJwrQu8YK2UhuCQ87MeEijImKS9yArK2SEQ_FlSakvln_Pw8GQ7Ti07np8-FWU95VSXX1-n8v5IaxoDYOnX2L8jdLgoDcA5EhyOQHY5_RPhB1aiZzocCdVTJvDFxzbZgs4kpbEagcRPNkXtXY201n4MA25msJVuhvQg18JOZTihZCWJa5vQa0zbHhzCbaERSi4nlmr21Nb4Zn31-U05v7Aou1bOXT7_Wi_FyNNtxB-hay0v3gD7Xbsur3kYMjVfGkTJS1bdVi-jTsbN3X3gRbJwDLswYLn4f1atbxvGzcZm76c7gEQZtRJezwvlMnE3YkzVnckID2_HnWFlmnvCIMG47MLbc3naNuSU5rBFjcqyaK12OKgx0FeXUr7dTkfuz3kzvFepye6AA3UMHIY_TpIsOTj4NhqetG4v3bb6-fziXtWUDDPd3-p1mtKcjGMXn8jF66P5Y8IlF2hPUUdVT9Mh3A8FOODxDPzzw8BaWsKWrHsIb4GENPGyAtzPZAA_XFXbAwy3wcAs8DMDDe8DDDni4LrEFHt4GHm6B9xx9-TC4fP-RuBYgREZhsiRMFTJWLBRRngaKU8mLOIoFKPVRXID2ziIV8aCU8BaZpIwlSiUsimhcqkSyPIheoG5VV-olwoJSQQtYhqmcijwQAVVlqBgtCgmMLD1EgX_9mXT18XWblmnmAyEnmSZZpkmWWZIdol57z9xWh7lzduypmjn91uqtGYDwzvuOPAQyx2iaLNS_WjRJefrqH5d9jR5sPq8j1F0uVuoNui_Xy3GzeOug_AsIPeBy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+forecasting+system+for+short-term+wind+speed+forecasting+based+on+optimal+sub-model+selection+and+multi-objective+version+of+mayfly+optimization+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Zhenkun&rft.au=Jiang%2C+Ping&rft.au=Wang%2C+Jianzhou&rft.au=Zhang%2C+Lifang&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=177&rft_id=info:doi/10.1016%2Fj.eswa.2021.114974&rft.externalDocID=S0957417421004152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon