Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm
•An ensemble forecasting system is developed for short-term wind speed.•A comprehensive indicator is proposed to determine the best sub-models adaptively.•Point and interval prediction are conducted for more intelligent grid management.•Optimal distribution is used effectively to measure the uncerta...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 177; s. 114974 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Ltd
01.09.2021
Elsevier BV |
| Predmet: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •An ensemble forecasting system is developed for short-term wind speed.•A comprehensive indicator is proposed to determine the best sub-models adaptively.•Point and interval prediction are conducted for more intelligent grid management.•Optimal distribution is used effectively to measure the uncertainty.•Multi-objective version of Mayfly Algorithm is proposed for ensemble forecasting.
Wind energy has attracted considerable attention in the past decades as a low-carbon, environmentally friendly, and efficient renewable energy. However, the irregularity of wind speed makes it difficult to integrate wind energy into smart grids. Thus, achieving credible and effective wind speed forecasting results is crucial for the operation and management of wind energy. In this study, we propose an ensemble forecasting system that integrates data decomposition technology, sub-model selection, a novel multi-objective version of the Mayfly algorithm, and different predictors to better demonstrate the stochasticity and fluctuation of wind speed data. After decomposition using the data decomposition technology, each decomposed wind speed series is considered as the input to multiple predictors, from which the optimal forecasting model for each sub-series is determined based on sub-model selection. To obtain reliable forecasting results, a novel multi-objective version of the Mayfly algorithm is proposed to estimate the optimal weight coefficients for integrating the forecasting values of the sub-series. Based on three experiments and four analyses, the proposed ensemble system is verified as effective for obtaining accurate and stable point forecasting and interval forecasting performances, thus aiding in the planning and dispatching of power grids. |
|---|---|
| AbstractList | Wind energy has attracted considerable attention in the past decades as a low-carbon, environmentally friendly, and efficient renewable energy. However, the irregularity of wind speed makes it difficult to integrate wind energy into smart grids. Thus, achieving credible and effective wind speed forecasting results is crucial for the operation and management of wind energy. In this study, we propose an ensemble forecasting system that integrates data decomposition technology, sub-model selection, a novel multi-objective version of the Mayfly algorithm, and different predictors to better demonstrate the stochasticity and fluctuation of wind speed data. After decomposition using the data decomposition technology, each decomposed wind speed series is considered as the input to multiple predictors, from which the optimal forecasting model for each sub-series is determined based on sub-model selection. To obtain reliable forecasting results, a novel multi-objective version of the Mayfly algorithm is proposed to estimate the optimal weight coefficients for integrating the forecasting values of the sub-series. Based on three experiments and four analyses, the proposed ensemble system is verified as effective for obtaining accurate and stable point forecasting and interval forecasting performances, thus aiding in the planning and dispatching of power grids. •An ensemble forecasting system is developed for short-term wind speed.•A comprehensive indicator is proposed to determine the best sub-models adaptively.•Point and interval prediction are conducted for more intelligent grid management.•Optimal distribution is used effectively to measure the uncertainty.•Multi-objective version of Mayfly Algorithm is proposed for ensemble forecasting. Wind energy has attracted considerable attention in the past decades as a low-carbon, environmentally friendly, and efficient renewable energy. However, the irregularity of wind speed makes it difficult to integrate wind energy into smart grids. Thus, achieving credible and effective wind speed forecasting results is crucial for the operation and management of wind energy. In this study, we propose an ensemble forecasting system that integrates data decomposition technology, sub-model selection, a novel multi-objective version of the Mayfly algorithm, and different predictors to better demonstrate the stochasticity and fluctuation of wind speed data. After decomposition using the data decomposition technology, each decomposed wind speed series is considered as the input to multiple predictors, from which the optimal forecasting model for each sub-series is determined based on sub-model selection. To obtain reliable forecasting results, a novel multi-objective version of the Mayfly algorithm is proposed to estimate the optimal weight coefficients for integrating the forecasting values of the sub-series. Based on three experiments and four analyses, the proposed ensemble system is verified as effective for obtaining accurate and stable point forecasting and interval forecasting performances, thus aiding in the planning and dispatching of power grids. |
| ArticleNumber | 114974 |
| Author | Wang, Jianzhou Jiang, Ping Zhang, Lifang Liu, Zhenkun |
| Author_xml | – sequence: 1 givenname: Zhenkun surname: Liu fullname: Liu, Zhenkun email: zhenkunliudufe@163.com organization: School of Statistics, Dongbei University of Finance and Economics, No. 217, Jianshan Road, Shahekou District, Dalian, Liaoning Province 116025, China – sequence: 2 givenname: Ping surname: Jiang fullname: Jiang, Ping email: pjiang@dufe.edu.cn organization: School of Statistics, Dongbei University of Finance and Economics, No. 217, Jianshan Road, Shahekou District, Dalian, Liaoning Province 116025, China – sequence: 3 givenname: Jianzhou surname: Wang fullname: Wang, Jianzhou email: wangjz@dufe.edu.cn organization: School of Statistics, Dongbei University of Finance and Economics, No. 217, Jianshan Road, Shahekou District, Dalian, Liaoning Province 116025, China – sequence: 4 givenname: Lifang surname: Zhang fullname: Zhang, Lifang organization: School of Statistics, Dongbei University of Finance and Economics, No. 217, Jianshan Road, Shahekou District, Dalian, Liaoning Province 116025, China |
| BookMark | eNp9kc9u1DAQxi1UJLYLL8DJEucsdvwvkbigqhSkSlzgbDnOpHWUxIvHu9XyOrwoDuECh55sfTO_GX3zXZOrJS5AyFvODpxx_X48AD65Q81qfuBctka-IDveGFFp04orsmOtMpXkRr4i14gjY9wwZnbk1-2CMHcT0CEm8A5zWB4oXjDDvEoUH2PKVYY006ew9BSPAP0_zZ3DosSFxmMOs5sonrpqjj2UH0zgcyg1V9D5NOVQxW5ctTPQMyRca3Ggs7sM02WbEH66DZkeYgr5cX5NXg5uQnjz992T759uv918ru6_3n25-XhfeVE3udLQewW67oRrORjpTa-E6kRbC9XXimkBwvDBlxtpL7VuABothFQDNF47Lvbk3Tb3mOKPE2C2Yzylpay0tZJMyaYtx9yTeuvyKSImGOwxFdvpYjmzaxh2tGsYdg3DbmEUqPkP8iH_sZmTC9Pz6IcNhWL9HCBZ9AEWD30oGWTbx_Ac_hvPFquf |
| CitedBy_id | crossref_primary_10_1007_s41870_024_01761_w crossref_primary_10_1016_j_eswa_2023_123054 crossref_primary_10_1016_j_asoc_2023_111090 crossref_primary_10_3389_fenrg_2022_928063 crossref_primary_10_1007_s40313_021_00862_2 crossref_primary_10_1016_j_chaos_2023_113692 crossref_primary_10_1016_j_eswa_2024_124829 crossref_primary_10_1109_ACCESS_2022_3160714 crossref_primary_10_1016_j_renene_2022_08_079 crossref_primary_10_1007_s13369_025_10481_7 crossref_primary_10_1007_s10639_023_11645_4 crossref_primary_10_1016_j_apenergy_2022_118796 crossref_primary_10_1007_s11227_023_05400_2 crossref_primary_10_1007_s10489_023_04906_9 crossref_primary_10_1016_j_energy_2023_129618 crossref_primary_10_3389_fbioe_2022_830037 crossref_primary_10_3390_en15186545 crossref_primary_10_1016_j_apenergy_2022_118725 crossref_primary_10_1007_s00521_022_07261_x crossref_primary_10_1016_j_eswa_2022_119063 crossref_primary_10_1016_j_eswa_2022_119184 crossref_primary_10_1155_2022_9928836 crossref_primary_10_1016_j_compeleceng_2024_109904 crossref_primary_10_1002_for_2785 crossref_primary_10_1016_j_eswa_2023_119765 crossref_primary_10_1016_j_energy_2024_130606 crossref_primary_10_1016_j_energy_2022_123644 crossref_primary_10_1016_j_enconman_2021_114162 crossref_primary_10_1108_IJSI_08_2024_0129 crossref_primary_10_1007_s40435_021_00892_3 crossref_primary_10_1016_j_eswa_2023_120354 crossref_primary_10_1038_s41598_025_90006_2 crossref_primary_10_1016_j_energy_2025_137229 crossref_primary_10_1016_j_seta_2022_102186 crossref_primary_10_1016_j_epsr_2022_108186 crossref_primary_10_1016_j_enconman_2022_116579 crossref_primary_10_1016_j_ins_2022_11_145 crossref_primary_10_1016_j_jenvman_2021_113051 crossref_primary_10_1007_s12652_021_03595_x crossref_primary_10_1007_s00366_021_01554_w crossref_primary_10_1007_s11760_024_03325_8 crossref_primary_10_1016_j_asoc_2022_108544 crossref_primary_10_1007_s00202_023_02037_5 crossref_primary_10_1016_j_eswa_2022_116509 crossref_primary_10_1016_j_cscee_2023_100594 crossref_primary_10_1016_j_eswa_2024_124560 crossref_primary_10_3390_en16145281 crossref_primary_10_1016_j_oceaneng_2023_115614 crossref_primary_10_1016_j_energy_2024_132320 crossref_primary_10_3390_en16083531 crossref_primary_10_1016_j_apenergy_2025_126615 crossref_primary_10_1007_s11227_022_04998_z crossref_primary_10_1155_2022_7456333 crossref_primary_10_1016_j_apenergy_2024_125108 crossref_primary_10_1016_j_energy_2022_124750 crossref_primary_10_1016_j_asoc_2023_110865 crossref_primary_10_1016_j_asoc_2021_108110 crossref_primary_10_1111_joes_70005 crossref_primary_10_3390_en15124361 crossref_primary_10_1007_s41939_024_00553_w crossref_primary_10_1016_j_resourpol_2021_102222 crossref_primary_10_1007_s11227_022_04883_9 crossref_primary_10_1016_j_energy_2024_133524 crossref_primary_10_1016_j_resourpol_2022_102714 crossref_primary_10_1007_s10489_024_05350_z crossref_primary_10_1007_s41939_024_00413_7 crossref_primary_10_1016_j_compbiomed_2022_105349 crossref_primary_10_1016_j_eswa_2024_123819 crossref_primary_10_1016_j_oceaneng_2025_122518 crossref_primary_10_1002_ente_202100700 crossref_primary_10_3390_su151712914 crossref_primary_10_1016_j_awe_2025_100055 crossref_primary_10_1016_j_renene_2022_06_143 crossref_primary_10_1016_j_energy_2023_129898 crossref_primary_10_1016_j_jenvman_2023_119807 crossref_primary_10_1016_j_cie_2023_109237 crossref_primary_10_1016_j_renene_2021_07_113 crossref_primary_10_1007_s13042_022_01617_4 crossref_primary_10_1016_j_chaos_2022_111982 crossref_primary_10_1016_j_enconman_2024_118343 crossref_primary_10_1016_j_energy_2023_128048 crossref_primary_10_1007_s12652_022_04423_6 crossref_primary_10_1007_s12145_023_00938_4 crossref_primary_10_1515_cppm_2024_0115 crossref_primary_10_1016_j_energy_2022_123960 crossref_primary_10_1016_j_energy_2022_124378 crossref_primary_10_1080_15325008_2023_2220688 crossref_primary_10_1016_j_engappai_2023_107034 crossref_primary_10_61435_ijred_2024_60387 crossref_primary_10_1016_j_asoc_2023_110527 crossref_primary_10_1007_s00521_023_08807_3 crossref_primary_10_3390_en17040777 crossref_primary_10_1049_tje2_12409 crossref_primary_10_1016_j_jhydrol_2022_128469 crossref_primary_10_1016_j_rser_2024_114781 crossref_primary_10_1016_j_apenergy_2021_117449 crossref_primary_10_3233_JIFS_221161 crossref_primary_10_3390_atmos13050758 crossref_primary_10_1007_s12083_023_01541_6 crossref_primary_10_1016_j_energy_2022_124664 crossref_primary_10_1016_j_energy_2025_136060 crossref_primary_10_1016_j_techfore_2021_121181 crossref_primary_10_1007_s41939_024_00663_5 crossref_primary_10_1016_j_eswa_2022_117358 crossref_primary_10_3389_fenrg_2021_764635 crossref_primary_10_1007_s10489_022_04265_x crossref_primary_10_1007_s12652_024_04889_6 crossref_primary_10_1016_j_energy_2021_122128 crossref_primary_10_1016_j_resourpol_2022_102734 crossref_primary_10_1016_j_enconman_2025_119752 crossref_primary_10_1007_s11356_022_23773_4 crossref_primary_10_3390_app131911112 crossref_primary_10_1007_s10489_025_06720_x crossref_primary_10_1007_s11356_022_24570_9 crossref_primary_10_1016_j_seta_2022_102535 crossref_primary_10_1038_s41598_024_51252_y crossref_primary_10_1016_j_rineng_2024_103407 crossref_primary_10_1016_j_egyr_2023_05_034 crossref_primary_10_1109_TETCI_2024_3400852 crossref_primary_10_1016_j_apenergy_2023_121049 crossref_primary_10_1016_j_epsr_2022_108765 crossref_primary_10_1007_s11276_023_03262_3 |
| Cites_doi | 10.1016/j.jclepro.2020.121027 10.1016/j.eswa.2020.113338 10.1016/j.renene.2020.03.168 10.1109/CEC.2002.1004388 10.1016/j.apenergy.2019.114137 10.1016/j.asoc.2020.106509 10.1016/j.cie.2020.106559 10.1016/j.renene.2020.09.032 10.1016/j.renene.2019.01.031 10.1016/j.energy.2020.119361 10.1080/07350015.1995.10524599 10.1109/3477.484436 10.1016/j.measurement.2019.106971 10.1016/j.apenergy.2019.05.016 10.1016/j.apm.2019.10.022 10.1016/j.renene.2018.02.092 10.1016/j.enconman.2018.02.012 10.1109/TNNLS.2020.2973293 10.1016/j.asoc.2017.09.035 10.1016/j.apenergy.2019.114243 10.1016/j.asoc.2019.105765 10.1109/4235.996017 10.1016/j.apm.2020.07.019 10.1016/j.atmosres.2012.10.018 10.1023/A:1008202821328 10.1016/j.eswa.2015.10.039 10.1109/TSP.2013.2288675 10.1016/j.energy.2020.117794 10.1016/j.knosys.2013.11.015 10.1016/j.apenergy.2020.115975 10.1016/j.asoc.2019.105972 10.1016/j.seta.2020.100802 10.1016/j.scs.2020.102036 10.1089/big.2020.0051 10.1016/j.enconman.2017.11.049 10.1016/S1364-0321(00)00004-6 10.1016/j.enconman.2019.111914 10.1016/j.asoc.2019.105587 10.1016/j.engappai.2020.103783 10.1007/s12065-019-00212-x 10.1016/j.jweia.2008.03.013 10.1109/4235.585893 10.3389/fenrg.2019.00130 10.1016/j.patrec.2019.10.011 10.1016/j.asoc.2020.106620 10.1016/j.asoc.2018.11.032 10.1016/j.enconman.2015.05.065 10.1007/s00521-015-1920-1 10.1016/j.renene.2018.01.113 10.1016/j.eswa.2017.12.016 10.1016/j.solener.2004.09.013 10.1016/j.asoc.2020.106294 10.1007/s10489-020-01727-y 10.1016/j.renene.2017.11.089 10.1016/j.asoc.2020.106392 10.1016/j.advengsoft.2017.07.002 10.1016/j.cie.2019.07.046 10.1016/j.apenergy.2017.10.031 10.1016/j.jclepro.2019.03.036 10.1007/s10489-017-1019-8 10.1016/j.energy.2018.09.118 10.1016/j.asoc.2020.106809 10.1016/j.enconman.2018.10.068 10.1016/j.jenvman.2019.109855 10.1016/j.apenergy.2020.115561 10.1016/j.atmosres.2019.04.011 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Sep 1, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Sep 1, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2021.114974 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2021_114974 S0957417421004152 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-6edc5e62b3a91e74c7d535b39235d25063e371fc0216c4668ee863345fe8c6a13 |
| ISICitedReferencesCount | 144 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663299900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 30 04:43:40 EST 2025 Sat Nov 29 07:08:34 EST 2025 Tue Nov 18 22:31:01 EST 2025 Fri Feb 23 02:47:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective version of Mayfly algorithm Sub-model selection Short-term wind speed forecasting Ensemble model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-6edc5e62b3a91e74c7d535b39235d25063e371fc0216c4668ee863345fe8c6a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2540548979 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2540548979 crossref_primary_10_1016_j_eswa_2021_114974 crossref_citationtrail_10_1016_j_eswa_2021_114974 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114974 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 2021-09-00 20210901 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Zhou, Wang, Zhang (b0355) 2019; 250 Luo, Li, Wang, Hu (b0195) 2021; 89 Zhang, Li (b0345) 2007 Liu, Mi, Li (b0175) 2018; 123 Ackermann, Söder (b0010) 2000 Torres, García, De Blas, De Francisco (b0270) 2005 Liu, Duan, Chen (b0155) 2020; 280 Harifi, Khalilian, Mohammadzadeh, Ebrahimnejad (b0110) 2019; 12 Du, Wang, Yang, Niu (b0080) 2018; 122 Li, Jiang, Yang, Li (b0145) 2020; 55 Mirjalili, Mirjalili, Saremi, Faris, Aljarah (b0215) 2018; 48 Yuan, Chen, Yuan, Huang, Tan (b0330) 2015; 101 Wang, Du, Niu, Yang (b0280) 2017; 208 Jahani, Chizari (b0120) 2018; 62 Ghafil, Jármai (b0100) 2020; 93 Budak, Cömert, Rashid, Şengür, Çıbuk (b0030) 2019; 85 Tian, Hao (b0265) 2020; 79 Cheng, Wang (b0040) 2020; 92 Dragomiretskiy, Zosso (b0070) 2014; 62 Wang, Niu, Liu, Zhang (b0290) 2020; 94 Du, Wang, Hao, Niu, Yang (b0075) 2020; 96 Martínez-Álvarez, Asencio-Cortés, Torres, Gutiérrez-Avilés, Melgar-García, Pérez-Chacón, Troncoso (b0200) 2020; 8 Chen, He, Shang, Li, Li, Xu (b0035) 2019; 179 Aasim, Singh, Mohapatra (b0005) 2019; 136 Ren, An, Wang, Li, Hu, Shang (b0255) 2014; 56 Liu, Jiang, Zhang, Niu (b0170) 2020; 259 Wang, Niu, Du, Yang (b0285) 2020; 95 Jiang, Liu, Niu, Zhang (b0135) 2021; 217 Mirjalili (b0205) 2016; 27 Louka, Galanis, Siebert, Kariniotakis, Katsafados, Pytharoulis, Kallos (b0190) 2008; 96 Liu, Duan, Wu, Li, Dong (b0165) 2019; 148 Jiang, Liu (b0130) 2019; 82 Wang, Du, Hao, Ma, Niu, Yang (b0275) 2020; 255 Foroughi Nematollahi, Rahiminejad, Vahidi (b0095) 2019; 75 Duan, Liu (b0085) 2019; 198 Liu, Duan, Han, Li (b0160) 2018; 156 Moreno, dos Santos Coelho (b0225) 2018; 126 Zervoudakis, Tsafarakis (b0335) 2020; 145 Al-Dahidi, Ayadi, Adeeb, Louzazni (b0015) 2019; 7 Holland, J. H. (1975). Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor University of Michigan Press 1975. Yang, Zhu, Li, Li (b0325) 2020; 87 Zhang, Cao, Wang, Kou, Shao, Li, Shen (b0340) 2019; 2019 Diebold, Mariano (b0060) 1995; 13 Araya, Valle, Allende (b0025) 2020; 136 Guan, Zhao, Shi (b0105) 2019 Wolpert, Macready (b0310) 1997; 1 Jiang, Li, Liu, Gao (b0125) 2020; 260 Mirjalili, Saremi, Mirjalili, Coelho (b0220) 2016; 47 Storn, Price (b0260) 1997 Wang, Yang, Du, Niu (b0305) 2018; 163 Zhang, Zhang, Wang, Niu (b0350) 2020; 277 Di, Ao, Duan, Wang, Gong, Shen, Liu (b0055) 2019; 226 Nie, Jiang, Zhang (b0230) 2020; 97 Li, Nie, Huang (b0150) 2018; 96 Wang, Wang, Li (b0300) 2020; 260 Qais, Hasanien, Alghuwainem (b0250) 2020; 50 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0210) 2017; 114 Liu, Zhang, Lu (b0185) 2020; 31 Dorigo, Maniezzo, Colorni (b0065) 1996; 26 Yang, Wang, Lu, Niu, Du (b0320) 2019; 222 Coello Coello, C. A., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002. DOI:10.1109/CEC.2002.1004388. Khishe, Mosavi (b0140) 2020; 149 Deb, Pratap, Agarwal, Meyarivan (b0050) 2002 Xu, Liu, Cheng, Zhou, Xia, Gong, Liu (b0315) 2021; 163 Aly (b0020) 2020; 41 Peng, Zhang, Zhou, Nazir (b0240) 2020; 156 Wang, Qi, Liu, Song (b0295) 2018; 165 Posada, García-Ortega, Sánchez, López (b0245) 2013; 122 Pakzad-Moghaddam, Mina, Mostafazadeh (b0235) 2019; 136 Eberhart, Kennedy (b0090) 1995 Liu, Yu, Wu, Duan, Yan (b0180) 2020; 202 Yuan (10.1016/j.eswa.2021.114974_b0330) 2015; 101 Storn (10.1016/j.eswa.2021.114974_b0260) 1997 Wang (10.1016/j.eswa.2021.114974_b0290) 2020; 94 Torres (10.1016/j.eswa.2021.114974_b0270) 2005 Zhang (10.1016/j.eswa.2021.114974_b0340) 2019; 2019 Chen (10.1016/j.eswa.2021.114974_b0035) 2019; 179 Deb (10.1016/j.eswa.2021.114974_b0050) 2002 Du (10.1016/j.eswa.2021.114974_b0075) 2020; 96 Martínez-Álvarez (10.1016/j.eswa.2021.114974_b0200) 2020; 8 Dorigo (10.1016/j.eswa.2021.114974_b0065) 1996; 26 10.1016/j.eswa.2021.114974_b0045 Mirjalili (10.1016/j.eswa.2021.114974_b0210) 2017; 114 Qais (10.1016/j.eswa.2021.114974_b0250) 2020; 50 Liu (10.1016/j.eswa.2021.114974_b0165) 2019; 148 Louka (10.1016/j.eswa.2021.114974_b0190) 2008; 96 Mirjalili (10.1016/j.eswa.2021.114974_b0205) 2016; 27 Jiang (10.1016/j.eswa.2021.114974_b0125) 2020; 260 Zervoudakis (10.1016/j.eswa.2021.114974_b0335) 2020; 145 Moreno (10.1016/j.eswa.2021.114974_b0225) 2018; 126 Pakzad-Moghaddam (10.1016/j.eswa.2021.114974_b0235) 2019; 136 Wang (10.1016/j.eswa.2021.114974_b0285) 2020; 95 Aly (10.1016/j.eswa.2021.114974_b0020) 2020; 41 Jiang (10.1016/j.eswa.2021.114974_b0130) 2019; 82 Yang (10.1016/j.eswa.2021.114974_b0320) 2019; 222 Wang (10.1016/j.eswa.2021.114974_b0305) 2018; 163 Du (10.1016/j.eswa.2021.114974_b0080) 2018; 122 Khishe (10.1016/j.eswa.2021.114974_b0140) 2020; 149 Yang (10.1016/j.eswa.2021.114974_b0325) 2020; 87 Duan (10.1016/j.eswa.2021.114974_b0085) 2019; 198 Li (10.1016/j.eswa.2021.114974_b0145) 2020; 55 10.1016/j.eswa.2021.114974_b0115 Cheng (10.1016/j.eswa.2021.114974_b0040) 2020; 92 Wang (10.1016/j.eswa.2021.114974_b0300) 2020; 260 Guan (10.1016/j.eswa.2021.114974_b0105) 2019 Liu (10.1016/j.eswa.2021.114974_b0180) 2020; 202 Zhang (10.1016/j.eswa.2021.114974_b0350) 2020; 277 Li (10.1016/j.eswa.2021.114974_b0150) 2018; 96 Mirjalili (10.1016/j.eswa.2021.114974_b0220) 2016; 47 Eberhart (10.1016/j.eswa.2021.114974_b0090) 1995 Nie (10.1016/j.eswa.2021.114974_b0230) 2020; 97 Wang (10.1016/j.eswa.2021.114974_b0275) 2020; 255 Diebold (10.1016/j.eswa.2021.114974_b0060) 1995; 13 Zhang (10.1016/j.eswa.2021.114974_b0345) 2007 Ghafil (10.1016/j.eswa.2021.114974_b0100) 2020; 93 Zhou (10.1016/j.eswa.2021.114974_b0355) 2019; 250 Al-Dahidi (10.1016/j.eswa.2021.114974_b0015) 2019; 7 Foroughi Nematollahi (10.1016/j.eswa.2021.114974_b0095) 2019; 75 Wang (10.1016/j.eswa.2021.114974_b0280) 2017; 208 Araya (10.1016/j.eswa.2021.114974_b0025) 2020; 136 Peng (10.1016/j.eswa.2021.114974_b0240) 2020; 156 Jiang (10.1016/j.eswa.2021.114974_b0135) 2021; 217 Ren (10.1016/j.eswa.2021.114974_b0255) 2014; 56 Liu (10.1016/j.eswa.2021.114974_b0170) 2020; 259 Di (10.1016/j.eswa.2021.114974_b0055) 2019; 226 Tian (10.1016/j.eswa.2021.114974_b0265) 2020; 79 Posada (10.1016/j.eswa.2021.114974_b0245) 2013; 122 Aasim (10.1016/j.eswa.2021.114974_b0005) 2019; 136 Harifi (10.1016/j.eswa.2021.114974_b0110) 2019; 12 Xu (10.1016/j.eswa.2021.114974_b0315) 2021; 163 Liu (10.1016/j.eswa.2021.114974_b0175) 2018; 123 Wolpert (10.1016/j.eswa.2021.114974_b0310) 1997; 1 Mirjalili (10.1016/j.eswa.2021.114974_b0215) 2018; 48 Liu (10.1016/j.eswa.2021.114974_b0160) 2018; 156 Dragomiretskiy (10.1016/j.eswa.2021.114974_b0070) 2014; 62 Ackermann (10.1016/j.eswa.2021.114974_b0010) 2000 Wang (10.1016/j.eswa.2021.114974_b0295) 2018; 165 Budak (10.1016/j.eswa.2021.114974_b0030) 2019; 85 Jahani (10.1016/j.eswa.2021.114974_b0120) 2018; 62 Luo (10.1016/j.eswa.2021.114974_b0195) 2021; 89 Liu (10.1016/j.eswa.2021.114974_b0185) 2020; 31 Liu (10.1016/j.eswa.2021.114974_b0155) 2020; 280 |
| References_xml | – volume: 126 start-page: 736 year: 2018 end-page: 754 ident: b0225 article-title: Wind speed forecasting approach based on Singular Spectrum Analysis and Adaptive Neuro Fuzzy Inference System publication-title: Renewable Energy – volume: 156 start-page: 525 year: 2018 end-page: 541 ident: b0160 article-title: Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm publication-title: Energy Conversion and Management – volume: 97 start-page: 106809 year: 2020 ident: b0230 article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting publication-title: Applied Soft Computing – volume: 41 start-page: 100802 year: 2020 ident: b0020 article-title: An intelligent hybrid model of neuro Wavelet, time series and Recurrent Kalman Filter for wind speed forecasting publication-title: Sustainable Energy Technologies and Assessments – volume: 136 start-page: 758 year: 2019 end-page: 768 ident: b0005 article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting publication-title: Renewable Energy – year: 2019 ident: b0105 article-title: Research on E-commerce precision poverty alleviation publication-title: Economic Science Press – volume: 255 start-page: 109855 year: 2020 ident: b0275 article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting publication-title: Journal of Environmental Management – year: 2007 ident: b0345 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation – volume: 208 start-page: 344 year: 2017 end-page: 360 ident: b0280 article-title: A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting publication-title: Applied Energy – volume: 165 start-page: 840 year: 2018 end-page: 852 ident: b0295 article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting publication-title: Energy – volume: 222 start-page: 942 year: 2019 end-page: 959 ident: b0320 article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China publication-title: Journal of Cleaner Production – volume: 48 start-page: 805 year: 2018 end-page: 820 ident: b0215 article-title: Grasshopper optimization algorithm for multi-objective optimization problems publication-title: Applied Intelligence – volume: 179 start-page: 13 year: 2019 end-page: 29 ident: b0035 article-title: A novel combined model based on echo state network for multi-step ahead wind speed forecasting: A case study of NREL publication-title: Energy Conversion and Management – volume: 95 start-page: 106509 year: 2020 ident: b0285 article-title: Ensemble probabilistic prediction approach for modeling uncertainty in crude oil price publication-title: Applied Soft Computing Journal – year: 2000 ident: b0010 article-title: Wind energy technology and current status: A review publication-title: Renewable and Sustainable Energy Reviews – volume: 123 start-page: 694 year: 2018 end-page: 705 ident: b0175 article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm publication-title: Renewable Energy – volume: 85 start-page: 105765 year: 2019 ident: b0030 article-title: Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images publication-title: Applied Soft Computing Journal – volume: 136 start-page: 333 year: 2020 end-page: 340 ident: b0025 article-title: A Multi-Scale Model based on the Long Short-Term Memory for day ahead hourly wind speed forecasting publication-title: Pattern Recognition Letters – volume: 145 start-page: 106559 year: 2020 ident: b0335 article-title: A mayfly optimization algorithm publication-title: Computers and Industrial Engineering – volume: 93 start-page: 106392 year: 2020 ident: b0100 article-title: Dynamic differential annealed optimization: New metaheuristic optimization algorithm for engineering applications publication-title: Applied Soft Computing Journal – volume: 89 start-page: 49 year: 2021 end-page: 72 ident: b0195 article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach publication-title: Applied Mathematical Modelling – volume: 163 start-page: 772 year: 2021 end-page: 782 ident: b0315 article-title: Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy publication-title: Renewable Energy – volume: 280 start-page: 115975 year: 2020 ident: b0155 article-title: Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder publication-title: Applied Energy – volume: 122 start-page: 174 year: 2013 end-page: 182 ident: b0245 article-title: Verification of the MM5 model using radiosonde data from Madrid-Barajas Airport publication-title: Atmospheric Research – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0070 article-title: Variational mode decomposition publication-title: IEEE Transactions on Signal Processing – volume: 156 start-page: 804 year: 2020 end-page: 819 ident: b0240 article-title: Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting publication-title: Renewable Energy – volume: 96 start-page: 106620 year: 2020 ident: b0075 article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting publication-title: Applied Soft Computing Journal – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: b0065 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics – volume: 47 start-page: 106 year: 2016 end-page: 119 ident: b0220 article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization publication-title: Expert Systems with Applications – volume: 250 start-page: 1559 year: 2019 end-page: 1580 ident: b0355 article-title: Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems publication-title: Applied Energy – reference: Holland, J. H. (1975). Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor University of Michigan Press 1975. – volume: 217 start-page: 119361 year: 2021 ident: b0135 article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting publication-title: Energy – volume: 148 start-page: 106971 year: 2019 ident: b0165 article-title: Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network publication-title: Measurement: Journal of the International Measurement Confederation – volume: 202 start-page: 117794 year: 2020 ident: b0180 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting publication-title: Energy – year: 2002 ident: b0050 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – volume: 149 start-page: 113338 year: 2020 ident: b0140 article-title: Chimp optimization algorithm publication-title: Expert Systems with Applications – volume: 56 start-page: 226 year: 2014 end-page: 239 ident: b0255 article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting publication-title: Knowledge-Based Systems – volume: 277 start-page: 115561 year: 2020 ident: b0350 article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting publication-title: Applied Energy – volume: 198 start-page: 111914 year: 2019 ident: b0085 article-title: An evolution-dependent multi-objective ensemble model of vanishing moment with adversarial auto-encoder for short-term wind speed forecasting in Xinjiang wind farm, China publication-title: Energy Conversion and Management – volume: 94 start-page: 103783 year: 2020 ident: b0290 article-title: Analysis of the influence of international benchmark oil price on China’s real exchange rate forecasting publication-title: Engineering Applications of Artificial Intelligence – year: 2005 ident: b0270 article-title: Forecast of hourly average wind speed with ARMA models in Navarre (Spain) publication-title: Solar Energy – volume: 259 start-page: 114137 year: 2020 ident: b0170 article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting publication-title: Applied Energy – reference: Coello Coello, C. A., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002. DOI:10.1109/CEC.2002.1004388. – volume: 96 start-page: 261 year: 2018 end-page: 270 ident: b0150 article-title: Web spam classification method based on deep belief networks publication-title: Expert Systems with Applications – volume: 96 start-page: 2348 year: 2008 end-page: 2362 ident: b0190 article-title: Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering publication-title: Journal of Wind Engineering and Industrial Aerodynamics – volume: 7 start-page: 1 year: 2019 end-page: 18 ident: b0015 article-title: Assessment of artificial neural networks learning algorithms and training datasets for solar photovoltaic power production prediction publication-title: Frontiers in Energy Research – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b0205 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications – volume: 13 start-page: 253 year: 1995 end-page: 263 ident: b0060 article-title: Comparing predictive accuracy publication-title: Journal of Business and Economic Statistics – start-page: 39 year: 1995 end-page: 43 ident: b0090 article-title: New optimizer using particle swarm theory publication-title: Proceedings of the International Symposium on Micro Machine and Human Science – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0310 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 92 start-page: 106294 year: 2020 ident: b0040 article-title: A new combined model based on multi-objective salp swarm optimization for wind speed forecasting publication-title: Applied Soft Computing – volume: 87 start-page: 105972 year: 2020 ident: b0325 article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight publication-title: Applied Soft Computing Journal – volume: 55 start-page: 102036 year: 2020 ident: b0145 article-title: A novel hybrid forecasting scheme for electricity demand time series publication-title: Sustainable Cities and Society – volume: 2019 start-page: 1 year: 2019 end-page: 13 ident: b0340 article-title: Delay-free tracking differentiator design based on variational mode decomposition: Application on MEMS gyroscope denoising publication-title: Journal of Sensors – year: 1997 ident: b0260 article-title: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – volume: 79 start-page: 126 year: 2020 end-page: 144 ident: b0265 article-title: Point and interval forecasting for carbon price based on an improved analysis-forecast system publication-title: Applied Mathematical Modelling – volume: 101 start-page: 393 year: 2015 end-page: 401 ident: b0330 article-title: Short-term wind power prediction based on LSSVM-GSA model publication-title: Energy Conversion and Management – volume: 12 start-page: 211 year: 2019 end-page: 226 ident: b0110 article-title: Emperor Penguins Colony: A new metaheuristic algorithm for optimization publication-title: Evolutionary Intelligence – volume: 8 start-page: 308 year: 2020 end-page: 322 ident: b0200 article-title: Coronavirus optimization algorithm: A bioinspired metaheuristic based on the COVID-19 propagation model publication-title: Big Data – volume: 163 start-page: 134 year: 2018 end-page: 150 ident: b0305 article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm publication-title: Energy Conversion and Management – volume: 75 start-page: 404 year: 2019 end-page: 427 ident: b0095 article-title: A novel multi-objective optimization algorithm based on Lightning Attachment Procedure Optimization algorithm publication-title: Applied Soft Computing Journal – volume: 136 start-page: 591 year: 2019 end-page: 613 ident: b0235 article-title: A novel optimization booster algorithm publication-title: Computers and Industrial Engineering – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b0210 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – volume: 82 start-page: 105587 year: 2019 ident: b0130 article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting publication-title: Applied Soft Computing – volume: 62 start-page: 987 year: 2018 end-page: 1002 ident: b0120 article-title: Tackling global optimization problems with a novel algorithm – Mouth Brooding Fish algorithm publication-title: Applied Soft Computing Journal – volume: 31 start-page: 5588 year: 2020 end-page: 5602 ident: b0185 article-title: Heterogeneous domain adaptation: An unsupervised approach publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 50 start-page: 3926 year: 2020 end-page: 3941 ident: b0250 article-title: Transient search optimization: A new meta-heuristic optimization algorithm publication-title: Applied Intelligence – volume: 226 start-page: 1 year: 2019 end-page: 16 ident: b0055 article-title: Improving WRF model turbine-height wind-speed forecasting using a surrogate- based automatic optimization method publication-title: Atmospheric Research – volume: 260 start-page: 114243 year: 2020 ident: b0125 article-title: A novel composite electricity demand forecasting framework by data processing and optimized support vector machine publication-title: Applied Energy – volume: 260 start-page: 121027 year: 2020 ident: b0300 article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China publication-title: Journal of Cleaner Production – volume: 122 start-page: 533 year: 2018 end-page: 550 ident: b0080 article-title: Multi-step ahead forecasting in electrical power system using a hybrid forecasting system publication-title: Renewable Energy – volume: 260 start-page: 121027 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0300 article-title: A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.121027 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0340 article-title: Delay-free tracking differentiator design based on variational mode decomposition: Application on MEMS gyroscope denoising publication-title: Journal of Sensors – volume: 149 start-page: 113338 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0140 article-title: Chimp optimization algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113338 – volume: 156 start-page: 804 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0240 article-title: Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting publication-title: Renewable Energy doi: 10.1016/j.renene.2020.03.168 – ident: 10.1016/j.eswa.2021.114974_b0045 doi: 10.1109/CEC.2002.1004388 – volume: 259 start-page: 114137 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0170 article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.114137 – volume: 95 start-page: 106509 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0285 article-title: Ensemble probabilistic prediction approach for modeling uncertainty in crude oil price publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2020.106509 – volume: 145 start-page: 106559 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0335 article-title: A mayfly optimization algorithm publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2020.106559 – volume: 163 start-page: 772 year: 2021 ident: 10.1016/j.eswa.2021.114974_b0315 article-title: Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy publication-title: Renewable Energy doi: 10.1016/j.renene.2020.09.032 – volume: 136 start-page: 758 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0005 article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting publication-title: Renewable Energy doi: 10.1016/j.renene.2019.01.031 – volume: 217 start-page: 119361 year: 2021 ident: 10.1016/j.eswa.2021.114974_b0135 article-title: A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2020.119361 – volume: 13 start-page: 253 issue: 3 year: 1995 ident: 10.1016/j.eswa.2021.114974_b0060 article-title: Comparing predictive accuracy publication-title: Journal of Business and Economic Statistics doi: 10.1080/07350015.1995.10524599 – volume: 26 start-page: 29 issue: 1 year: 1996 ident: 10.1016/j.eswa.2021.114974_b0065 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics doi: 10.1109/3477.484436 – volume: 148 start-page: 106971 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0165 article-title: Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2019.106971 – volume: 250 start-page: 1559 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0355 article-title: Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.05.016 – volume: 79 start-page: 126 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0265 article-title: Point and interval forecasting for carbon price based on an improved analysis-forecast system publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2019.10.022 – volume: 123 start-page: 694 year: 2018 ident: 10.1016/j.eswa.2021.114974_b0175 article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm publication-title: Renewable Energy doi: 10.1016/j.renene.2018.02.092 – volume: 163 start-page: 134 year: 2018 ident: 10.1016/j.eswa.2021.114974_b0305 article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.02.012 – volume: 31 start-page: 5588 issue: 12 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0185 article-title: Heterogeneous domain adaptation: An unsupervised approach publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.2973293 – volume: 62 start-page: 987 year: 2018 ident: 10.1016/j.eswa.2021.114974_b0120 article-title: Tackling global optimization problems with a novel algorithm – Mouth Brooding Fish algorithm publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2017.09.035 – volume: 260 start-page: 114243 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0125 article-title: A novel composite electricity demand forecasting framework by data processing and optimized support vector machine publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.114243 – ident: 10.1016/j.eswa.2021.114974_b0115 – year: 2007 ident: 10.1016/j.eswa.2021.114974_b0345 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation – volume: 85 start-page: 105765 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0030 article-title: Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2019.105765 – year: 2002 ident: 10.1016/j.eswa.2021.114974_b0050 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 89 start-page: 49 year: 2021 ident: 10.1016/j.eswa.2021.114974_b0195 article-title: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2020.07.019 – volume: 122 start-page: 174 year: 2013 ident: 10.1016/j.eswa.2021.114974_b0245 article-title: Verification of the MM5 model using radiosonde data from Madrid-Barajas Airport publication-title: Atmospheric Research doi: 10.1016/j.atmosres.2012.10.018 – year: 1997 ident: 10.1016/j.eswa.2021.114974_b0260 article-title: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 47 start-page: 106 year: 2016 ident: 10.1016/j.eswa.2021.114974_b0220 article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.10.039 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.eswa.2021.114974_b0070 article-title: Variational mode decomposition publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2013.2288675 – volume: 202 start-page: 117794 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0180 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting publication-title: Energy doi: 10.1016/j.energy.2020.117794 – volume: 56 start-page: 226 year: 2014 ident: 10.1016/j.eswa.2021.114974_b0255 article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2013.11.015 – volume: 280 start-page: 115975 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0155 article-title: Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder publication-title: Applied Energy doi: 10.1016/j.apenergy.2020.115975 – volume: 87 start-page: 105972 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0325 article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2019.105972 – volume: 41 start-page: 100802 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0020 article-title: An intelligent hybrid model of neuro Wavelet, time series and Recurrent Kalman Filter for wind speed forecasting publication-title: Sustainable Energy Technologies and Assessments doi: 10.1016/j.seta.2020.100802 – volume: 55 start-page: 102036 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0145 article-title: A novel hybrid forecasting scheme for electricity demand time series publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2020.102036 – volume: 8 start-page: 308 issue: 4 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0200 article-title: Coronavirus optimization algorithm: A bioinspired metaheuristic based on the COVID-19 propagation model publication-title: Big Data doi: 10.1089/big.2020.0051 – volume: 156 start-page: 525 year: 2018 ident: 10.1016/j.eswa.2021.114974_b0160 article-title: Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2017.11.049 – year: 2000 ident: 10.1016/j.eswa.2021.114974_b0010 article-title: Wind energy technology and current status: A review publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/S1364-0321(00)00004-6 – volume: 198 start-page: 111914 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0085 article-title: An evolution-dependent multi-objective ensemble model of vanishing moment with adversarial auto-encoder for short-term wind speed forecasting in Xinjiang wind farm, China publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2019.111914 – volume: 82 start-page: 105587 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0130 article-title: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105587 – volume: 94 start-page: 103783 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0290 article-title: Analysis of the influence of international benchmark oil price on China’s real exchange rate forecasting publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103783 – volume: 12 start-page: 211 issue: 2 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0110 article-title: Emperor Penguins Colony: A new metaheuristic algorithm for optimization publication-title: Evolutionary Intelligence doi: 10.1007/s12065-019-00212-x – volume: 96 start-page: 2348 issue: 12 year: 2008 ident: 10.1016/j.eswa.2021.114974_b0190 article-title: Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/j.jweia.2008.03.013 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2021.114974_b0310 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 7 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0015 article-title: Assessment of artificial neural networks learning algorithms and training datasets for solar photovoltaic power production prediction publication-title: Frontiers in Energy Research doi: 10.3389/fenrg.2019.00130 – volume: 136 start-page: 333 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0025 article-title: A Multi-Scale Model based on the Long Short-Term Memory for day ahead hourly wind speed forecasting publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2019.10.011 – volume: 96 start-page: 106620 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0075 article-title: A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2020.106620 – volume: 75 start-page: 404 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0095 article-title: A novel multi-objective optimization algorithm based on Lightning Attachment Procedure Optimization algorithm publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2018.11.032 – year: 2019 ident: 10.1016/j.eswa.2021.114974_b0105 article-title: Research on E-commerce precision poverty alleviation publication-title: Economic Science Press – volume: 101 start-page: 393 year: 2015 ident: 10.1016/j.eswa.2021.114974_b0330 article-title: Short-term wind power prediction based on LSSVM-GSA model publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2015.05.065 – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 10.1016/j.eswa.2021.114974_b0205 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1920-1 – volume: 122 start-page: 533 year: 2018 ident: 10.1016/j.eswa.2021.114974_b0080 article-title: Multi-step ahead forecasting in electrical power system using a hybrid forecasting system publication-title: Renewable Energy doi: 10.1016/j.renene.2018.01.113 – volume: 96 start-page: 261 year: 2018 ident: 10.1016/j.eswa.2021.114974_b0150 article-title: Web spam classification method based on deep belief networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.12.016 – year: 2005 ident: 10.1016/j.eswa.2021.114974_b0270 article-title: Forecast of hourly average wind speed with ARMA models in Navarre (Spain) publication-title: Solar Energy doi: 10.1016/j.solener.2004.09.013 – volume: 92 start-page: 106294 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0040 article-title: A new combined model based on multi-objective salp swarm optimization for wind speed forecasting publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106294 – volume: 50 start-page: 3926 issue: 11 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0250 article-title: Transient search optimization: A new meta-heuristic optimization algorithm publication-title: Applied Intelligence doi: 10.1007/s10489-020-01727-y – volume: 126 start-page: 736 year: 2018 ident: 10.1016/j.eswa.2021.114974_b0225 article-title: Wind speed forecasting approach based on Singular Spectrum Analysis and Adaptive Neuro Fuzzy Inference System publication-title: Renewable Energy doi: 10.1016/j.renene.2017.11.089 – volume: 93 start-page: 106392 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0100 article-title: Dynamic differential annealed optimization: New metaheuristic optimization algorithm for engineering applications publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2020.106392 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.eswa.2021.114974_b0210 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 136 start-page: 591 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0235 article-title: A novel optimization booster algorithm publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2019.07.046 – volume: 208 start-page: 344 year: 2017 ident: 10.1016/j.eswa.2021.114974_b0280 article-title: A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.10.031 – volume: 222 start-page: 942 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0320 article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.03.036 – volume: 48 start-page: 805 issue: 4 year: 2018 ident: 10.1016/j.eswa.2021.114974_b0215 article-title: Grasshopper optimization algorithm for multi-objective optimization problems publication-title: Applied Intelligence doi: 10.1007/s10489-017-1019-8 – start-page: 39 year: 1995 ident: 10.1016/j.eswa.2021.114974_b0090 article-title: New optimizer using particle swarm theory – volume: 165 start-page: 840 year: 2018 ident: 10.1016/j.eswa.2021.114974_b0295 article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting publication-title: Energy doi: 10.1016/j.energy.2018.09.118 – volume: 97 start-page: 106809 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0230 article-title: A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106809 – volume: 179 start-page: 13 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0035 article-title: A novel combined model based on echo state network for multi-step ahead wind speed forecasting: A case study of NREL publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.10.068 – volume: 255 start-page: 109855 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0275 article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2019.109855 – volume: 277 start-page: 115561 year: 2020 ident: 10.1016/j.eswa.2021.114974_b0350 article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting publication-title: Applied Energy doi: 10.1016/j.apenergy.2020.115561 – volume: 226 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.114974_b0055 article-title: Improving WRF model turbine-height wind-speed forecasting using a surrogate- based automatic optimization method publication-title: Atmospheric Research doi: 10.1016/j.atmosres.2019.04.011 |
| SSID | ssj0017007 |
| Score | 2.6491816 |
| Snippet | •An ensemble forecasting system is developed for short-term wind speed.•A comprehensive indicator is proposed to determine the best sub-models... Wind energy has attracted considerable attention in the past decades as a low-carbon, environmentally friendly, and efficient renewable energy. However, the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114974 |
| SubjectTerms | Algorithms Decomposition Electric power grids Ensemble model Forecasting Mathematical models Multi-objective version of Mayfly algorithm Multiple objective analysis Optimization Short-term wind speed forecasting Smart grid Sub-model selection Wind power Wind speed |
| Title | Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2021.114974 https://www.proquest.com/docview/2540548979 |
| Volume | 177 |
| WOSCitedRecordID | wos000663299900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4deuhdNmxY89GYwCLVROgaFizYIghxSwDdBoqhari0ZluUk_Z18S_6rw9VLkKA59CIYFEUQnOeZ4awIfZEVy6nIj0ghopAEPClJnrOcCMZplGWys4Oqrn_Kzs7i0Sg57_VubS7MasrqOr66Sub_ldQwBsSWqbOPILdbFAbgNxAdnkB2eP4T4Yd1K2YyHwrUUcGzVsU164LNKqawHYPGTSRHHlxW0mo-BwG2NVlKtkJ6ERrgJzOZUNLlRLXMGbSqbY4NYVbRiKTJJ5prDlba-KZ89tl1Ob3WK5hUz0E2_dUsquV4tuUOkLWWl2aDNtduw6vuIoaqTjlSxqL-3TlEn1TG3n1uRbByDpgwY3j5Z9x0d4zjp1WZmenG4OFRF9G1tlwyElDd3McxcdMMRrNhuOQl-v0dCaGNFZND0V7KslMePVxP3i7HvSMmXfCijYubpHKNVK6R6jWeoD2PhUncR3vHP4ajE-fOYkc6b9_u3GRv6UDD3Z3cpyHt6ApKAbp4iZ6bmws-1oh7hXqifo1e2K4g2AiJN-jGAhBvYApr-sohvAYglgDECoBbkxUAcVNjA0DsAIgdADEAEO8AEBsA4qbEGoB4E4DYAfAt-vltePH1OzGtQAj3vXhJIlHwUERe7mcJFSzgrAj9MAfl3g8L0OIjX_iMlhxOMeLAf2Ih4sj3g7AUMY8y6r9D_bqpxXuEZU8FPxQ0yOMsyCMq_eAFSxK5Ipx-sY-oPf6Umzr5sl3LNL2f8Pto4L6Z6yoxD84OLVVTo-dq_TUFkD743YGFQGoYTpt68soVxAlLPjxqEx_Rs_Wf6wD1l4tOfEJP-WpZtYvPBsB_AQWE3ZI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+forecasting+system+for+short-term+wind+speed+forecasting+based+on+optimal+sub-model+selection+and+multi-objective+version+of+mayfly+optimization+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Zhenkun&rft.au=Jiang%2C+Ping&rft.au=Wang%2C+Jianzhou&rft.au=Zhang%2C+Lifang&rft.date=2021-09-01&rft.issn=0957-4174&rft.volume=177&rft.spage=114974&rft_id=info:doi/10.1016%2Fj.eswa.2021.114974&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_114974 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |