Exploring Cutting-Edge Developments in Deep Learning for Biomedical Signal Processing

Biomedical condition monitoring devices are progressing quickly by incorporating cost-effective and non-invasive sensors to track vital signs, record medical circumstances, and deliver meaningful responses. These sophisticated innovations rely on breakthrough technology to provide intelligent platfo...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced computer science & applications Vol. 15; no. 5
Main Authors: Zhu, Yukun, Zhang, Haiyan, Liu, Bing, Dou, Junyan
Format: Journal Article
Language:English
Published: West Yorkshire Science and Information (SAI) Organization Limited 2024
Subjects:
ISSN:2158-107X, 2156-5570
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Biomedical condition monitoring devices are progressing quickly by incorporating cost-effective and non-invasive sensors to track vital signs, record medical circumstances, and deliver meaningful responses. These sophisticated innovations rely on breakthrough technology to provide intelligent platforms for health monitoring, quick illness recognition, and precise treatment. Biomedical signal processing determines patterns of signals and serves as the backbone for reliable applications, medical diagnostics, and research. Deep Learning (DL) methods have brought significant innovation in biomedical signal processing, leading to the transformation of the health sector and medical diagnostics. This article covers an entire range of technical innovations evolved for DL-based biomedical signal processing where different modalities have been considered, including Electrocardiography (ECG), Electromyography (EMG), and Electroencephalography (EEG). A vast amount of biomedical data in various forms is available, and DL concepts are required to extract and model this data in order to identify hidden complex patterns that can be utilized to improve the diagnosis, prognosis, and personalized treatment of diseases in an individual. The nature of this developing topic certainly gives rise to a number of challenges. First, the application of sensitive and noisy time series data requires truly robust models. Second, many inferences made at the bedside must have interpretability by design. Third, the field will require that processing be performed in real-time if used for therapeutic interventions. We systematically evaluate these challenges and highlight areas where continued research is needed. The general expansion of DL technologies into the biomedical domain gives rise to novel concerns about accountability and transparency of algorithmic decision-making, a subject which we briefly touch upon as well.
AbstractList Biomedical condition monitoring devices are progressing quickly by incorporating cost-effective and non-invasive sensors to track vital signs, record medical circumstances, and deliver meaningful responses. These sophisticated innovations rely on breakthrough technology to provide intelligent platforms for health monitoring, quick illness recognition, and precise treatment. Biomedical signal processing determines patterns of signals and serves as the backbone for reliable applications, medical diagnostics, and research. Deep Learning (DL) methods have brought significant innovation in biomedical signal processing, leading to the transformation of the health sector and medical diagnostics. This article covers an entire range of technical innovations evolved for DL-based biomedical signal processing where different modalities have been considered, including Electrocardiography (ECG), Electromyography (EMG), and Electroencephalography (EEG). A vast amount of biomedical data in various forms is available, and DL concepts are required to extract and model this data in order to identify hidden complex patterns that can be utilized to improve the diagnosis, prognosis, and personalized treatment of diseases in an individual. The nature of this developing topic certainly gives rise to a number of challenges. First, the application of sensitive and noisy time series data requires truly robust models. Second, many inferences made at the bedside must have interpretability by design. Third, the field will require that processing be performed in real-time if used for therapeutic interventions. We systematically evaluate these challenges and highlight areas where continued research is needed. The general expansion of DL technologies into the biomedical domain gives rise to novel concerns about accountability and transparency of algorithmic decision-making, a subject which we briefly touch upon as well.
Author Liu, Bing
Zhang, Haiyan
Dou, Junyan
Zhu, Yukun
Author_xml – sequence: 1
  givenname: Yukun
  surname: Zhu
  fullname: Zhu, Yukun
– sequence: 2
  givenname: Haiyan
  surname: Zhang
  fullname: Zhang, Haiyan
– sequence: 3
  givenname: Bing
  surname: Liu
  fullname: Liu, Bing
– sequence: 4
  givenname: Junyan
  surname: Dou
  fullname: Dou, Junyan
BookMark eNqFkF1LwzAUhoNMcM79BKHgdefJZ1u8mnPqZKAwB96FtEtHRtfUJBP992ab3nhjbt4ceN7D4TlHvda2GqFLDCPMuCiuZ0_jyWI8IkDYCDAHjjE-QX2CuUg5z6B3-OcphuztDA2930B8tCAip320nH52jXWmXSeTXQgx0-lqrZM7_aEb2211G3xi2jjrLplr5do9WluX3Bq71StTqSZZmHUb48XZSnsfgQt0WqvG6-FPDtDyfvo6eUznzw-zyXieVpTkIRWqrCgXGHMNuMqoEnXGy1zUoDjNVUGYKLkAnWeKsbykLKsZVkBZGamSAR2gq-Peztn3nfZBbuzOxVu8pJARAFIQGqmbI1U5673TtaxMUMHYNjhlGolBHlTKo0q5Vyl_VcY2_9PunNkq9_VP7xtfonhD
CitedBy_id crossref_primary_10_1088_1361_6579_adebdd
ContentType Journal Article
Copyright 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2024.01505111
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest research library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2024_01505111
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c328t-6abc356115e01c73a6f75b86f0a538a9246b560e87a448b347f41a034b5b8b403
IEDL.DBID K7-
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001315627600111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-107X
IngestDate Sun Nov 09 05:49:16 EST 2025
Sat Nov 29 02:26:17 EST 2025
Tue Nov 18 20:40:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-6abc356115e01c73a6f75b86f0a538a9246b560e87a448b347f41a034b5b8b403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3072002923?pq-origsite=%requestingapplication%
PQID 3072002923
PQPubID 5444811
ParticipantIDs proquest_journals_3072002923
crossref_citationtrail_10_14569_IJACSA_2024_01505111
crossref_primary_10_14569_IJACSA_2024_01505111
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2024
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.2568061
Snippet Biomedical condition monitoring devices are progressing quickly by incorporating cost-effective and non-invasive sensors to track vital signs, record medical...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Biomedical data
Condition monitoring
Deep learning
Electrocardiography
Health services
Innovations
Medical electronics
Real time
Signal processing
Telemedicine
Title Exploring Cutting-Edge Developments in Deep Learning for Biomedical Signal Processing
URI https://www.proquest.com/docview/3072002923
Volume 15
WOSCitedRecordID wos001315627600111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: M2O
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UPHgRPyOKpAevhX10azkZIBBRwUXEoJel7TZCYgD58O_3dXQoFz14abK03Zb9Xvt-7-31PYSugYTHimm_G7cUoaAjiaBSEMqo5F6kpEpdFy8PrNfjw2EtMA63hQmrzPbEdKOOpkr7yKsgizqeAPjIzeyD6KpR-u-qKaGxi_K249hazu8Z2fhYLFD-fpqJExSbzmLKhuYQD9CGWrVzV2_262AjOrSiDX_gHva2etrenVOV0y7892UP0YEhm7i-lo4jtBNPjlEhK-SAzbo-QYNNJB5urtJAaNKKRjH-EVG0wOMJXMczbDKyjjDQXdxIT-9roHF_PNIPMycPYMApGrRbz81bYuotEOU6fEl8IZULfMr2YstWzBV-wjzJ_cQSsC0KsNR8CQQp5kyAUSddyhJqC8ulEkZJarlnKDeZTuJzhIFXJpbnRYCKRSNPcFco4GYJB5ASrpIiotlnDpVJRq5rYryH2ijR6IRrdEKNTpihU0SVzbTZOhvHXxNKGUChWZyL8Budi9-7L9G-vtva41JCueV8FV-hPfW5HC_mZZRvtHrBUzmVOWi7ziO0gfcGPUGnG7x-ARMY3CI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhR-z4AEdDEjuxOSBUCojSUiGxqLdgO05VCZVCC4if4hsZZylwgRMHjlFiR4lfZt5Mxm8AtpGEWyNc3k16hnL0kVRxrSgXXMswMdpkqYvbhmg2Zau1fzkC7-VeGFdWWdrEzFAnD8blyPcQi66eAPnIYe-Ruq5R7u9q2UIjh0Xdvr1iyNY_qB3j-u4EwenJdfWMFl0FqGGBHNBIacOQNfih9XwjmIpSEWoZpZ7Cj19hPBJppAFWCoWhi2ZcpNxXHuMar9LcYzjvKIxzJoXT6q8LOszpeEg2okz5Ex2pU00VrWLTENKU_b3aeaV6VcGYNOC7LtGAXMf_7g6_e4PMxZ3O_LeXMwvTBZkmlRz9czBiu_MwUzaqIIXdWoCbYaUhqT5nhd70JGlb8qViqk86XTy2PVIozrYJ0nlylKkTOCCTq07b3azYWYEXLMLNnzzcEox1H7p2GQjy5tQLw8QPAo8noZJMGeSeqQx8lkqTrgAvlzU2hdi66_lxH7ugy6EhztEQOzTEJRpWYHc4rJerjfw2YL0ERFwYn378iYbVn09vweTZ9UUjbtSa9TWYcjPn2aV1GBs8PdsNmDAvg07_aTPDOYG7v8bOBzCmMTY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Cutting-Edge+Developments+in+Deep+Learning+for+Biomedical+Signal+Processing&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Zhu%2C+Yukun&rft.au=Zhang%2C+Haiyan&rft.au=Liu%2C+Bing&rft.au=Dou%2C+Junyan&rft.date=2024&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=15&rft.issue=5&rft_id=info:doi/10.14569%2FIJACSA.2024.01505111&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2024_01505111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon