Exploring Cutting-Edge Developments in Deep Learning for Biomedical Signal Processing
Biomedical condition monitoring devices are progressing quickly by incorporating cost-effective and non-invasive sensors to track vital signs, record medical circumstances, and deliver meaningful responses. These sophisticated innovations rely on breakthrough technology to provide intelligent platfo...
Uloženo v:
| Vydáno v: | International journal of advanced computer science & applications Ročník 15; číslo 5 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
West Yorkshire
Science and Information (SAI) Organization Limited
2024
|
| Témata: | |
| ISSN: | 2158-107X, 2156-5570 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Biomedical condition monitoring devices are progressing quickly by incorporating cost-effective and non-invasive sensors to track vital signs, record medical circumstances, and deliver meaningful responses. These sophisticated innovations rely on breakthrough technology to provide intelligent platforms for health monitoring, quick illness recognition, and precise treatment. Biomedical signal processing determines patterns of signals and serves as the backbone for reliable applications, medical diagnostics, and research. Deep Learning (DL) methods have brought significant innovation in biomedical signal processing, leading to the transformation of the health sector and medical diagnostics. This article covers an entire range of technical innovations evolved for DL-based biomedical signal processing where different modalities have been considered, including Electrocardiography (ECG), Electromyography (EMG), and Electroencephalography (EEG). A vast amount of biomedical data in various forms is available, and DL concepts are required to extract and model this data in order to identify hidden complex patterns that can be utilized to improve the diagnosis, prognosis, and personalized treatment of diseases in an individual. The nature of this developing topic certainly gives rise to a number of challenges. First, the application of sensitive and noisy time series data requires truly robust models. Second, many inferences made at the bedside must have interpretability by design. Third, the field will require that processing be performed in real-time if used for therapeutic interventions. We systematically evaluate these challenges and highlight areas where continued research is needed. The general expansion of DL technologies into the biomedical domain gives rise to novel concerns about accountability and transparency of algorithmic decision-making, a subject which we briefly touch upon as well. |
|---|---|
| AbstractList | Biomedical condition monitoring devices are progressing quickly by incorporating cost-effective and non-invasive sensors to track vital signs, record medical circumstances, and deliver meaningful responses. These sophisticated innovations rely on breakthrough technology to provide intelligent platforms for health monitoring, quick illness recognition, and precise treatment. Biomedical signal processing determines patterns of signals and serves as the backbone for reliable applications, medical diagnostics, and research. Deep Learning (DL) methods have brought significant innovation in biomedical signal processing, leading to the transformation of the health sector and medical diagnostics. This article covers an entire range of technical innovations evolved for DL-based biomedical signal processing where different modalities have been considered, including Electrocardiography (ECG), Electromyography (EMG), and Electroencephalography (EEG). A vast amount of biomedical data in various forms is available, and DL concepts are required to extract and model this data in order to identify hidden complex patterns that can be utilized to improve the diagnosis, prognosis, and personalized treatment of diseases in an individual. The nature of this developing topic certainly gives rise to a number of challenges. First, the application of sensitive and noisy time series data requires truly robust models. Second, many inferences made at the bedside must have interpretability by design. Third, the field will require that processing be performed in real-time if used for therapeutic interventions. We systematically evaluate these challenges and highlight areas where continued research is needed. The general expansion of DL technologies into the biomedical domain gives rise to novel concerns about accountability and transparency of algorithmic decision-making, a subject which we briefly touch upon as well. |
| Author | Liu, Bing Zhang, Haiyan Dou, Junyan Zhu, Yukun |
| Author_xml | – sequence: 1 givenname: Yukun surname: Zhu fullname: Zhu, Yukun – sequence: 2 givenname: Haiyan surname: Zhang fullname: Zhang, Haiyan – sequence: 3 givenname: Bing surname: Liu fullname: Liu, Bing – sequence: 4 givenname: Junyan surname: Dou fullname: Dou, Junyan |
| BookMark | eNqFkF1LwzAUhoNMcM79BKHgdefJZ1u8mnPqZKAwB96FtEtHRtfUJBP992ab3nhjbt4ceN7D4TlHvda2GqFLDCPMuCiuZ0_jyWI8IkDYCDAHjjE-QX2CuUg5z6B3-OcphuztDA2930B8tCAip320nH52jXWmXSeTXQgx0-lqrZM7_aEb2211G3xi2jjrLplr5do9WluX3Bq71StTqSZZmHUb48XZSnsfgQt0WqvG6-FPDtDyfvo6eUznzw-zyXieVpTkIRWqrCgXGHMNuMqoEnXGy1zUoDjNVUGYKLkAnWeKsbykLKsZVkBZGamSAR2gq-Peztn3nfZBbuzOxVu8pJARAFIQGqmbI1U5673TtaxMUMHYNjhlGolBHlTKo0q5Vyl_VcY2_9PunNkq9_VP7xtfonhD |
| CitedBy_id | crossref_primary_10_1088_1361_6579_adebdd |
| ContentType | Journal Article |
| Copyright | 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2024.01505111 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2024_01505111 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c328t-6abc356115e01c73a6f75b86f0a538a9246b560e87a448b347f41a034b5b8b403 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001315627600111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Sun Nov 09 05:49:16 EST 2025 Sat Nov 29 02:26:17 EST 2025 Tue Nov 18 20:40:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-6abc356115e01c73a6f75b86f0a538a9246b560e87a448b347f41a034b5b8b403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3072002923?pq-origsite=%requestingapplication% |
| PQID | 3072002923 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_3072002923 crossref_citationtrail_10_14569_IJACSA_2024_01505111 crossref_primary_10_14569_IJACSA_2024_01505111 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2024 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.2568064 |
| Snippet | Biomedical condition monitoring devices are progressing quickly by incorporating cost-effective and non-invasive sensors to track vital signs, record medical... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Biomedical data Condition monitoring Deep learning Electrocardiography Health services Innovations Medical electronics Real time Signal processing Telemedicine |
| Title | Exploring Cutting-Edge Developments in Deep Learning for Biomedical Signal Processing |
| URI | https://www.proquest.com/docview/3072002923 |
| Volume | 15 |
| WOSCitedRecordID | wos001315627600111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG9UPHjx24ii6cHrpOvKup0MEIz4gYuIQS9L27WExAAK-vf7OjqUix68NFnabst-r32_9_b6HkJnBtRQFmnqCRHWPND4xBMkBitFxMBmM1CBeWzO0y3vdKJ-P06cw23qwiqLPTHfqLOxsj7yKsiijScAPnIxefNs1Sj7d9WV0FhFJZ9S38r5DfcWPhYCyj_MM3GCYrNZTHnfHeIB2hBX29f1ZrcONiJl59bwB-7hL6un5d05VzmXW_992W206cgmrs-lYwet6NEu2ioKOWC3rvdQbxGJh5sfeSC018oGGv-IKJri4Qiu9QS7jKwDDHQXN_LT-xZo3B0O7MPcyQMYsI96l63H5pXn6i14KqDRDPCRKgA-5dc08RUPRGh4TUahIQK2RQGWWiiBIOmICzDqZMC4Yb4gAZMwSjISHKC10XikDxEOTWCMjGgcGsUkp4JpaRglSlPOM6LKiBWfOVUuGbmtifGaWqPEopPO0UktOmmBThmdL6ZN5tk4_ppQKQBK3eKcpt_oHP3efYw27N3mHpcKWpu9f-gTtK4-Z8Pp-ykqNVqd5OE0lzlo7-g9tEntBXqS9l3y_AVnG9yL |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhR5TVBzgGXMeNkwNCpYAoLRUSi3oLtmNXlVAptID4Kb6RcZYCFzhx4BjFdha_zLyZzAKwY1ENJaFhnpRBxUONTz1JI7RSZIRsNkEVmMbm3DZFqxW229HlGLwXuTAurLKQiamgTh6085HvIxZdPAHykcP-o-e6Rrm_q0ULjQwWDfP2iibb4KB-jPu7y9jpyXXtzMu7CnjaZ-EQ70JpH1lDuWJoWQtfBlZUVBhYKvHjl2iPBAppgAmFRNNF-VxYXpbU5wpHKU59XHccJrkfClervyG8kU-HItkI0sqfqEhd1VTRzpOGkKZE-_Xzau2qijYp43vO0YBcp_xdHX7XBqmKO537by9nHmZzMk2qGfoXYMz0FmGuaFRBcrm1BDejSENSe04Dvb2TpGPIl4ipAen28Nj0SV5xtkOQzpOjtDqBAzK56nbcxfLMChywDDd_8nArMNF76JlVIIH1rVUhiwKruRJMcqMsZ1QbJkRCdQl4sa2xzoutu54f97Ezuhwa4gwNsUNDXKChBHujaf2s2shvEzYKQMS58BnEn2hY-_n0NkyfXV8042a91ViHGbdy5l3agInh07PZhCn9MuwOnrZSnBO4-2vsfAAmFDGf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Cutting-Edge+Developments+in+Deep+Learning+for+Biomedical+Signal+Processing&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Zhu%2C+Yukun&rft.au=Zhang%2C+Haiyan&rft.au=Liu%2C+Bing&rft.au=Dou%2C+Junyan&rft.date=2024&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=15&rft.issue=5&rft_id=info:doi/10.14569%2FIJACSA.2024.01505111&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2024_01505111 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |