Gain-Scheduled Finite-Time Synchronization for Reaction-Diffusion Memristive Neural Networks Subject to Inconsistent Markov Chains

An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-sched...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 32; no. 7; pp. 2952 - 2964
Main Authors: Song, Xiaona, Man, Jingtao, Song, Shuai, Ahn, Choon Ki
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-scheduled controller that involves a mode and memristor-dependent item is designed, so that the error system is bounded within a finite-time interval. Moreover, by constructing a novel Lyapunov-Krasovskii functional and employing the canonical Bessel-Legendre inequality and free-weighting matrix method, the conservatism of the finite-time synchronization criterion can be greatly reduced. Finally, two numerical examples are provided to illustrate the feasibility and practicability of the obtained results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.3009081