Integration of aggressive bound tightening and Mixed Integer Programming for Cost-sensitive feature selection in medical diagnosis

Silent diseases is an umbrella term that captures a spectrum of chronic illnesses that produce no clinically obvious signs and are diagnosed at advanced stages when the damage is irreversible. Current diagnostic strategies of silent diseases depend on self-reported symptoms and observed behavior thr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 187; s. 115902
Hlavní autori: Abdulla, Mai, Khasawneh, Mohammad T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 01.01.2022
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Silent diseases is an umbrella term that captures a spectrum of chronic illnesses that produce no clinically obvious signs and are diagnosed at advanced stages when the damage is irreversible. Current diagnostic strategies of silent diseases depend on self-reported symptoms and observed behavior through extended periods of time, and until now there are no specific clinical tests to diagnose silent diseases. Scientific research suggests the importance of early diagnosis to restore the functionality and reduce diseases-related complications. Previous studies primarily focused on feature selection methods to aid in medical diagnosis. Traditional feature selection methods are primarily focused on correct classification and often ignore features’ costs; the cost of clinical tests required to acquire the feature value. However, in medical diagnosis, features have different associated costs. Because ignoring features’ costs may result in a high cost diagnostic strategy that cannot be used in practice, developing a low-cost diagnostic strategy remains a subject of much interest. In this paper, new Mixed Integer Programming (MIP) models, namely, Cost-sensitive Support Vector Machine (CS-SVM) and Cost-sensitive Multi-surface Method Tree (CS-MSMT) that allow for simultaneous selection of low-cost and informative features are proposed. The CS-SVM and CS-MSMT are superior because they have the ability to account for shared costs. The CS-SVM and CS-MSMT were modified to embed shared costs across feature groups, and are termed Discounted CS-SVM (dCS-SVM) and Discounted CS-MSMT (dCS-MSMT), respectively. Computationally effective algorithm that integrates aggressive bound tightening with the MIP formulation is proposed. To demonstrate the effectiveness of the proposed models, different analysis paradigms are conducted on six UCI medical datasets; Chronic Kidney Disease, Hepatitis, Heart Disease, Thyroid, Diabetes and Leukemia. The results demonstrate the efficiency and robustness of the CS-SVM and CS-MSMT (and consequently the dCS-SVM and dCS-MSMT) under various conditions. The CS-SVM and CS-MSMT improved accuracy by 10.3% and 3.4% and reduced costs by 94.3% and 72.4% in the leukemia dataset, respectively. •New MIP models for cost-sensitive feature selection are proposed.•The models are robust enough to account for shared cost across feature groups.•Aggressive bound tightening within Branch and Cut algorithm was used.•The proposed cost-sensitive feature selection models outperformed existing feature selection techniques.•The models improved the accuracy up by 10.3% and decreased the cost up to 96%.
AbstractList Silent diseases is an umbrella term that captures a spectrum of chronic illnesses that produce no clinically obvious signs and are diagnosed at advanced stages when the damage is irreversible. Current diagnostic strategies of silent diseases depend on self-reported symptoms and observed behavior through extended periods of time, and until now there are no specific clinical tests to diagnose silent diseases. Scientific research suggests the importance of early diagnosis to restore the functionality and reduce diseases-related complications. Previous studies primarily focused on feature selection methods to aid in medical diagnosis. Traditional feature selection methods are primarily focused on correct classification and often ignore features' costs; the cost of clinical tests required to acquire the feature value. However, in medical diagnosis, features have different associated costs. Because ignoring features' costs may result in a high cost diagnostic strategy that cannot be used in practice, developing a low-cost diagnostic strategy remains a subject of much interest. In this paper, new Mixed Integer Programming (MIP) models, namely, Cost-sensitive Support Vector Machine (CS-SVM) and Cost-sensitive Multi-surface Method Tree (CS-MSMT) that allow for simultaneous selection of low-cost and informative features are proposed. The CS-SVM and CS-MSMT are superior because they have the ability to account for shared costs. The CS-SVM and CS-MSMT were modified to embed shared costs across feature groups, and are termed Discounted CS-SVM (dCS-SVM) and Discounted CS-MSMT (dCS-MSMT), respectively. Computationally effective algorithm that integrates aggressive bound tightening with the MIP formulation is proposed. To demonstrate the effectiveness of the proposed models, different analysis paradigms are conducted on six UCI medical datasets; Chronic Kidney Disease, Hepatitis, Heart Disease, Thyroid, Diabetes and Leukemia. The results demonstrate the efficiency and robustness of the CS-SVM and CS-MSMT (and consequently the dCS-SVM and dCS-MSMT) under various conditions. The CS-SVM and CS-MSMT improved accuracy by 10.3% and 3.4% and reduced costs by 94.3% and 72.4% in the leukemia dataset, respectively.
Silent diseases is an umbrella term that captures a spectrum of chronic illnesses that produce no clinically obvious signs and are diagnosed at advanced stages when the damage is irreversible. Current diagnostic strategies of silent diseases depend on self-reported symptoms and observed behavior through extended periods of time, and until now there are no specific clinical tests to diagnose silent diseases. Scientific research suggests the importance of early diagnosis to restore the functionality and reduce diseases-related complications. Previous studies primarily focused on feature selection methods to aid in medical diagnosis. Traditional feature selection methods are primarily focused on correct classification and often ignore features’ costs; the cost of clinical tests required to acquire the feature value. However, in medical diagnosis, features have different associated costs. Because ignoring features’ costs may result in a high cost diagnostic strategy that cannot be used in practice, developing a low-cost diagnostic strategy remains a subject of much interest. In this paper, new Mixed Integer Programming (MIP) models, namely, Cost-sensitive Support Vector Machine (CS-SVM) and Cost-sensitive Multi-surface Method Tree (CS-MSMT) that allow for simultaneous selection of low-cost and informative features are proposed. The CS-SVM and CS-MSMT are superior because they have the ability to account for shared costs. The CS-SVM and CS-MSMT were modified to embed shared costs across feature groups, and are termed Discounted CS-SVM (dCS-SVM) and Discounted CS-MSMT (dCS-MSMT), respectively. Computationally effective algorithm that integrates aggressive bound tightening with the MIP formulation is proposed. To demonstrate the effectiveness of the proposed models, different analysis paradigms are conducted on six UCI medical datasets; Chronic Kidney Disease, Hepatitis, Heart Disease, Thyroid, Diabetes and Leukemia. The results demonstrate the efficiency and robustness of the CS-SVM and CS-MSMT (and consequently the dCS-SVM and dCS-MSMT) under various conditions. The CS-SVM and CS-MSMT improved accuracy by 10.3% and 3.4% and reduced costs by 94.3% and 72.4% in the leukemia dataset, respectively. •New MIP models for cost-sensitive feature selection are proposed.•The models are robust enough to account for shared cost across feature groups.•Aggressive bound tightening within Branch and Cut algorithm was used.•The proposed cost-sensitive feature selection models outperformed existing feature selection techniques.•The models improved the accuracy up by 10.3% and decreased the cost up to 96%.
ArticleNumber 115902
Author Khasawneh, Mohammad T.
Abdulla, Mai
Author_xml – sequence: 1
  givenname: Mai
  orcidid: 0000-0002-0705-2132
  surname: Abdulla
  fullname: Abdulla, Mai
  email: mabdull5@binghamton.edu
– sequence: 2
  givenname: Mohammad T.
  orcidid: 0000-0002-4302-6943
  surname: Khasawneh
  fullname: Khasawneh, Mohammad T.
  email: mkhasawn@binghamton.edu
BookMark eNp9kDtPAzEMgCNUJMrjDzBFYr6S5K73kFhQxUsCwQBz5CbOkapNSpLyWPnl5FomBuTBsuzPlr9DMnLeISGnnE044_X5YoLxAyaCCT7hfNoxsUfGvG3Kom66ckTGrJs2RcWb6oAcxrhgjDeMNWPyfecS9gGS9Y56Q6HvA8Zo35HO_cZpmmz_mtBZ11PI5YP9RE23EAb6FHxmV6uha3ygMx9TEdFFm4YNBiFtAtKIS1TbC9bRFWqrYEm1hd75aOMx2TewjHjym4_Iy_XV8-y2uH-8uZtd3heqFG0q6qrTWBrezrUuASuFgpfQgZrrxmjOdTdXoDsDULcdnwKvlAYwOVQjWKvLI3K227sO_m2DMcmF3wSXT0pRZ3GsrUuRp8RuSgUfY0Aj18GuIHxJzuTgWi7k4FoOruXOdYbaP5Cyaes0BbDL_9GLHYr59XeLQUZl0alsKWRpUnv7H_4DoiGg8Q
CitedBy_id crossref_primary_10_1007_s11042_023_15917_6
crossref_primary_10_1016_j_eswa_2023_120480
crossref_primary_10_1007_s11276_023_03548_6
crossref_primary_10_3390_fi14060178
Cites_doi 10.1016/j.dam.2007.05.060
10.1016/j.eswa.2013.05.021
10.1016/j.cor.2018.03.005
10.1016/j.compeleceng.2013.11.024
10.1097/00004836-200003000-00005
10.1016/j.eswa.2012.05.023
10.1681/ASN.V981535
10.1016/S0004-3702(97)00043-X
10.1186/1471-2105-10-S1-S22
10.1038/ki.2013.153
10.1109/ICDM.2003.1250950
10.1016/B978-1-55860-036-2.50099-0
10.1023/A:1012487302797
10.1002/ejhf.705
10.1109/ROBOT.1990.126097
10.1145/1015330.1015369
10.1097/00004650-200311000-00005
10.1023/A:1022609710832
10.1016/j.knosys.2015.11.010
10.1613/jair.120
10.1007/s10589-016-9847-8
10.1016/j.cmpb.2011.03.018
10.1016/S0305-0548(01)00088-0
10.1023/A:1022679428250
10.1007/s11634-018-0330-5
10.1287/opre.13.3.444
10.1109/ICCIS.2006.252362
10.1016/S0031-3203(01)00210-2
10.1073/pnas.87.23.9193
10.1109/TIT.1968.1054229
10.1007/s10479-006-0075-y
10.1016/j.artmed.2009.05.003
10.1016/j.eswa.2019.06.044
10.1109/IJCNN.2004.1381020
10.1016/j.cor.2012.05.015
10.1016/j.ins.2009.02.014
10.1007/s10479-008-0506-z
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115902
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115902
S0957417421012574
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-649de3f18bdd3ae4ce213a9acbd7fd11d9bcad9faa68915a14cdaafafac7208d3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704060500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 08:05:27 EDT 2025
Tue Nov 18 21:04:28 EST 2025
Sat Nov 29 07:04:32 EST 2025
Fri Feb 23 02:47:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
Aggressive bound tightening
Mixed Integer Linear Programming
Medical diagnosis
Shared costs
Cost-sensitive
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-649de3f18bdd3ae4ce213a9acbd7fd11d9bcad9faa68915a14cdaafafac7208d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0705-2132
0000-0002-4302-6943
PQID 2602108632
PQPubID 2045477
ParticipantIDs proquest_journals_2602108632
crossref_primary_10_1016_j_eswa_2021_115902
crossref_citationtrail_10_1016_j_eswa_2021_115902
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115902
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Pardalos, Boginski, Vazacopoulos (b32) 2004
Belotti, Bonami, Fischetti, Lodi, Monaci, Nogales-Gomez (b3) 2016; 65
Ng, A. Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance. In
Kohavi, John (b17) 1997; 97
Benítez-Peña, Blanquero, Carrizosa, Ramírez-Cobo (b4) 2019; 106
Kukar, M., & Kononenko, I., et al. (1998). Cost-sensitive learning with neural networks. In
Sahin, Bulkan, Duman (b35) 2013; 40
Benítez-Peña, Blanquero, Carrizosa, Ramírez-Cobo (b5) 2019; 13
Zhang, Zhou, Jiao (b50) 2002; 35
Yang, Wang, Mi, Cai (b47) 2009; 10
Tang, Alelyani, Liu (b41) 2014
Zadrozny, B., Langford, J., & Abe, N. (2003). Cost-sensitive learning by cost-proportionate example weighting. In
Zubek, Dietterich (b52) 2004
Glen (b13) 2003; 30
Carrizosa, Martin-Barragan, Morales (b7) 2008; 156
Gadaras, Mikhailov (b12) 2009; 47
Nunez (b29) 1991; 6
Ozcift, Gulten (b31) 2011; 104
Turney (b44) 2002
Guyon, Weston, Barnhill, Vapnik (b15) 2002; 46
McCorkle, Pasacreta, Tang (b24) 2003; 17
Tan, M., & Schlimmer, J. C. (1989). Cost-sensitive concept learning of sensor use in approach and recognition. In
Weiner, Wingo (b45) 1998; 9
.
Turney (b43) 1994; 2
Saastamoinen, K., & Ketola, J. (2006). Medical data classification using logical similarity based measures. In
Fan, Chaovalitwongse (b11) 2010; 174
Carrizosa, Morales (b8) 2013; 40
Chandrashekar, Sahin (b9) 2014; 40
Zhou, Zhou, Li (b51) 2016; 95
Sarbah, Younossi (b36) 2000; 30
Tsirogiannis, G. L., Frossyniotis, D., Stoitsis, J., Golemati, S., Stafylopatis, A., & Nikita, K. S. (2004). Classification of medical data with a robust multi-level combination scheme. In
Sabbah (b34) 2017; 19
Mangasarian (b22) 1965; 13
Sheng, V. S., Ling, C. X., Ni, A., & Zhang, S. (1999). Cost-sensitive test strategies. In
Wolberg, Mangasarian (b46) 1990; 87
Nunez, M. (1988). Economic induction: A Case Study. In
Tan (b39) 1993; 13
Bagirov, Rubinov, Yearwood (b1) 2001; 22
Hammer, Bonates (b16) 2006; 148
Oreski, Oreski, Oreski (b30) 2012; 39
Glover (b14) 1993
Ling, C. X., Yang, Q., Wang, J., & Zhang, S. (2004). Decision trees with minimal costs. In
Zhang, Cheng, Shi, Gong, Zhao (b49) 2019; 137
Balas (b2) 2010
Merz (b25) 2019
Norton, S. W. (1989). Generating better decision trees. In
Maldonado, Weber (b21) 2009; 179
Bennett (b6) 1992
Lewington, Cerdá, Mehta (b19) 2013; 84
Tan, M. (1990). A Cost-sensitive learning system for sensing and grasping objects. In
Dıaz-Uriarte, De Andres (b10) 2006; 7
Mangasarian (b23) 1968; 14
10.1016/j.eswa.2021.115902_b48
Glen (10.1016/j.eswa.2021.115902_b13) 2003; 30
Wolberg (10.1016/j.eswa.2021.115902_b46) 1990; 87
Gadaras (10.1016/j.eswa.2021.115902_b12) 2009; 47
10.1016/j.eswa.2021.115902_b42
10.1016/j.eswa.2021.115902_b40
Tan (10.1016/j.eswa.2021.115902_b39) 1993; 13
Mangasarian (10.1016/j.eswa.2021.115902_b22) 1965; 13
Benítez-Peña (10.1016/j.eswa.2021.115902_b4) 2019; 106
Guyon (10.1016/j.eswa.2021.115902_b15) 2002; 46
Oreski (10.1016/j.eswa.2021.115902_b30) 2012; 39
10.1016/j.eswa.2021.115902_b37
10.1016/j.eswa.2021.115902_b38
Carrizosa (10.1016/j.eswa.2021.115902_b8) 2013; 40
Zhou (10.1016/j.eswa.2021.115902_b51) 2016; 95
Hammer (10.1016/j.eswa.2021.115902_b16) 2006; 148
Maldonado (10.1016/j.eswa.2021.115902_b21) 2009; 179
10.1016/j.eswa.2021.115902_b33
Sabbah (10.1016/j.eswa.2021.115902_b34) 2017; 19
Turney (10.1016/j.eswa.2021.115902_b44) 2002
Lewington (10.1016/j.eswa.2021.115902_b19) 2013; 84
Nunez (10.1016/j.eswa.2021.115902_b29) 1991; 6
10.1016/j.eswa.2021.115902_b28
Bagirov (10.1016/j.eswa.2021.115902_b1) 2001; 22
10.1016/j.eswa.2021.115902_b26
10.1016/j.eswa.2021.115902_b27
Glover (10.1016/j.eswa.2021.115902_b14) 1993
Dıaz-Uriarte (10.1016/j.eswa.2021.115902_b10) 2006; 7
McCorkle (10.1016/j.eswa.2021.115902_b24) 2003; 17
Zubek (10.1016/j.eswa.2021.115902_b52) 2004
10.1016/j.eswa.2021.115902_b20
Mangasarian (10.1016/j.eswa.2021.115902_b23) 1968; 14
Zhang (10.1016/j.eswa.2021.115902_b49) 2019; 137
Chandrashekar (10.1016/j.eswa.2021.115902_b9) 2014; 40
Belotti (10.1016/j.eswa.2021.115902_b3) 2016; 65
Balas (10.1016/j.eswa.2021.115902_b2) 2010
Benítez-Peña (10.1016/j.eswa.2021.115902_b5) 2019; 13
Kohavi (10.1016/j.eswa.2021.115902_b17) 1997; 97
Tang (10.1016/j.eswa.2021.115902_b41) 2014
Turney (10.1016/j.eswa.2021.115902_b43) 1994; 2
10.1016/j.eswa.2021.115902_b18
Sahin (10.1016/j.eswa.2021.115902_b35) 2013; 40
Zhang (10.1016/j.eswa.2021.115902_b50) 2002; 35
Yang (10.1016/j.eswa.2021.115902_b47) 2009; 10
Bennett (10.1016/j.eswa.2021.115902_b6) 1992
Sarbah (10.1016/j.eswa.2021.115902_b36) 2000; 30
Weiner (10.1016/j.eswa.2021.115902_b45) 1998; 9
Fan (10.1016/j.eswa.2021.115902_b11) 2010; 174
Merz (10.1016/j.eswa.2021.115902_b25) 2019
Ozcift (10.1016/j.eswa.2021.115902_b31) 2011; 104
Pardalos (10.1016/j.eswa.2021.115902_b32) 2004
Carrizosa (10.1016/j.eswa.2021.115902_b7) 2008; 156
References_xml – volume: 179
  start-page: 2208
  year: 2009
  end-page: 2217
  ident: b21
  article-title: A wrapper method for feature selection using support vector machines
  publication-title: Information Sciences
– volume: 17
  start-page: 300
  year: 2003
  end-page: 308
  ident: b24
  article-title: The silent killer: Psychological issues in ovarian cancer
  publication-title: Holistic Nursing Practice
– volume: 39
  start-page: 2605
  year: 2012
  end-page: 12617
  ident: b30
  article-title: Hybrid system with genetic algorithm and artificial neural networks and its application to retail credit risk assessment
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: b9
  article-title: A survey on feature selection methods
  publication-title: Computers & Electrical Engineering
– volume: 6
  start-page: 231
  year: 1991
  end-page: 250
  ident: b29
  article-title: The use of background knowledge in decision tree induction
  publication-title: Machine Learning
– volume: 22
  start-page: 65
  year: 2001
  end-page: 74
  ident: b1
  article-title: Using Global Optimization to Improve Classification for Medical Diagnosis and Prognosis
  publication-title: Topics in Health Information Management
– volume: 13
  start-page: 444
  year: 1965
  end-page: 452
  ident: b22
  article-title: Linear and nonlinear separation of patterns by linear programming
  publication-title: Operations Research
– year: 2019
  ident: b25
  article-title: UCI repository of machine learning databases
– year: 1992
  ident: b6
  article-title: Decision tree construction via linear programming
– reference: Ng, A. Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance. In
– year: 2014
  ident: b41
  article-title: Feature selection for classification: A review
– year: 2010
  ident: b2
  article-title: Disjunctive programming
– volume: 7
  year: 2006
  ident: b10
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinformatics
– volume: 13
  start-page: 7
  year: 1993
  end-page: 33
  ident: b39
  article-title: Cost-sensitive learning of classification knowledge and its applications in robotics
  publication-title: Machine Learning
– year: 2002
  ident: b44
  article-title: Types of cost in inductive concept learning
– reference: Tan, M., & Schlimmer, J. C. (1989). Cost-sensitive concept learning of sensor use in approach and recognition. In
– volume: 106
  start-page: 169
  year: 2019
  end-page: 178
  ident: b4
  article-title: Cost-sensitive feature selection for support vector machines
  publication-title: Computers & Operations Research
– reference: Tsirogiannis, G. L., Frossyniotis, D., Stoitsis, J., Golemati, S., Stafylopatis, A., & Nikita, K. S. (2004). Classification of medical data with a robust multi-level combination scheme. In
– year: 2004
  ident: b32
  article-title: Network-based models and algorithms in data mining and knowledge discovery
  publication-title: Handbook of combinatorial optimization
– volume: 13
  start-page: 663
  year: 2019
  end-page: 682
  ident: b5
  article-title: On support vector machines under a multiple-cost scenario
  publication-title: Advances in Data Analysis and Classification
– year: 2004
  ident: b52
  article-title: Pruning improves heuristic search for cost-sensitive learning
– volume: 40
  start-page: 150
  year: 2013
  end-page: 165
  ident: b8
  article-title: Supervised classification and mathematical optimization
  publication-title: Computers & Operations Research
– start-page: 187
  year: 1993
  end-page: 215
  ident: b14
  article-title: Improved linear and integer programming models for discriminant analysis
  publication-title: Innovative approaches to the science of management
– reference: Ling, C. X., Yang, Q., Wang, J., & Zhang, S. (2004). Decision trees with minimal costs. In
– reference: Norton, S. W. (1989). Generating better decision trees. In
– volume: 104
  start-page: 443
  year: 2011
  end-page: 451
  ident: b31
  article-title: Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms
  publication-title: Computer Methods and Programs in Biomedicine
– reference: Saastamoinen, K., & Ketola, J. (2006). Medical data classification using logical similarity based measures. In
– volume: 2
  start-page: 369
  year: 1994
  end-page: 409
  ident: b43
  article-title: Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
  publication-title: Journal of Artificial Intelligence Research
– volume: 40
  start-page: 5916
  year: 2013
  end-page: 5923
  ident: b35
  article-title: A cost-sensitive decision tree approach for fraud detection
  publication-title: Expert Systems with Applications
– volume: 9
  start-page: 1535
  year: 1998
  end-page: 1543
  ident: b45
  article-title: Hyperkalemia: A potential silent killer
  publication-title: Journal of the American Society of Nephrology
– volume: 87
  start-page: 9193
  year: 1990
  end-page: 9196
  ident: b46
  article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology
  publication-title: Proceedings of the National Academy of Sciences
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: b17
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
– volume: 14
  start-page: 801
  year: 1968
  end-page: 807
  ident: b23
  article-title: Multisurface method of pattern separation
  publication-title: IEEE Transactions on Information Theory
– volume: 30
  start-page: 125
  year: 2000
  end-page: 143
  ident: b36
  article-title: Hepatitis C: An update on the silent epidemic
  publication-title: Journal of Clinical Gastroenterology
– volume: 10
  year: 2009
  ident: b47
  article-title: Using random forest for reliable classification and cost-sensitive learning for medical diagnosis
  publication-title: BMC Bioinformatics
– volume: 148
  start-page: 203
  year: 2006
  end-page: 225
  ident: b16
  article-title: Logical analysis of data—An overview: From combinatorial optimization to medical applications
  publication-title: Annals of Operations Research
– reference: Nunez, M. (1988). Economic induction: A Case Study. In
– volume: 174
  start-page: 169
  year: 2010
  end-page: 183
  ident: b11
  article-title: Optimizing feature selection to improve medical diagnosis
  publication-title: Annals of Operations Research
– volume: 19
  start-page: 469
  year: 2017
  end-page: 478
  ident: b34
  article-title: Silent disease progression in clinically stable heart failure
  publication-title: European Journal of Heart Failure
– volume: 95
  start-page: 1
  year: 2016
  end-page: 11
  ident: b51
  article-title: Cost-sensitive feature selection using random forest: Selecting low-cost subsets of informative features.
  publication-title: Knowledge-Based Systems
– volume: 30
  start-page: 181
  year: 2003
  end-page: 198
  ident: b13
  article-title: An iterative mixed integer programming method for classification accuracy maximizing discriminant analysis
  publication-title: Computers & Operations Research
– volume: 65
  start-page: 545
  year: 2016
  end-page: 566
  ident: b3
  article-title: On handling indicator constraints in mixed integer programming
  publication-title: Computational Optimization and Applications
– volume: 156
  start-page: 950
  year: 2008
  end-page: 966
  ident: b7
  article-title: Multi-group support vector machines with measurement costs: A biobjective approach
  publication-title: Discrete Applied Mathematics
– volume: 84
  start-page: 457
  year: 2013
  end-page: 467
  ident: b19
  article-title: Raising awareness of acute kidney injury: A global perspective of a silent killer
  publication-title: Kidney International
– reference: Zadrozny, B., Langford, J., & Abe, N. (2003). Cost-sensitive learning by cost-proportionate example weighting. In
– reference: .
– volume: 137
  start-page: 46
  year: 2019
  end-page: 58
  ident: b49
  article-title: Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm
  publication-title: Expert Systems with Applications
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: b15
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine Learning
– reference: Kukar, M., & Kononenko, I., et al. (1998). Cost-sensitive learning with neural networks. In
– reference: Sheng, V. S., Ling, C. X., Ni, A., & Zhang, S. (1999). Cost-sensitive test strategies. In
– volume: 35
  start-page: 2927
  year: 2002
  end-page: 2936
  ident: b50
  article-title: Linear programming support vector machines
  publication-title: Pattern Recognition
– reference: Tan, M. (1990). A Cost-sensitive learning system for sensing and grasping objects. In
– volume: 47
  start-page: 25
  year: 2009
  end-page: 41
  ident: b12
  article-title: An interpretable fuzzy rule-based classification methodology for medical diagnosis
  publication-title: Artificial Intelligence in Medicine
– volume: 156
  start-page: 950
  issue: 6
  year: 2008
  ident: 10.1016/j.eswa.2021.115902_b7
  article-title: Multi-group support vector machines with measurement costs: A biobjective approach
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/j.dam.2007.05.060
– volume: 40
  start-page: 5916
  year: 2013
  ident: 10.1016/j.eswa.2021.115902_b35
  article-title: A cost-sensitive decision tree approach for fraud detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.05.021
– ident: 10.1016/j.eswa.2021.115902_b27
– volume: 106
  start-page: 169
  year: 2019
  ident: 10.1016/j.eswa.2021.115902_b4
  article-title: Cost-sensitive feature selection for support vector machines
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2018.03.005
– volume: 40
  start-page: 16
  year: 2014
  ident: 10.1016/j.eswa.2021.115902_b9
  article-title: A survey on feature selection methods
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 30
  start-page: 125
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2021.115902_b36
  article-title: Hepatitis C: An update on the silent epidemic
  publication-title: Journal of Clinical Gastroenterology
  doi: 10.1097/00004836-200003000-00005
– year: 2002
  ident: 10.1016/j.eswa.2021.115902_b44
– volume: 22
  start-page: 65
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2021.115902_b1
  article-title: Using Global Optimization to Improve Classification for Medical Diagnosis and Prognosis
  publication-title: Topics in Health Information Management
– year: 2004
  ident: 10.1016/j.eswa.2021.115902_b32
  article-title: Network-based models and algorithms in data mining and knowledge discovery
– volume: 39
  start-page: 2605
  year: 2012
  ident: 10.1016/j.eswa.2021.115902_b30
  article-title: Hybrid system with genetic algorithm and artificial neural networks and its application to retail credit risk assessment
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.05.023
– volume: 9
  start-page: 1535
  issue: 8
  year: 1998
  ident: 10.1016/j.eswa.2021.115902_b45
  article-title: Hyperkalemia: A potential silent killer
  publication-title: Journal of the American Society of Nephrology
  doi: 10.1681/ASN.V981535
– volume: 97
  start-page: 273
  year: 1997
  ident: 10.1016/j.eswa.2021.115902_b17
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 10
  year: 2009
  ident: 10.1016/j.eswa.2021.115902_b47
  article-title: Using random forest for reliable classification and cost-sensitive learning for medical diagnosis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-S1-S22
– volume: 84
  start-page: 457
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2021.115902_b19
  article-title: Raising awareness of acute kidney injury: A global perspective of a silent killer
  publication-title: Kidney International
  doi: 10.1038/ki.2013.153
– ident: 10.1016/j.eswa.2021.115902_b48
  doi: 10.1109/ICDM.2003.1250950
– year: 2014
  ident: 10.1016/j.eswa.2021.115902_b41
– ident: 10.1016/j.eswa.2021.115902_b18
– ident: 10.1016/j.eswa.2021.115902_b40
  doi: 10.1016/B978-1-55860-036-2.50099-0
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.eswa.2021.115902_b15
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine Learning
  doi: 10.1023/A:1012487302797
– volume: 19
  start-page: 469
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2021.115902_b34
  article-title: Silent disease progression in clinically stable heart failure
  publication-title: European Journal of Heart Failure
  doi: 10.1002/ejhf.705
– year: 2004
  ident: 10.1016/j.eswa.2021.115902_b52
– volume: 7
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2021.115902_b10
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinformatics
– ident: 10.1016/j.eswa.2021.115902_b28
– ident: 10.1016/j.eswa.2021.115902_b38
  doi: 10.1109/ROBOT.1990.126097
– ident: 10.1016/j.eswa.2021.115902_b20
  doi: 10.1145/1015330.1015369
– volume: 17
  start-page: 300
  year: 2003
  ident: 10.1016/j.eswa.2021.115902_b24
  article-title: The silent killer: Psychological issues in ovarian cancer
  publication-title: Holistic Nursing Practice
  doi: 10.1097/00004650-200311000-00005
– volume: 6
  start-page: 231
  year: 1991
  ident: 10.1016/j.eswa.2021.115902_b29
  article-title: The use of background knowledge in decision tree induction
  publication-title: Machine Learning
  doi: 10.1023/A:1022609710832
– volume: 95
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.115902_b51
  article-title: Cost-sensitive feature selection using random forest: Selecting low-cost subsets of informative features.
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.11.010
– volume: 2
  start-page: 369
  year: 1994
  ident: 10.1016/j.eswa.2021.115902_b43
  article-title: Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.120
– volume: 65
  start-page: 545
  year: 2016
  ident: 10.1016/j.eswa.2021.115902_b3
  article-title: On handling indicator constraints in mixed integer programming
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-016-9847-8
– volume: 104
  start-page: 443
  year: 2011
  ident: 10.1016/j.eswa.2021.115902_b31
  article-title: Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2011.03.018
– volume: 30
  start-page: 181
  year: 2003
  ident: 10.1016/j.eswa.2021.115902_b13
  article-title: An iterative mixed integer programming method for classification accuracy maximizing discriminant analysis
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(01)00088-0
– volume: 13
  start-page: 7
  issue: 1
  year: 1993
  ident: 10.1016/j.eswa.2021.115902_b39
  article-title: Cost-sensitive learning of classification knowledge and its applications in robotics
  publication-title: Machine Learning
  doi: 10.1023/A:1022679428250
– volume: 13
  start-page: 663
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2021.115902_b5
  article-title: On support vector machines under a multiple-cost scenario
  publication-title: Advances in Data Analysis and Classification
  doi: 10.1007/s11634-018-0330-5
– volume: 13
  start-page: 444
  year: 1965
  ident: 10.1016/j.eswa.2021.115902_b22
  article-title: Linear and nonlinear separation of patterns by linear programming
  publication-title: Operations Research
  doi: 10.1287/opre.13.3.444
– start-page: 187
  year: 1993
  ident: 10.1016/j.eswa.2021.115902_b14
  article-title: Improved linear and integer programming models for discriminant analysis
– ident: 10.1016/j.eswa.2021.115902_b33
  doi: 10.1109/ICCIS.2006.252362
– year: 2010
  ident: 10.1016/j.eswa.2021.115902_b2
– volume: 35
  start-page: 2927
  issue: 12
  year: 2002
  ident: 10.1016/j.eswa.2021.115902_b50
  article-title: Linear programming support vector machines
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(01)00210-2
– year: 2019
  ident: 10.1016/j.eswa.2021.115902_b25
– volume: 87
  start-page: 9193
  issue: 23
  year: 1990
  ident: 10.1016/j.eswa.2021.115902_b46
  article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.87.23.9193
– ident: 10.1016/j.eswa.2021.115902_b37
– volume: 14
  start-page: 801
  year: 1968
  ident: 10.1016/j.eswa.2021.115902_b23
  article-title: Multisurface method of pattern separation
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1968.1054229
– volume: 148
  start-page: 203
  year: 2006
  ident: 10.1016/j.eswa.2021.115902_b16
  article-title: Logical analysis of data—An overview: From combinatorial optimization to medical applications
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-006-0075-y
– volume: 47
  start-page: 25
  year: 2009
  ident: 10.1016/j.eswa.2021.115902_b12
  article-title: An interpretable fuzzy rule-based classification methodology for medical diagnosis
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2009.05.003
– volume: 137
  start-page: 46
  year: 2019
  ident: 10.1016/j.eswa.2021.115902_b49
  article-title: Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.06.044
– ident: 10.1016/j.eswa.2021.115902_b26
– ident: 10.1016/j.eswa.2021.115902_b42
  doi: 10.1109/IJCNN.2004.1381020
– year: 1992
  ident: 10.1016/j.eswa.2021.115902_b6
– volume: 40
  start-page: 150
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2021.115902_b8
  article-title: Supervised classification and mathematical optimization
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2012.05.015
– volume: 179
  start-page: 2208
  year: 2009
  ident: 10.1016/j.eswa.2021.115902_b21
  article-title: A wrapper method for feature selection using support vector machines
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.02.014
– volume: 174
  start-page: 169
  year: 2010
  ident: 10.1016/j.eswa.2021.115902_b11
  article-title: Optimizing feature selection to improve medical diagnosis
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-008-0506-z
SSID ssj0017007
Score 2.395917
Snippet Silent diseases is an umbrella term that captures a spectrum of chronic illnesses that produce no clinically obvious signs and are diagnosed at advanced stages...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115902
SubjectTerms Aggressive bound tightening
Algorithms
Cost-sensitive
Costs
Datasets
Diagnosis
Diagnostic systems
Feature selection
Heart diseases
Integer programming
Kidney diseases
Leukemia
Linear programming
Low cost
Medical diagnosis
Mixed integer
Mixed Integer Linear Programming
Shared costs
Signs and symptoms
Support vector machines
Tightening
Title Integration of aggressive bound tightening and Mixed Integer Programming for Cost-sensitive feature selection in medical diagnosis
URI https://dx.doi.org/10.1016/j.eswa.2021.115902
https://www.proquest.com/docview/2602108632
Volume 187
WOSCitedRecordID wos000704060500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbKxoEL32iDgXxAXKpMtZ3G8XGaOjG0jR061Jvl2A7rtKVlCVvP_AH-Mv5M2goqOKBKUZWmbdTn6evX79cDwHutshJJY_0wpiJJiUYJkzRNBoTlhEjLEeHEJujZWT6ZsPNe72fshbm7plWVLxZs_l-hNucM2LZ19h_gbj_UnDDPDejmaGA3x78C_jgMgAieoPjqdtSuSN1KKPUbux3XVWxOPJ0utHKBQdv_e-7LtW5ifeXhrG6S2ha5-_ng2s0B7ddOPSeUSd60uR5XtTetV6L9dpRyEwZGx1a6paR5l35SZjMsfPvQtF0GLkUt7ivtYj-ns0tzZ0KFuu4QqsB4LVTR9dB8WYlD0iRFXqpnX3srnFOSZNRLJ3Zmmi4ZWvRb8-8jEVf7ur63M6UwMiuCnU_TLXYxwX_2mR9dnJzw8Wgy_jD_llgZMpuuD5osD8A2pkNmzOT2wfFo8qlNTNGB78CPdx36sHzJ4PrX_snXWVv1nSszfgoehz0IPPDceQZ6unoOnkR9DxjM_QvwY4lKcFbCjkrQUQl2VIKGStBRCQYqwSUqQUMluEolGKgEWyrBaQUDlWBLpZfg4mg0PvyYBM2ORBKcN0mWMqVJifJCKSJ0KjVGRDAhC0VLhZBihRSKlUJkOUNDgVKphCjNQ1I8yBV5BbaqWaV3AMTmykFaFNQ4wWmaqoKWbFgMkKAq1QIPdwGKvy6XYaC91VW55rFy8YpbRLhFhHtEdkG_fc_cj3PZePUwgsaDQ-odTW4It_F9exFhHixDzXFmwyt5RvDrzS-_AY-6P88e2Gpuv-u34KG8a6b17btAyF_zVLw9
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+aggressive+bound+tightening+and+Mixed+Integer+Programming+for+Cost-sensitive+feature+selection+in+medical+diagnosis&rft.jtitle=Expert+systems+with+applications&rft.au=Abdulla%2C+Mai&rft.au=Khasawneh%2C+Mohammad+T&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=187&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.115902&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon