Risk assessment by failure mode and effects analysis (FMEA) using an interval number based logistic regression model

•This paper addresses the shortcomings of traditional RPN calculation during failure mode and effect analysis, and proposes a systematic approach for identifying and evaluating potential failures using the methodology of interval number based logistic regression approach. A comparative analysis of t...

Full description

Saved in:
Bibliographic Details
Published in:Safety science Vol. 132; p. 104967
Main Authors: Bhattacharjee, Pushparenu, Dey, Vidyut, Mandal, U.K.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Ltd 01.12.2020
Elsevier BV
Subjects:
ISSN:0925-7535, 1879-1042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •This paper addresses the shortcomings of traditional RPN calculation during failure mode and effect analysis, and proposes a systematic approach for identifying and evaluating potential failures using the methodology of interval number based logistic regression approach. A comparative analysis of the existing approaches and proposed methodology is also provided.•Logistic regression allows comparing the effects of variables measured on different scales and it indicates the significant relationships between dependent variable and independent variable. Thus, it helps to associate coefficients with the risk factors of failure. The coefficient in the logistic regression equation helps to know the degree of importance of each risk factor in the failure.•In failure analysis, it is used to predict the likelihood of failure, and investigating the importance of related factors contributing to failure. With the help of data of submersible pumps as a case study, an equation of probability of risk of failure 'P' is found through R software. Thus, a novel attempt has been made for the first time to investigate the limitations of traditional RPN calculation statistically. In order to reduce risks of failure, industries use a methodology called Failure Mode and Effects Analysis (FMEA) in terms of the Risk Priority Number (RPN). The RPN number is a product of ordinal scale variables, severity (S), occurrence (O) and detection (D) and product of such ordinal variables is debatable. The three risk attributes (S, O, and D) are generally given equal weightage, but this assumption may not be suitable for real-world applications. Apart from severity, occurrence, and detection, the presence of other risk attributes may also influence the risk of failure and hence should be considered for achieving a holistic approach towards mitigating failure modes. This paper proposes a systematic approach for developing a standard equation for RPN measure, using the methodology of interval number based logistic regression. Instead of utilizing RPN in product form for each failure, this method is benefited from decisions based on probability of risk of failure, 'P' which is more realistic in practical applications. A case study is presented to illustrate the application of the proposed methodology in finding the risk of failure of high capacity submersible pumps in the power plant. The developed logistic regression model (logit model) using R software helped in generating the probability of risk of failure equation for predicting the failures. The model showed the correct classification rate to be 77.47%. The Receiver Operating Characteristic (ROC) curve showed the logit-model to be 81.98% accurate with an optimal cut-off value of 0.56.
AbstractList In order to reduce risks of failure, industries use a methodology called Failure Mode and Effects Analysis (FMEA) in terms of the Risk Priority Number (RPN). The RPN number is a product of ordinal scale variables, severity (S), occurrence (O) and detection (D) and product of such ordinal variables is debatable. The three risk attributes (S, O, and D) are generally given equal weightage, but this assumption may not be suitable for real-world applications. Apart from severity, occurrence, and detection, the presence of other risk attributes may also influence the risk of failure and hence should be considered for achieving a holistic approach towards mitigating failure modes. This paper proposes a systematic approach for developing a standard equation for RPN measure, using the methodology of interval number based logistic regression. Instead of utilizing RPN in product form for each failure, this method is benefited from decisions based on probability of risk of failure, 'P" which is more realistic in practical applications. A case study is presented to illustrate the application of the proposed methodology in finding the risk of failure of high capacity submersible pumps in the power plant. The developed logistic regression model (logit model) using R software helped in generating the probability of risk of failure equation for predicting the failures. The model showed the correct classification rate to be 77.47%. The Receiver Operating Characteristic (ROC) curve showed the logit-model to be 81.98% accurate with an optimal cut-off value of 0.56.
•This paper addresses the shortcomings of traditional RPN calculation during failure mode and effect analysis, and proposes a systematic approach for identifying and evaluating potential failures using the methodology of interval number based logistic regression approach. A comparative analysis of the existing approaches and proposed methodology is also provided.•Logistic regression allows comparing the effects of variables measured on different scales and it indicates the significant relationships between dependent variable and independent variable. Thus, it helps to associate coefficients with the risk factors of failure. The coefficient in the logistic regression equation helps to know the degree of importance of each risk factor in the failure.•In failure analysis, it is used to predict the likelihood of failure, and investigating the importance of related factors contributing to failure. With the help of data of submersible pumps as a case study, an equation of probability of risk of failure 'P' is found through R software. Thus, a novel attempt has been made for the first time to investigate the limitations of traditional RPN calculation statistically. In order to reduce risks of failure, industries use a methodology called Failure Mode and Effects Analysis (FMEA) in terms of the Risk Priority Number (RPN). The RPN number is a product of ordinal scale variables, severity (S), occurrence (O) and detection (D) and product of such ordinal variables is debatable. The three risk attributes (S, O, and D) are generally given equal weightage, but this assumption may not be suitable for real-world applications. Apart from severity, occurrence, and detection, the presence of other risk attributes may also influence the risk of failure and hence should be considered for achieving a holistic approach towards mitigating failure modes. This paper proposes a systematic approach for developing a standard equation for RPN measure, using the methodology of interval number based logistic regression. Instead of utilizing RPN in product form for each failure, this method is benefited from decisions based on probability of risk of failure, 'P' which is more realistic in practical applications. A case study is presented to illustrate the application of the proposed methodology in finding the risk of failure of high capacity submersible pumps in the power plant. The developed logistic regression model (logit model) using R software helped in generating the probability of risk of failure equation for predicting the failures. The model showed the correct classification rate to be 77.47%. The Receiver Operating Characteristic (ROC) curve showed the logit-model to be 81.98% accurate with an optimal cut-off value of 0.56.
ArticleNumber 104967
Author Bhattacharjee, Pushparenu
Dey, Vidyut
Mandal, U.K.
Author_xml – sequence: 1
  givenname: Pushparenu
  surname: Bhattacharjee
  fullname: Bhattacharjee, Pushparenu
  email: pshpbhattacharjee@gmail.com, pshpb.pe@nita.ac.in
– sequence: 2
  givenname: Vidyut
  surname: Dey
  fullname: Dey, Vidyut
– sequence: 3
  givenname: U.K.
  surname: Mandal
  fullname: Mandal, U.K.
BookMark eNp9kM1qGzEURkVJoU7SF-hK0E27GFc_lkaCbkJI2kJKoCRrodFcGbljTaqrCfjtI9dddZGVpMt3PnTPOTnLcwZCPnC25ozrL7s1YkhrwcRxsLG6f0NW3PS2ay9xRlbMCtX1Sqp35BxxxxjjUvMVqb8S_qYeERD3kCsdDjT6NC0F6H4egfo8UogRQsV299MBE9JPtz9vrj7TBVPetilNuUJ59hPNy36AQgePMNJp3iasKdAC29L605z_dk6X5G30E8L7f-cFeby9ebj-3t3df_txfXXXBSlM7VS0UeshMKmNtNqwCFENBvToLYhBGcFZ7MMQbS823MBoQXrGlZW9YSaAvCAfT71PZf6zAFa3m5fSlkAnNkYrJSTXLWVOqVBmxALRhVR9bb-tpZlwnLmjY7dzR8fu6NidHDdU_Ic-lbT35fA69PUEQVv9OUFxLQE5wJhK0-zGOb2GvwDnGpha
CitedBy_id crossref_primary_10_1016_j_oceaneng_2022_111187
crossref_primary_10_3390_sym17020151
crossref_primary_10_1016_j_oceaneng_2023_113888
crossref_primary_10_1016_j_oceaneng_2023_114217
crossref_primary_10_1016_j_ast_2022_107730
crossref_primary_10_1016_j_psep_2021_12_025
crossref_primary_10_3390_jrfm14040187
crossref_primary_10_1002_ppp_2135
crossref_primary_10_1007_s42452_021_04805_z
crossref_primary_10_1002_qre_3416
crossref_primary_10_1007_s00769_025_01661_x
crossref_primary_10_3390_math12111660
crossref_primary_10_3390_s24113511
crossref_primary_10_3390_app12126144
crossref_primary_10_1007_s00500_021_05605_8
crossref_primary_10_1016_j_psep_2025_106919
crossref_primary_10_3390_ijerph17197054
crossref_primary_10_1016_j_cie_2023_109758
crossref_primary_10_1155_2024_4369401
crossref_primary_10_3390_math12182842
crossref_primary_10_1016_j_engappai_2024_108655
crossref_primary_10_1016_j_aei_2022_101712
crossref_primary_10_1007_s00500_022_07264_9
crossref_primary_10_1002_ese3_1223
crossref_primary_10_1016_j_engfailanal_2023_107675
crossref_primary_10_1007_s40815_022_01302_2
crossref_primary_10_1016_j_engfailanal_2021_105775
crossref_primary_10_3390_en15239003
crossref_primary_10_1016_j_istruc_2022_09_110
crossref_primary_10_1016_j_ress_2022_108703
crossref_primary_10_3390_pr10101973
crossref_primary_10_1016_j_ssci_2025_106933
crossref_primary_10_3390_en15176263
crossref_primary_10_1061__ASCE_CO_1943_7862_0002354
crossref_primary_10_3390_e25050757
crossref_primary_10_1002_qre_3751
crossref_primary_10_3233_JIFS_222652
crossref_primary_10_23919_JSEE_2024_000124
crossref_primary_10_1108_IJQRM_01_2025_0042
crossref_primary_10_1016_j_jairtraman_2025_102902
crossref_primary_10_1109_TEM_2024_3395649
crossref_primary_10_1115_1_4069023
crossref_primary_10_3390_e22101162
crossref_primary_10_1016_j_trd_2024_104404
crossref_primary_10_1155_2021_6666126
crossref_primary_10_1016_j_ress_2022_108333
crossref_primary_10_1016_j_ces_2022_117502
crossref_primary_10_1016_j_cie_2023_109031
crossref_primary_10_1007_s40815_022_01412_x
crossref_primary_10_1007_s41683_021_00075_4
crossref_primary_10_1108_DTA_06_2022_0232
crossref_primary_10_3390_app11167349
crossref_primary_10_3390_wevj15080365
crossref_primary_10_1016_j_ress_2024_110308
crossref_primary_10_1093_labmed_lmae092
crossref_primary_10_1016_j_ast_2024_109688
crossref_primary_10_3390_su141912357
crossref_primary_10_1108_BIJ_03_2024_0212
crossref_primary_10_1155_2021_9125605
crossref_primary_10_1002_qre_2870
crossref_primary_10_1007_s13369_025_10000_8
crossref_primary_10_1007_s40999_025_01104_1
crossref_primary_10_1007_s13198_023_01981_6
crossref_primary_10_1016_j_cie_2021_107439
crossref_primary_10_1016_j_oceaneng_2025_121998
crossref_primary_10_3390_math12121843
crossref_primary_10_1007_s00202_023_01776_9
crossref_primary_10_1007_s11668_025_02199_3
crossref_primary_10_1016_j_eswa_2021_115030
crossref_primary_10_1016_j_eswa_2022_118798
crossref_primary_10_1177_0734242X211003133
crossref_primary_10_1007_s12010_021_03720_8
crossref_primary_10_1109_ACCESS_2022_3172513
crossref_primary_10_1016_j_psep_2022_12_006
crossref_primary_10_1016_j_psep_2024_04_025
crossref_primary_10_3390_axioms10020104
crossref_primary_10_1016_j_jclepro_2024_143927
crossref_primary_10_1016_j_ecolind_2023_111137
Cites_doi 10.1108/02656710110383737
10.1007/s12008-018-0496-2
10.3390/math7100874
10.1108/02656710510625248
10.21037/atm.2016.02.15
10.1016/j.jlp.2006.10.003
10.1016/j.jlp.2010.05.003
10.1080/03088839.2018.1520401
10.1016/j.surg.2015.12.029
10.1016/j.cie.2019.07.051
10.1016/j.oceaneng.2019.106214
10.1002/hfm.20729
10.1016/j.eswa.2012.08.010
10.1016/j.cor.2008.05.002
10.1016/j.knosys.2018.05.030
10.1002/qre.1633
10.1016/j.ress.2017.09.017
10.5334/irsp.90
10.1080/00207540110056162
10.1016/j.pnucene.2005.03.016
10.1002/qre.1791
10.1080/0951192X.2013.785027
10.1016/j.ssci.2017.10.018
10.1108/02656719310040105
10.1080/23311916.2017.1284373
10.3846/16484142.2016.1133454
10.1016/j.ssci.2017.06.009
10.1016/S0019-9958(65)90241-X
10.1109/TR.2013.2241251
10.1016/0951-8320(95)00068-D
10.1016/j.tre.2019.03.011
10.1001/jama.2016.20441
10.1093/ije/dyu029
10.2214/ajr.184.2.01840364
10.1214/08-AOAS191
10.1016/j.jclepro.2018.04.167
10.1002/9781118312575
10.1016/j.asoc.2018.09.020
10.1016/j.patrec.2005.10.012
10.1016/0020-0255(75)90017-1
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Dec 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2020
DBID AAYXX
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
DOI 10.1016/j.ssci.2020.104967
DatabaseName CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Health and Safety Science Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Nursing & Allied Health Premium
Engineered Materials Abstracts
Health & Safety Science Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Public Health
EISSN 1879-1042
ExternalDocumentID 10_1016_j_ssci_2020_104967
S0925753520303647
GroupedDBID ---
--K
--M
.~1
0R~
123
13V
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABIVO
ABJNI
ABKBG
ABLVK
ABMAC
ABMMH
ABMVD
ABMZM
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACIWK
ACJTP
ACNNM
ACNTT
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXBA
AFXIZ
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AISVY
AITUG
AJBFU
AJOXV
AJRQY
AKURH
AKYCK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEH
HMK
HMO
HMY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M29
M3W
M3Y
M41
MO0
N9A
NAHTW
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAE
SDF
SDG
SES
SEW
SNG
SPC
SPCBC
SSB
SSG
SSH
SSL
SSO
SSS
SST
SSZ
T5K
UHS
WH7
WUQ
YHZ
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
ID FETCH-LOGICAL-c328t-5f9f66bc036839680fef5b8e6da9e2b58210f7cbf972418ed9e3a015937808ce3
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582127200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-7535
IngestDate Wed Aug 13 09:41:27 EDT 2025
Tue Nov 18 21:26:03 EST 2025
Sat Nov 29 07:09:42 EST 2025
Fri Feb 23 02:46:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Logistic regression
Probability of risk of failure
FMEA
Risk assessment
Interval number
Machine learning
Risk Priority Number (RPN)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-5f9f66bc036839680fef5b8e6da9e2b58210f7cbf972418ed9e3a015937808ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2486552316
PQPubID 2045403
ParticipantIDs proquest_journals_2486552316
crossref_citationtrail_10_1016_j_ssci_2020_104967
crossref_primary_10_1016_j_ssci_2020_104967
elsevier_sciencedirect_doi_10_1016_j_ssci_2020_104967
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Safety science
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Vienna, Austria: R foundation for statistical computing.
Garcia, Schirru (b0075) 2005; 46
Wan, Yan, Zhang, Qu, Yang (b0235) 2019; 125
Prem, Ng, Mannan (b0190) 2010; 23
Efe (b0055) 2019; 187
Obuchowski (b0175) 2005; 184
Fattahi, Khalilzadeh (b0060) 2018; 102
Kleinbaum, Dietz, Gail, Klein, Klein (b0115) 2002
Nie, Tian, Wang, Wang, Wang (b0170) 2018; 162
Stamatis (b0225) 2003
Zadeh (b0260) 1975; 9
Yazdi, Daneshvar, Setareh (b0250) 2017; 98
Franceschini, Galetto (b0070) 2001; 39
Kerns, G.J., 2010.
Yazdi (b0245) 2019; 13
Song, Ming, Wu, Zhu (b0220) 2013; 26
Zhang, Z. (2016). Model building strategy for logistic regression: purposeful selection. Ann. Translat. Med. 4(6), 111–111.
Bowles, Peláez (b0015) 1995; 50
Liu, Liu, Lin (b0130) 2013; 62
Carter, Pan, Rai, Galandiuk (b0035) 2016; 159
Arabsheybani, Paydar, Safaei (b0010) 2018; 190
Can (b0020) 2018; 28
Gilchrist (b0090) 1993
Wang, Liu, Chen, Qin (b0240) 2019; 136
Rouhparvar, Mazandarani Zadeh, Nasirzadeh (b0195) 2014; 25
Muller, MacLehose (b0160) 2014; 43
Sankar, Prabhu (b0200) 2001; 18
Fawcett (b0065) 2006; 27
Akyuz, Celik (b0005) 2018; 45
Carpitella, Certa, Izquierdo, La Fata (b0030) 2018; 169
Meel, A., O’neill, L. M., Levin, J. H., Seider, W. D., Oktem, U., Keren, N., 2007. Operational risk assessment of chemical industries by exploiting accident databases. J. Loss Prevent. Process Industr. 20(2), 113–127.
Zadeh (b0255) 1965; 8
Carlson, C., 2012. Effective FMEAs: Achieving safe, reliable, and economical products and processes using failure mode and effects analysis
Chin, Wang, Poon, Yang (b0045) 2009; 36
Paul, Jana, Mondal, Bhattacharya (b0180) 2017; 33
Team, R. C. (2000). R language definition.
Liu, Liu, Liu (b0135) 2013; 40
Hosmer, Lemeshow (b0100) 2000
Lo, Liou (b0140) 2018; 73
Meurer, Tolles (b0155) 2017; 317
Ebeling (b0050) 2004
(Vol. 1). John Wiley & Sons.
Liu, Li, You, Chen (b0125) 2015; 31
Hajiagha, Hashemi, Mohammadi, Zavadskas (b0095) 2016; 31
Selim, Yunusoglu, Yılmaz Balaman (b0205) 2016; 32
Manning, C. (2007). Logistic regression (with R). Changes.
Karimi, Pasandideh (b0105) 2018; 11
Chang, Lo, Chen, Liou (b0040) 2019; 7
Introduction to probability and statistics using r. Lulu. com.
Gareth, Witten, Hastie, Tibshirani (b0080) 2013
Li, Li, Chen, He, Hou, Chen (b0120) 2019
Narkhede (b0165) 2018; 26
Sommet, Morselli (b0215) 2017; 30
Gelman, Jakulin, Pittau, Su (b0085) 2008; 2
Sharma, Kumar, Kumar (b0210) 2005; 22
Pazireh, Sadeghi, Shokohyar (b0185) 2017; 4
Chin (10.1016/j.ssci.2020.104967_b0045) 2009; 36
Li (10.1016/j.ssci.2020.104967_b0120) 2019
Meurer (10.1016/j.ssci.2020.104967_b0155) 2017; 317
Hosmer (10.1016/j.ssci.2020.104967_b0100) 2000
10.1016/j.ssci.2020.104967_b0025
10.1016/j.ssci.2020.104967_b0145
10.1016/j.ssci.2020.104967_b0265
Fattahi (10.1016/j.ssci.2020.104967_b0060) 2018; 102
Muller (10.1016/j.ssci.2020.104967_b0160) 2014; 43
Zadeh (10.1016/j.ssci.2020.104967_b0260) 1975; 9
Paul (10.1016/j.ssci.2020.104967_b0180) 2017; 33
Efe (10.1016/j.ssci.2020.104967_b0055) 2019; 187
Garcia (10.1016/j.ssci.2020.104967_b0075) 2005; 46
Bowles (10.1016/j.ssci.2020.104967_b0015) 1995; 50
Wang (10.1016/j.ssci.2020.104967_b0240) 2019; 136
Akyuz (10.1016/j.ssci.2020.104967_b0005) 2018; 45
Franceschini (10.1016/j.ssci.2020.104967_b0070) 2001; 39
Stamatis (10.1016/j.ssci.2020.104967_b0225) 2003
Sharma (10.1016/j.ssci.2020.104967_b0210) 2005; 22
Yazdi (10.1016/j.ssci.2020.104967_b0250) 2017; 98
Kleinbaum (10.1016/j.ssci.2020.104967_b0115) 2002
Sankar (10.1016/j.ssci.2020.104967_b0200) 2001; 18
Obuchowski (10.1016/j.ssci.2020.104967_b0175) 2005; 184
Wan (10.1016/j.ssci.2020.104967_b0235) 2019; 125
Fawcett (10.1016/j.ssci.2020.104967_b0065) 2006; 27
Song (10.1016/j.ssci.2020.104967_b0220) 2013; 26
Hajiagha (10.1016/j.ssci.2020.104967_b0095) 2016; 31
Zadeh (10.1016/j.ssci.2020.104967_b0255) 1965; 8
Liu (10.1016/j.ssci.2020.104967_b0135) 2013; 40
Arabsheybani (10.1016/j.ssci.2020.104967_b0010) 2018; 190
Narkhede (10.1016/j.ssci.2020.104967_b0165) 2018; 26
Liu (10.1016/j.ssci.2020.104967_b0125) 2015; 31
Nie (10.1016/j.ssci.2020.104967_b0170) 2018; 162
Yazdi (10.1016/j.ssci.2020.104967_b0245) 2019; 13
Gelman (10.1016/j.ssci.2020.104967_b0085) 2008; 2
Prem (10.1016/j.ssci.2020.104967_b0190) 2010; 23
Carter (10.1016/j.ssci.2020.104967_b0035) 2016; 159
Can (10.1016/j.ssci.2020.104967_b0020) 2018; 28
Gareth (10.1016/j.ssci.2020.104967_b0080) 2013
Karimi (10.1016/j.ssci.2020.104967_b0105) 2018; 11
Carpitella (10.1016/j.ssci.2020.104967_b0030) 2018; 169
Gilchrist (10.1016/j.ssci.2020.104967_b0090) 1993
10.1016/j.ssci.2020.104967_b0110
Liu (10.1016/j.ssci.2020.104967_b0130) 2013; 62
10.1016/j.ssci.2020.104967_b0230
Pazireh (10.1016/j.ssci.2020.104967_b0185) 2017; 4
Sommet (10.1016/j.ssci.2020.104967_b0215) 2017; 30
Rouhparvar (10.1016/j.ssci.2020.104967_b0195) 2014; 25
10.1016/j.ssci.2020.104967_b0150
Lo (10.1016/j.ssci.2020.104967_b0140) 2018; 73
Ebeling (10.1016/j.ssci.2020.104967_b0050) 2004
Selim (10.1016/j.ssci.2020.104967_b0205) 2016; 32
Chang (10.1016/j.ssci.2020.104967_b0040) 2019; 7
References_xml – volume: 25
  start-page: 83
  year: 2014
  end-page: 94
  ident: b0195
  article-title: Quantitative risk allocation in construction projects: a fuzzy-bargaining game approach
  publication-title: Int. J. Indust. Eng. Product. Res.
– volume: 28
  start-page: 130
  year: 2018
  end-page: 147
  ident: b0020
  article-title: An intuitionistic approach based on failure mode and effect analysis for prioritizing corrective and preventive strategies
  publication-title: Hum. Factors Ergon. Manuf. Serv. Ind.
– volume: 31
  start-page: 761
  year: 2015
  end-page: 772
  ident: b0125
  article-title: A novel approach for FMEA: Combination of interval 2-tuple linguistic variables and grey relational analysis
  publication-title: Qual. Reliab. Eng. Int.
– year: 2000
  ident: b0100
  article-title: Logistic Regression
– reference: Carlson, C., 2012. Effective FMEAs: Achieving safe, reliable, and economical products and processes using failure mode and effects analysis
– volume: 50
  start-page: 203
  year: 1995
  end-page: 213
  ident: b0015
  article-title: Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 9
  start-page: 43
  year: 1975
  end-page: 80
  ident: b0260
  article-title: The concept of a linguistic variable and its application to approximate reasoning-III
  publication-title: Inf. Sci.
– volume: 73
  start-page: 684
  year: 2018
  end-page: 696
  ident: b0140
  article-title: A novel multiple-criteria decision-making-based FMEA model for risk assessment
  publication-title: Appl. Soft Comput.
– year: 2013
  ident: b0080
  article-title: An introduction to statistical learning
– reference: Kerns, G.J., 2010.
– volume: 184
  start-page: 364
  year: 2005
  end-page: 372
  ident: b0175
  article-title: ROC analysis
  publication-title: Am. J. Roentgenol.
– volume: 98
  start-page: 113
  year: 2017
  end-page: 123
  ident: b0250
  article-title: An extension to fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system
  publication-title: Saf. Sci.
– volume: 13
  start-page: 441
  year: 2019
  end-page: 458
  ident: b0245
  article-title: Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach
  publication-title: Int. J. Int. Des. Manufact. (IJIDeM)
– reference: Manning, C. (2007). Logistic regression (with R). Changes.
– volume: 317
  start-page: 1068
  year: 2017
  end-page: 1069
  ident: b0155
  article-title: Logistic regression diagnostics: understanding how well a model predicts outcomes
  publication-title: JAMA
– volume: 169
  start-page: 394
  year: 2018
  end-page: 402
  ident: b0030
  article-title: A combined multi-criteria approach to support FMECA analyses: a real-world case
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 190
  start-page: 577
  year: 2018
  end-page: 591
  ident: b0010
  article-title: An integrated fuzzy MOORA method and FMEA technique for sustainable supplier selection considering quantity discounts and supplier's risk
  publication-title: J. Cleaner Prod.
– year: 2003
  ident: b0225
  article-title: Failure mode and effect analysis: FMEA from theory to execution
– volume: 162
  start-page: 185
  year: 2018
  end-page: 201
  ident: b0170
  article-title: Risk evaluation by FMEA of supercritical water gasification system using multi-granular linguistic distribution assessment
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 113
  year: 2018
  end-page: 132
  ident: b0105
  article-title: Optimizing a fuzzy green p-hub centre problem using opposition biogeography based optimization
  publication-title: J. Optim. Ind. Eng.
– volume: 33
  start-page: 1991
  year: 2017
  end-page: 2005
  ident: b0180
  article-title: Optimal harvesting of two species mutualism model with interval parameters
  publication-title: J. Intell. Fuzzy Syst.
– volume: 22
  start-page: 986
  year: 2005
  end-page: 1004
  ident: b0210
  article-title: Systematic failure mode effect analysis (FMEA) using fuzzy linguistic modelling
  publication-title: Int. J. Qual. Reliabil. Manage.
– volume: 31
  start-page: 108
  year: 2016
  end-page: 118
  ident: b0095
  article-title: Fuzzy belief structure based VIKOR method: an application for ranking delay causes of Tehran metro system by FMEA criteria
  publication-title: Transport
– volume: 36
  start-page: 1768
  year: 2009
  end-page: 1779
  ident: b0045
  article-title: Failure mode and effects analysis using a group-based evidential reasoning approach
  publication-title: Comput. Oper. Res.
– reference: Team, R. C. (2000). R language definition.
– reference: (Vol. 1). John Wiley & Sons.
– volume: 62
  start-page: 23
  year: 2013
  end-page: 36
  ident: b0130
  article-title: Fuzzy failure mode and effects analysis using fuzzy evidential reasoning and belief rule-based methodology
  publication-title: IEEE Trans. Reliab.
– volume: 187
  year: 2019
  ident: b0055
  article-title: Analysis of operational safety risks in shipbuilding using failure mode and effect analysis approach
  publication-title: Ocean Eng.
– volume: 40
  start-page: 828
  year: 2013
  end-page: 838
  ident: b0135
  article-title: Risk evaluation approaches in failure mode and effects analysis: a literature review
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 324
  year: 2001
  end-page: 336
  ident: b0200
  article-title: Modified approach for prioritization of failures in a system failure mode and effects analysis
  publication-title: Int. J. Qual. Reliabil. Manage.
– volume: 32
  start-page: 795
  year: 2016
  end-page: 804
  ident: b0205
  article-title: A dynamic maintenance planning framework based on fuzzy TOPSIS and FMEA: Application in an international food company
  publication-title: Qual. Reliab. Eng. Int.
– volume: 159
  start-page: 1638
  year: 2016
  end-page: 1645
  ident: b0035
  article-title: ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves
  publication-title: Surgery
– year: 1993
  ident: b0090
  article-title: Modelling failure modes and effects analysis
  publication-title: Int. J. Qual. Reliabi. Manage.
– year: 2004
  ident: b0050
  article-title: An introduction to reliability and maintainability engineering
– volume: 43
  start-page: 962
  year: 2014
  end-page: 970
  ident: b0160
  article-title: Estimating predicted probabilities from logistic regression: different methods correspond to different target populations
  publication-title: Int. J. Epidemiol.
– volume: 46
  start-page: 359
  year: 2005
  end-page: 373
  ident: b0075
  article-title: A fuzzy data envelopment analysis approach for FMEA
  publication-title: Prog. Nucl. Energy
– volume: 136
  start-page: 516
  year: 2019
  end-page: 527
  ident: b0240
  article-title: Risk assessment based on hybrid FMEA framework by considering decision maker’s psychological behavior character
  publication-title: Comput. Ind. Eng.
– volume: 39
  start-page: 2991
  year: 2001
  end-page: 3002
  ident: b0070
  article-title: A new approach for evaluation of risk priorities of failure modes in FMEA
  publication-title: Int. J. Prod. Res.
– volume: 26
  year: 2018
  ident: b0165
  article-title: Understanding AUC-ROC Curve.
  publication-title: Science
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: b0255
  article-title: Fuzzy sets
  publication-title: Inform. Control
– volume: 7
  start-page: 874
  year: 2019
  ident: b0040
  article-title: A novel FMEA model based on rough BWM and rough TOPSIS-AL for risk assessment
  publication-title: Mathematics
– volume: 4
  start-page: 1284373
  year: 2017
  ident: b0185
  article-title: Analyzing the enhancement of production efficiency using FMEA through simulation-based optimization technique: A case study in apparel manufacturing
  publication-title: Cogent Engineering
– volume: 30
  start-page: 203
  year: 2017
  end-page: 218
  ident: b0215
  article-title: Keep calm and learn multilevel logistic modeling: a simplified three-step procedure Using stata, R, M plus, and SPSS
  publication-title: Int. Rev. Soc. Psychol.
– volume: 125
  start-page: 222
  year: 2019
  end-page: 240
  ident: b0235
  article-title: An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks
  publication-title: Transport. Res. Part E: Logist. Transport. Rev.
– volume: 45
  start-page: 979
  year: 2018
  end-page: 994
  ident: b0005
  article-title: A quantitative risk analysis by using interval type-2 fuzzy FMEA approach: the case of oil spill
  publication-title: Marit. Pol. Manage.
– reference: Introduction to probability and statistics using r. Lulu. com.
– start-page: 1
  year: 2019
  end-page: 10
  ident: b0120
  article-title: Advanced FMEA method based on interval 2-tuple linguistic variables and TOPSIS
  publication-title: Qual. Eng.
– volume: 27
  start-page: 882
  year: 2006
  end-page: 891
  ident: b0065
  article-title: ROC graphs with instance-varying costs
  publication-title: Pattern Recogn. Lett.
– reference: Meel, A., O’neill, L. M., Levin, J. H., Seider, W. D., Oktem, U., Keren, N., 2007. Operational risk assessment of chemical industries by exploiting accident databases. J. Loss Prevent. Process Industr. 20(2), 113–127.
– year: 2002
  ident: b0115
  article-title: Logistic regression
– volume: 26
  start-page: 1172
  year: 2013
  end-page: 1186
  ident: b0220
  article-title: Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS
  publication-title: Int. J. Comput. Integr. Manuf.
– volume: 2
  start-page: 1360
  year: 2008
  end-page: 1383
  ident: b0085
  article-title: A weakly informative default prior distribution for logistic and other regression models
  publication-title: Ann. Appl. Statist.
– volume: 23
  start-page: 549
  year: 2010
  end-page: 560
  ident: b0190
  article-title: Harnessing database resources for understanding the profile of chemical process industry incidents
  publication-title: J. Loss Prev. Process Ind.
– volume: 102
  start-page: 290
  year: 2018
  end-page: 300
  ident: b0060
  article-title: Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment
  publication-title: Saf. Sci.
– reference: Vienna, Austria: R foundation for statistical computing.
– reference: Zhang, Z. (2016). Model building strategy for logistic regression: purposeful selection. Ann. Translat. Med. 4(6), 111–111.
– volume: 18
  start-page: 324
  issue: 3
  year: 2001
  ident: 10.1016/j.ssci.2020.104967_b0200
  article-title: Modified approach for prioritization of failures in a system failure mode and effects analysis
  publication-title: Int. J. Qual. Reliabil. Manage.
  doi: 10.1108/02656710110383737
– volume: 13
  start-page: 441
  issue: 2
  year: 2019
  ident: 10.1016/j.ssci.2020.104967_b0245
  article-title: Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach
  publication-title: Int. J. Int. Des. Manufact. (IJIDeM)
  doi: 10.1007/s12008-018-0496-2
– volume: 7
  start-page: 874
  issue: 10
  year: 2019
  ident: 10.1016/j.ssci.2020.104967_b0040
  article-title: A novel FMEA model based on rough BWM and rough TOPSIS-AL for risk assessment
  publication-title: Mathematics
  doi: 10.3390/math7100874
– volume: 22
  start-page: 986
  issue: 9
  year: 2005
  ident: 10.1016/j.ssci.2020.104967_b0210
  article-title: Systematic failure mode effect analysis (FMEA) using fuzzy linguistic modelling
  publication-title: Int. J. Qual. Reliabil. Manage.
  doi: 10.1108/02656710510625248
– ident: 10.1016/j.ssci.2020.104967_b0265
  doi: 10.21037/atm.2016.02.15
– ident: 10.1016/j.ssci.2020.104967_b0150
  doi: 10.1016/j.jlp.2006.10.003
– year: 2003
  ident: 10.1016/j.ssci.2020.104967_b0225
– volume: 23
  start-page: 549
  issue: 4
  year: 2010
  ident: 10.1016/j.ssci.2020.104967_b0190
  article-title: Harnessing database resources for understanding the profile of chemical process industry incidents
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2010.05.003
– volume: 45
  start-page: 979
  issue: 8
  year: 2018
  ident: 10.1016/j.ssci.2020.104967_b0005
  article-title: A quantitative risk analysis by using interval type-2 fuzzy FMEA approach: the case of oil spill
  publication-title: Marit. Pol. Manage.
  doi: 10.1080/03088839.2018.1520401
– volume: 159
  start-page: 1638
  issue: 6
  year: 2016
  ident: 10.1016/j.ssci.2020.104967_b0035
  article-title: ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves
  publication-title: Surgery
  doi: 10.1016/j.surg.2015.12.029
– volume: 136
  start-page: 516
  year: 2019
  ident: 10.1016/j.ssci.2020.104967_b0240
  article-title: Risk assessment based on hybrid FMEA framework by considering decision maker’s psychological behavior character
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.07.051
– volume: 187
  year: 2019
  ident: 10.1016/j.ssci.2020.104967_b0055
  article-title: Analysis of operational safety risks in shipbuilding using failure mode and effect analysis approach
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106214
– volume: 28
  start-page: 130
  issue: 3
  year: 2018
  ident: 10.1016/j.ssci.2020.104967_b0020
  article-title: An intuitionistic approach based on failure mode and effect analysis for prioritizing corrective and preventive strategies
  publication-title: Hum. Factors Ergon. Manuf. Serv. Ind.
  doi: 10.1002/hfm.20729
– volume: 33
  start-page: 1991
  issue: 4
  year: 2017
  ident: 10.1016/j.ssci.2020.104967_b0180
  article-title: Optimal harvesting of two species mutualism model with interval parameters
  publication-title: J. Intell. Fuzzy Syst.
– volume: 40
  start-page: 828
  issue: 2
  year: 2013
  ident: 10.1016/j.ssci.2020.104967_b0135
  article-title: Risk evaluation approaches in failure mode and effects analysis: a literature review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.08.010
– volume: 36
  start-page: 1768
  issue: 6
  year: 2009
  ident: 10.1016/j.ssci.2020.104967_b0045
  article-title: Failure mode and effects analysis using a group-based evidential reasoning approach
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2008.05.002
– volume: 162
  start-page: 185
  year: 2018
  ident: 10.1016/j.ssci.2020.104967_b0170
  article-title: Risk evaluation by FMEA of supercritical water gasification system using multi-granular linguistic distribution assessment
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.030
– volume: 26
  year: 2018
  ident: 10.1016/j.ssci.2020.104967_b0165
  article-title: Understanding AUC-ROC Curve. Towards Data
  publication-title: Science
– volume: 31
  start-page: 761
  issue: 5
  year: 2015
  ident: 10.1016/j.ssci.2020.104967_b0125
  article-title: A novel approach for FMEA: Combination of interval 2-tuple linguistic variables and grey relational analysis
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.1633
– volume: 169
  start-page: 394
  year: 2018
  ident: 10.1016/j.ssci.2020.104967_b0030
  article-title: A combined multi-criteria approach to support FMECA analyses: a real-world case
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.09.017
– volume: 30
  start-page: 203
  year: 2017
  ident: 10.1016/j.ssci.2020.104967_b0215
  article-title: Keep calm and learn multilevel logistic modeling: a simplified three-step procedure Using stata, R, M plus, and SPSS
  publication-title: Int. Rev. Soc. Psychol.
  doi: 10.5334/irsp.90
– volume: 11
  start-page: 113
  issue: 1
  year: 2018
  ident: 10.1016/j.ssci.2020.104967_b0105
  article-title: Optimizing a fuzzy green p-hub centre problem using opposition biogeography based optimization
  publication-title: J. Optim. Ind. Eng.
– volume: 39
  start-page: 2991
  issue: 13
  year: 2001
  ident: 10.1016/j.ssci.2020.104967_b0070
  article-title: A new approach for evaluation of risk priorities of failure modes in FMEA
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207540110056162
– year: 2004
  ident: 10.1016/j.ssci.2020.104967_b0050
– volume: 46
  start-page: 359
  issue: 3–4
  year: 2005
  ident: 10.1016/j.ssci.2020.104967_b0075
  article-title: A fuzzy data envelopment analysis approach for FMEA
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2005.03.016
– volume: 25
  start-page: 83
  issue: 2
  year: 2014
  ident: 10.1016/j.ssci.2020.104967_b0195
  article-title: Quantitative risk allocation in construction projects: a fuzzy-bargaining game approach
  publication-title: Int. J. Indust. Eng. Product. Res.
– volume: 32
  start-page: 795
  issue: 3
  year: 2016
  ident: 10.1016/j.ssci.2020.104967_b0205
  article-title: A dynamic maintenance planning framework based on fuzzy TOPSIS and FMEA: Application in an international food company
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.1791
– volume: 26
  start-page: 1172
  issue: 12
  year: 2013
  ident: 10.1016/j.ssci.2020.104967_b0220
  article-title: Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2013.785027
– volume: 102
  start-page: 290
  year: 2018
  ident: 10.1016/j.ssci.2020.104967_b0060
  article-title: Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2017.10.018
– year: 1993
  ident: 10.1016/j.ssci.2020.104967_b0090
  article-title: Modelling failure modes and effects analysis
  publication-title: Int. J. Qual. Reliabi. Manage.
  doi: 10.1108/02656719310040105
– volume: 4
  start-page: 1284373
  issue: 1
  year: 2017
  ident: 10.1016/j.ssci.2020.104967_b0185
  article-title: Analyzing the enhancement of production efficiency using FMEA through simulation-based optimization technique: A case study in apparel manufacturing
  publication-title: Cogent Engineering
  doi: 10.1080/23311916.2017.1284373
– volume: 31
  start-page: 108
  issue: 1
  year: 2016
  ident: 10.1016/j.ssci.2020.104967_b0095
  article-title: Fuzzy belief structure based VIKOR method: an application for ranking delay causes of Tehran metro system by FMEA criteria
  publication-title: Transport
  doi: 10.3846/16484142.2016.1133454
– year: 2002
  ident: 10.1016/j.ssci.2020.104967_b0115
– start-page: 1
  year: 2019
  ident: 10.1016/j.ssci.2020.104967_b0120
  article-title: Advanced FMEA method based on interval 2-tuple linguistic variables and TOPSIS
  publication-title: Qual. Eng.
– volume: 98
  start-page: 113
  year: 2017
  ident: 10.1016/j.ssci.2020.104967_b0250
  article-title: An extension to fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2017.06.009
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 10.1016/j.ssci.2020.104967_b0255
  article-title: Fuzzy sets
  publication-title: Inform. Control
  doi: 10.1016/S0019-9958(65)90241-X
– ident: 10.1016/j.ssci.2020.104967_b0145
– year: 2000
  ident: 10.1016/j.ssci.2020.104967_b0100
– volume: 62
  start-page: 23
  issue: 1
  year: 2013
  ident: 10.1016/j.ssci.2020.104967_b0130
  article-title: Fuzzy failure mode and effects analysis using fuzzy evidential reasoning and belief rule-based methodology
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2013.2241251
– volume: 50
  start-page: 203
  issue: 2
  year: 1995
  ident: 10.1016/j.ssci.2020.104967_b0015
  article-title: Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/0951-8320(95)00068-D
– volume: 125
  start-page: 222
  year: 2019
  ident: 10.1016/j.ssci.2020.104967_b0235
  article-title: An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks
  publication-title: Transport. Res. Part E: Logist. Transport. Rev.
  doi: 10.1016/j.tre.2019.03.011
– volume: 317
  start-page: 1068
  issue: 10
  year: 2017
  ident: 10.1016/j.ssci.2020.104967_b0155
  article-title: Logistic regression diagnostics: understanding how well a model predicts outcomes
  publication-title: JAMA
  doi: 10.1001/jama.2016.20441
– volume: 43
  start-page: 962
  issue: 3
  year: 2014
  ident: 10.1016/j.ssci.2020.104967_b0160
  article-title: Estimating predicted probabilities from logistic regression: different methods correspond to different target populations
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyu029
– ident: 10.1016/j.ssci.2020.104967_b0110
– volume: 184
  start-page: 364
  issue: 2
  year: 2005
  ident: 10.1016/j.ssci.2020.104967_b0175
  article-title: ROC analysis
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.184.2.01840364
– volume: 2
  start-page: 1360
  issue: 4
  year: 2008
  ident: 10.1016/j.ssci.2020.104967_b0085
  article-title: A weakly informative default prior distribution for logistic and other regression models
  publication-title: Ann. Appl. Statist.
  doi: 10.1214/08-AOAS191
– volume: 190
  start-page: 577
  year: 2018
  ident: 10.1016/j.ssci.2020.104967_b0010
  article-title: An integrated fuzzy MOORA method and FMEA technique for sustainable supplier selection considering quantity discounts and supplier's risk
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.04.167
– ident: 10.1016/j.ssci.2020.104967_b0025
  doi: 10.1002/9781118312575
– volume: 73
  start-page: 684
  year: 2018
  ident: 10.1016/j.ssci.2020.104967_b0140
  article-title: A novel multiple-criteria decision-making-based FMEA model for risk assessment
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.020
– volume: 27
  start-page: 882
  issue: 8
  year: 2006
  ident: 10.1016/j.ssci.2020.104967_b0065
  article-title: ROC graphs with instance-varying costs
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.012
– year: 2013
  ident: 10.1016/j.ssci.2020.104967_b0080
– ident: 10.1016/j.ssci.2020.104967_b0230
– volume: 9
  start-page: 43
  issue: 1
  year: 1975
  ident: 10.1016/j.ssci.2020.104967_b0260
  article-title: The concept of a linguistic variable and its application to approximate reasoning-III
  publication-title: Inf. Sci.
  doi: 10.1016/0020-0255(75)90017-1
SSID ssj0001361
Score 2.5606325
Snippet •This paper addresses the shortcomings of traditional RPN calculation during failure mode and effect analysis, and proposes a systematic approach for...
In order to reduce risks of failure, industries use a methodology called Failure Mode and Effects Analysis (FMEA) in terms of the Risk Priority Number (RPN)....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104967
SubjectTerms Causality
Electric power generation
Failure analysis
Failure modes
FMEA
Interval number
Logistic regression
Logit models
Machine learning
Methodology
Power plants
Probability
Probability of risk of failure
Pumps
Regression analysis
Regression models
Risk assessment
Risk factors
Risk Priority Number (RPN)
Risk reduction
Safety research
Statistical analysis
Title Risk assessment by failure mode and effects analysis (FMEA) using an interval number based logistic regression model
URI https://dx.doi.org/10.1016/j.ssci.2020.104967
https://www.proquest.com/docview/2486552316
Volume 132
WOSCitedRecordID wos000582127200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001361
  issn: 0925-7535
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEF60FSyIaFWsVtkHH5QjR5pfu_t4yBV_0FJsK_cWNsmuvaPEcklK-987s7PJ1ROLCr6EI1yySb4vO7OTb2YYeyOAJwBrFlQ21UFiYhWoRIugSqIoVFUsQlm5ZhPi8FDOZurIx3Qb105A1LW8ulIX_xVq2AdgY-rsX8A9nBR2wG8AHbYAO2z_CPgvKBbXQ8FN9C-tnqP63LW9cV8LehWH7kuSgJ-5fzCdYIygayhv0VWSWMKVjahryAgNXjWilCFX-PkbaWhraqdz08091haloN68Dkv-M922GvO8FiT_OeqaM1TA193gT1ME_eu8uu4GQc4BRjtcqPp0_Hl8M04RrWs-hgSalVrJRSGxm25KFUvGhuZgKRRYh-TnSZqioL9M-BR7WIwbuKMxDosfrRV1-FgrpH2Mg-FYUYh2OxF32WYkUgVz4ebk43T2abDge7GrsztcnE-2Il3g-ki_c2jWTLvzV04esYd-ocEnRJDH7I6pt9n9Pg-92WYPKGLLKRHtCWuROHxFHF5cc08cjgBzQIF74vCeOPwt0uYdd6SBvbwnDSfScEca3pOGr0jjznn-lJ3uT0_efwh8T46gjCPZBqlVNsuKEh4guNaZDK2xaSFNVmllogLTrkMrysIqAb6hNJUysQaXE7xgGcrSxM_YRv29Ns8Zj7OywFpBYHHipLBSlWAMtE0ErrHjotphe_2DzUtfsB77ppznvTJxkSMYOYKRExg7bDQcc0HlWm79d9rjlfs3ghzJHOh163G7Pbi5f_ObPEowxxuWS9mLfzztS7a1enF22Ua77Mwrdq-8bOfN8rUn6Q_U3662
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+assessment+by+failure+mode+and+effects+analysis+%28FMEA%29+using+an+interval+number+based+logistic+regression+model&rft.jtitle=Safety+science&rft.au=Bhattacharjee%2C+Pushparenu&rft.au=Dey%2C+Vidyut&rft.au=Mandal%2C+U.K.&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=0925-7535&rft.eissn=1879-1042&rft.volume=132&rft_id=info:doi/10.1016%2Fj.ssci.2020.104967&rft.externalDocID=S0925753520303647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-7535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-7535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-7535&client=summon