Prediction of biodiesel production from microalgal oil using Bayesian optimization algorithm-based machine learning approaches

•Bayesian optimization algorithm (BOA) was implemented to tune hyperparameters.•Hybrid BOA-ANN and BOA-SVR were developed for the prediction of biodiesel yield.•The performance was compared between the developed and the existing models.•Hybrid BOA-SVR outperformed the most recent existing model in t...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) Vol. 309; p. 122184
Main Authors: Sultana, Nahid, Hossain, S.M. Zakir, Abusaad, M., Alanbar, N., Senan, Y., Razzak, S.A.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.02.2022
Elsevier BV
Subjects:
ISSN:0016-2361, 1873-7153
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Bayesian optimization algorithm (BOA) was implemented to tune hyperparameters.•Hybrid BOA-ANN and BOA-SVR were developed for the prediction of biodiesel yield.•The performance was compared between the developed and the existing models.•Hybrid BOA-SVR outperformed the most recent existing model in the literature.•The BOA-SVR model was validated further using extra literate data. Biodiesel has appeared as a renewable and clean energy resource and a means of diminishing global warming. This study provides Bayesian optimization algorithm (BOA) based machine learning techniques such as artificial neural network (ANN) and Support vector regression (SVR) as the potential tool for modeling biodiesel production using microalgae oil as feedstock. Novelties of this study as in comparison with the existing Raj et al. model include (i) implementation of BOA to tune the model hyperparameters, (ii) hybridization of BOA with ANN, and SVR for modeling biodiesel production for the first time, (iii) the model performance was compared between the developed models and the existing model using several performance indicators (viz., Rpred2, residual analysis, RE, MAE, RMSE), and (iv) validation of the model using extra experimental data published elsewhere. The developed hybrid BOA-ANN and BOA-SVR models show better performance in comparison with the existing Raj et al. model. Comparing BOA-ANN and BOA-SVR, the later model shows excellent performance. Based on root mean square error (RMSE), the developed hybrid BOA-SVR shows higher performance than Raj et al. model with a performance enhancement of 36.03%. The precision of the hybrid BOA-SVR model was further validated with extra literature data. Thus, the proposed model would certify rapid estimation of biodiesel yield from microalgal oil that may reduce laborious, expensive, and time-consuming laboratory trials.
AbstractList Biodiesel has appeared as a renewable and clean energy resource and a means of diminishing global warming. This study provides Bayesian optimization algorithm (BOA) based machine learning techniques such as artificial neural network (ANN) and Support vector regression (SVR) as the potential tool for modeling biodiesel production using microalgae oil as feedstock. Novelties of this study as in comparison with the existing Raj et al. model include (i) implementation of BOA to tune the model hyperparameters, (ii) hybridization of BOA with ANN, and SVR for modeling biodiesel production for the first time, (iii) the model performance was compared between the developed models and the existing model using several performance indicators (viz., R2pred, residual analysis, RE, MAE, RMSE), and (iv) validation of the model using extra experimental data published elsewhere. The developed hybrid BOA-ANN and BOA-SVR models show better performance in comparison with the existing Raj et al. model. Comparing BOA-ANN and BOA-SVR, the later model shows excellent performance. Based on root mean square error (RMSE), the developed hybrid BOA-SVR shows higher performance than Raj et al. model with a performance enhancement of 36.03%. The precision of the hybrid BOA-SVR model was further validated with extra literature data. Thus, the proposed model would certify rapid estimation of biodiesel yield from microalgal oil that may reduce laborious, expensive, and time-consuming laboratory trials.
•Bayesian optimization algorithm (BOA) was implemented to tune hyperparameters.•Hybrid BOA-ANN and BOA-SVR were developed for the prediction of biodiesel yield.•The performance was compared between the developed and the existing models.•Hybrid BOA-SVR outperformed the most recent existing model in the literature.•The BOA-SVR model was validated further using extra literate data. Biodiesel has appeared as a renewable and clean energy resource and a means of diminishing global warming. This study provides Bayesian optimization algorithm (BOA) based machine learning techniques such as artificial neural network (ANN) and Support vector regression (SVR) as the potential tool for modeling biodiesel production using microalgae oil as feedstock. Novelties of this study as in comparison with the existing Raj et al. model include (i) implementation of BOA to tune the model hyperparameters, (ii) hybridization of BOA with ANN, and SVR for modeling biodiesel production for the first time, (iii) the model performance was compared between the developed models and the existing model using several performance indicators (viz., Rpred2, residual analysis, RE, MAE, RMSE), and (iv) validation of the model using extra experimental data published elsewhere. The developed hybrid BOA-ANN and BOA-SVR models show better performance in comparison with the existing Raj et al. model. Comparing BOA-ANN and BOA-SVR, the later model shows excellent performance. Based on root mean square error (RMSE), the developed hybrid BOA-SVR shows higher performance than Raj et al. model with a performance enhancement of 36.03%. The precision of the hybrid BOA-SVR model was further validated with extra literature data. Thus, the proposed model would certify rapid estimation of biodiesel yield from microalgal oil that may reduce laborious, expensive, and time-consuming laboratory trials.
ArticleNumber 122184
Author Sultana, Nahid
Razzak, S.A.
Hossain, S.M. Zakir
Abusaad, M.
Senan, Y.
Alanbar, N.
Author_xml – sequence: 1
  givenname: Nahid
  surname: Sultana
  fullname: Sultana, Nahid
  email: nszakir@iau.edu.sa
  organization: Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
– sequence: 2
  givenname: S.M. Zakir
  surname: Hossain
  fullname: Hossain, S.M. Zakir
  email: zhossain@uob.edu.bh
  organization: Department of Chemical Engineering, College of Engineering, University of Bahrain, Zallaq, Bahrain
– sequence: 3
  givenname: M.
  surname: Abusaad
  fullname: Abusaad, M.
  organization: Department of Chemical Engineering, College of Engineering, University of Bahrain, Zallaq, Bahrain
– sequence: 4
  givenname: N.
  surname: Alanbar
  fullname: Alanbar, N.
  organization: Department of Chemical Engineering, College of Engineering, University of Bahrain, Zallaq, Bahrain
– sequence: 5
  givenname: Y.
  surname: Senan
  fullname: Senan, Y.
  organization: Department of Chemical Engineering, College of Engineering, University of Bahrain, Zallaq, Bahrain
– sequence: 6
  givenname: S.A.
  surname: Razzak
  fullname: Razzak, S.A.
  organization: Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
BookMark eNp9kU1P3DAQhq0KpC7QP9CTpZ6z-CPJeqVeABWohASH9mxN7DHMKom3dlIJDvz2egmnHjiNNHqfGc0zJ-xojCMy9lWKtRSyPd-tw4z9Wgkl11IpaepPbCXNRlcb2egjthIlVSndys_sJOedEGJjmnrFXh8SenITxZHHwDuKnjBjz_cp-nnphxQHPpBLEfpH6Hmkns-Zxkd-Cc-YCQq6n2igF3jLl1RMND0NVQcZPR_APdGIvEdI4wGDfZlempjP2HGAPuOX93rKfl__-HV1W93d3_y8urirnFZmqppgggjdpvGmDqbFrRTeaKddozG0IP1WbIVWyredRAOwDZ0P2nkHTe0ceH3Kvi1zy-I_M-bJ7uKcxrLSqrboMqJuTUmpJVVOzTlhsPtEA6RnK4U9eLY7e_BsD57t4rlA5j_I0fQmYkpA_cfo9wXFcvpfwmSzIxxd-UhCN1kf6SP8H5hknxk
CitedBy_id crossref_primary_10_1016_j_jenvman_2024_121138
crossref_primary_10_3390_smartcities8020065
crossref_primary_10_1016_j_rineng_2024_103236
crossref_primary_10_1016_j_biombioe_2024_107303
crossref_primary_10_1016_j_biortech_2022_128523
crossref_primary_10_1016_j_fuel_2022_124150
crossref_primary_10_1371_journal_pone_0328880
crossref_primary_10_1016_j_algal_2024_103422
crossref_primary_10_1016_j_applthermaleng_2023_122090
crossref_primary_10_1016_j_renene_2024_121888
crossref_primary_10_1007_s00521_023_09121_8
crossref_primary_10_1016_j_chemolab_2025_105391
crossref_primary_10_1016_j_biortech_2023_129145
crossref_primary_10_1016_j_scitotenv_2024_172863
crossref_primary_10_1002_asia_202400307
crossref_primary_10_1016_j_enconman_2023_117395
crossref_primary_10_1016_j_algal_2023_103094
crossref_primary_10_1016_j_fuel_2025_134901
crossref_primary_10_1109_TASC_2024_3421903
crossref_primary_10_1016_j_fuel_2022_127194
crossref_primary_10_3390_en15020407
crossref_primary_10_1038_s41598_022_11395_2
crossref_primary_10_1007_s40726_025_00352_y
crossref_primary_10_1016_j_engappai_2023_107500
crossref_primary_10_1016_j_molliq_2024_126475
crossref_primary_10_1016_j_algal_2025_103935
crossref_primary_10_1016_j_apenergy_2023_122597
crossref_primary_10_1080_01430750_2025_2543914
crossref_primary_10_1016_j_fuel_2023_128546
crossref_primary_10_1016_j_mechmachtheory_2022_104970
crossref_primary_10_1016_j_energy_2022_126432
crossref_primary_10_1080_01614940_2022_2082650
crossref_primary_10_3390_bioengineering11111143
crossref_primary_10_1007_s11831_024_10144_0
crossref_primary_10_3389_fenvs_2024_1437644
crossref_primary_10_1016_j_jarmap_2024_100594
crossref_primary_10_3389_fmars_2022_947394
crossref_primary_10_1016_j_biortech_2023_130246
crossref_primary_10_3390_ijgi13080286
crossref_primary_10_1007_s42250_025_01293_1
crossref_primary_10_1016_j_biteb_2024_101805
crossref_primary_10_1016_j_compbiomed_2024_108248
crossref_primary_10_1007_s11356_025_36530_0
crossref_primary_10_1109_TIE_2022_3222655
crossref_primary_10_1177_03019233251314962
crossref_primary_10_1007_s10311_023_01609_y
crossref_primary_10_1007_s10489_024_06109_2
crossref_primary_10_1007_s11274_025_04494_5
crossref_primary_10_1016_j_biotechadv_2025_108519
crossref_primary_10_1016_j_scitotenv_2023_162797
crossref_primary_10_3390_en16042035
crossref_primary_10_3390_pr13092929
crossref_primary_10_3390_microorganisms11081875
crossref_primary_10_1002_nag_3654
crossref_primary_10_1016_j_jenvman_2024_120135
crossref_primary_10_1016_j_watres_2024_121861
crossref_primary_10_1016_j_compchemeng_2025_109087
crossref_primary_10_1007_s00521_023_09272_8
crossref_primary_10_1016_j_enbenv_2025_05_012
crossref_primary_10_1016_j_fuel_2022_125312
crossref_primary_10_1016_j_fuel_2022_126249
crossref_primary_10_1016_j_compchemeng_2025_109355
crossref_primary_10_1080_14685248_2022_2134571
crossref_primary_10_2118_219749_PA
crossref_primary_10_1007_s10668_024_05362_2
crossref_primary_10_1016_j_energy_2023_128336
crossref_primary_10_3390_en15093425
crossref_primary_10_1080_00295450_2025_2461426
crossref_primary_10_3390_app12010181
crossref_primary_10_1016_j_flatc_2023_100501
Cites_doi 10.1002/er.3699
10.1016/j.rser.2017.05.091
10.1016/j.cdc.2019.100238
10.1002/er.4855
10.1002/er.3663
10.1016/j.biteb.2020.100608
10.1016/j.conbuildmat.2020.118216
10.1016/j.biortech.2019.03.030
10.3390/en14082332
10.1016/j.rser.2013.05.063
10.1016/j.fuel.2021.120218
10.1016/j.energy.2014.05.033
10.1016/j.sajce.2016.07.001
10.1016/j.enconman.2008.09.024
10.1002/cjce.23436
10.1007/s12155-020-10144-5
10.1016/j.fuel.2018.09.117
10.1016/j.enconman.2017.10.093
10.1016/j.fuel.2021.120151
10.1016/j.advengsoft.2020.102887
10.1002/apj.517
10.1016/j.rser.2014.05.084
10.1016/j.fuproc.2013.12.003
10.1109/JPROC.2015.2494218
10.3844/ajassp.2016.1255.1263
10.1016/0022-2860(93)80097-F
10.1016/j.futures.2015.03.003
10.1002/apj.1660
10.1002/ceat.201700210
10.1115/1.4050489
10.4271/2018-01-0190
10.1007/s12649-016-9485-5
10.1016/j.measurement.2020.108727
10.1016/j.energy.2018.06.202
10.1007/s12155-019-10033-6
10.1016/j.rser.2020.110498
10.3390/en11112995
10.1016/j.energy.2013.03.057
10.1002/apj.410
10.1016/j.ymssp.2018.03.022
10.1016/j.cie.2019.07.033
10.1016/j.egyr.2020.11.156
10.1016/j.enpol.2008.08.016
10.1002/er.5699
10.1002/er.1695
10.1016/j.biortech.2010.07.076
10.1002/er.4333
10.1016/S0731-7085(99)00272-1
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Feb 1, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 1, 2022
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2021.122184
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID 10_1016_j_fuel_2021_122184
S0016236121020603
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c328t-5f8f0fb75d84f86e910d83c3c53ef6a1d9090322d6b1e8aa9fbdf3cdca54ccad3
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706521900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
IngestDate Wed Aug 13 07:19:45 EDT 2025
Tue Nov 18 21:19:00 EST 2025
Sat Nov 29 06:53:01 EST 2025
Fri Feb 23 02:45:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microalgae
Bayesian optimization
Biodiesel
Modeling
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-5f8f0fb75d84f86e910d83c3c53ef6a1d9090322d6b1e8aa9fbdf3cdca54ccad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2621880468
PQPubID 2045474
ParticipantIDs proquest_journals_2621880468
crossref_primary_10_1016_j_fuel_2021_122184
crossref_citationtrail_10_1016_j_fuel_2021_122184
elsevier_sciencedirect_doi_10_1016_j_fuel_2021_122184
PublicationCentury 2000
PublicationDate 2022-02-01
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Agatonovic-Kustrin, Beresford (b0155) 2000; 22
Shahriari, Swersky, Wang, Adams, de Freitas (b0250) 2016; 104
Srivastava, Paul, Goud (b0090) 2018; 156
Kumar, Sharma (b0095) 2016; 7
Dadgar (b0115) 2021; 171
Foroutan, Mohammadi, Ramavandi (b0130) 2021; 291
Sultana, Hossain, Alam, Hashish, Islam (b0110) 2020; 243
Salama, Kurade, Abou-Shanab, El-Dalatony, Yang, Min (b0030) 2017; 79
Zurada (b0145) 1992
Mockus (b0235) 1989
Nautiyal, Subramanian, Dastidar (b0075) 2014; 120
Hossain, Hossain, Razzak (b0105) 2018; 41
Adewunmi, Ismail, Owolabi, Sultan, Olatunji, Ahmad (b0185) 2019; 97
Rayati, Rajabi Islami, Shamsaie Mehrgan (b0055) 2020; 13
Betiku, Omilakin, Ajala, Okeleye, Taiwo, Solomon (b0165) 2014; 72
Syafiuddin, Chong, Yuniarto, Hadibarata (b0020) 2020; 12
Bharathiraja, Chakravarthy, Kumar, Yuvaraj, Jayamuthunagai, Kumar (b0080) 2014; 38
Uzoh, Onukwuli (b0140) 2016; 22
Ayoola, Hymore, Omonhinmin, Olawole, Fayomi, Babatunde (b0270) 2019; 22
Vasistha, Khanra, Clifford, Rai (b0070) 2021; 137
Kose, Oncel (b0040) 2017; 41
Owoyele, Pal, Vidal (b0215) 2021; 143
Kazem, Yousif, Chaichan, Al-Waeli (b0170) 2019; 43
Lahiri, Ghanta (b0205) 2010; 5
Rahpeyma, Raheb (b0035) 2019; 12
Satyanarayana, Mariano, Vargas (b0045) 2011; 35
Gasteiger, Li, Simon, Novič, Zupan (b0150) 1993; 292
(b0255) 2005
Branco-Vieira, Mata, Martins, Freitas, Caetano (b0050) 2020; 6
Martinek, Krammer (b0160) 2019; 136
Qi, Luo, Wei, Fu (b0125) 2019; 236
Corral Bobadilla, Fernández Martínez, Lostado Lorza, Somovilla Gómez, Vergara González (b0275) 2018; 11
Vinoth Arul Raj, Bharathiraja, Vijayakumar, Arokiyaraj, Iyyappan, Praveen (b0085) 2019; 282
Moiz, Pal, Probst, Pei, Zhang, Som (b0220) 2018; 11
Bilanovic, Andargatchew, Kroeger, Shelef (b0005) 2009; 50
Abas, Kalair, Khan (b0015) 2015; 69
Vapnik, Vapnik (b0230) 1999
Singh Pali, Sharma, Kumar, Singh (b0100) 2021; 291
Xu, Zhang, Gu (b0200) 2012; 7
Owoyele, Pal, Torreira, Probst, Shaxted, Wilde (b0210) 2021
Pinzi, Lopez-Gimenez, Ruiz, Dorado (b0265) 2010; 101
Razzak, Hossain, Lucky, Bassi, De Lasa (b0025) 2013; 27
Wong, Wong, Cheung, Vong (b0195) 2013; 55
Tan, Tan, Ho, Lam, Show, Nguyen (b0065) 2020; 44
Snoek, Larochelle, Adams (b0240) 2012; 4
Wu, Chen, Zhang, Xiong, Lei, Deng (b0245) 2019; 17
Cheng, Yu (b0175) 2019; 43
Arenas, Rodriguez Palacio, Juantorena, Fernando, Sebastian (b0060) 2017; 41
Sultana, Zakir Hossain, Alam, Islam, Abtah (b0135) 2020; 149
Hossain, Sultana, Irfan, Elkanzi, Al-Aali, Taha (b0260) 2016; 13
Shafiee, Topal (b0010) 2009; 37
Martinez-Castillo, Astray, Mejuto (b0120) 2021; 14
Abbasian, Sattari (b0180) 2013; 8
Su, Li, Yang, Wen (b0225) 2018; 110
Silitonga, Masjuki, Ong, Sebayang, Dharma, Kusumo (b0190) 2018; 159
Arenas (10.1016/j.fuel.2021.122184_b0060) 2017; 41
Gasteiger (10.1016/j.fuel.2021.122184_b0150) 1993; 292
Martinek (10.1016/j.fuel.2021.122184_b0160) 2019; 136
Pinzi (10.1016/j.fuel.2021.122184_b0265) 2010; 101
Tan (10.1016/j.fuel.2021.122184_b0065) 2020; 44
Sultana (10.1016/j.fuel.2021.122184_b0110) 2020; 243
Shafiee (10.1016/j.fuel.2021.122184_b0010) 2009; 37
Vinoth Arul Raj (10.1016/j.fuel.2021.122184_b0085) 2019; 282
Kumar (10.1016/j.fuel.2021.122184_b0095) 2016; 7
Uzoh (10.1016/j.fuel.2021.122184_b0140) 2016; 22
Dadgar (10.1016/j.fuel.2021.122184_b0115) 2021; 171
Kazem (10.1016/j.fuel.2021.122184_b0170) 2019; 43
Vapnik (10.1016/j.fuel.2021.122184_b0230) 1999
Satyanarayana (10.1016/j.fuel.2021.122184_b0045) 2011; 35
Vasistha (10.1016/j.fuel.2021.122184_b0070) 2021; 137
Kose (10.1016/j.fuel.2021.122184_b0040) 2017; 41
Cheng (10.1016/j.fuel.2021.122184_b0175) 2019; 43
Bilanovic (10.1016/j.fuel.2021.122184_b0005) 2009; 50
Qi (10.1016/j.fuel.2021.122184_b0125) 2019; 236
Silitonga (10.1016/j.fuel.2021.122184_b0190) 2018; 159
Shahriari (10.1016/j.fuel.2021.122184_b0250) 2016; 104
Zurada (10.1016/j.fuel.2021.122184_b0145) 1992
Rayati (10.1016/j.fuel.2021.122184_b0055) 2020; 13
Corral Bobadilla (10.1016/j.fuel.2021.122184_b0275) 2018; 11
Srivastava (10.1016/j.fuel.2021.122184_b0090) 2018; 156
Owoyele (10.1016/j.fuel.2021.122184_b0215) 2021; 143
Singh Pali (10.1016/j.fuel.2021.122184_b0100) 2021; 291
Lahiri (10.1016/j.fuel.2021.122184_b0205) 2010; 5
Hossain (10.1016/j.fuel.2021.122184_b0260) 2016; 13
Branco-Vieira (10.1016/j.fuel.2021.122184_b0050) 2020; 6
Agatonovic-Kustrin (10.1016/j.fuel.2021.122184_b0155) 2000; 22
Xu (10.1016/j.fuel.2021.122184_b0200) 2012; 7
Salama (10.1016/j.fuel.2021.122184_b0030) 2017; 79
Wu (10.1016/j.fuel.2021.122184_b0245) 2019; 17
Nautiyal (10.1016/j.fuel.2021.122184_b0075) 2014; 120
Bharathiraja (10.1016/j.fuel.2021.122184_b0080) 2014; 38
Syafiuddin (10.1016/j.fuel.2021.122184_b0020) 2020; 12
Betiku (10.1016/j.fuel.2021.122184_b0165) 2014; 72
Abbasian (10.1016/j.fuel.2021.122184_b0180) 2013; 8
Mockus (10.1016/j.fuel.2021.122184_b0235) 1989
Moiz (10.1016/j.fuel.2021.122184_b0220) 2018; 11
Wong (10.1016/j.fuel.2021.122184_b0195) 2013; 55
Abas (10.1016/j.fuel.2021.122184_b0015) 2015; 69
Foroutan (10.1016/j.fuel.2021.122184_b0130) 2021; 291
Rahpeyma (10.1016/j.fuel.2021.122184_b0035) 2019; 12
Razzak (10.1016/j.fuel.2021.122184_b0025) 2013; 27
Adewunmi (10.1016/j.fuel.2021.122184_b0185) 2019; 97
Owoyele (10.1016/j.fuel.2021.122184_b0210) 2021
(10.1016/j.fuel.2021.122184_b0255) 2005
Sultana (10.1016/j.fuel.2021.122184_b0135) 2020; 149
Ayoola (10.1016/j.fuel.2021.122184_b0270) 2019; 22
Su (10.1016/j.fuel.2021.122184_b0225) 2018; 110
Martinez-Castillo (10.1016/j.fuel.2021.122184_b0120) 2021; 14
Snoek (10.1016/j.fuel.2021.122184_b0240) 2012; 4
Hossain (10.1016/j.fuel.2021.122184_b0105) 2018; 41
References_xml – volume: 37
  start-page: 181
  year: 2009
  end-page: 189
  ident: b0010
  article-title: When will fossil fuel reserves be diminished?
  publication-title: Energy Policy
– volume: 22
  start-page: 100238
  year: 2019
  ident: b0270
  article-title: Analysis of waste groundnut oil biodiesel production using response surface methodology and artificial neural network
  publication-title: Chem Data Collect
– volume: 13
  start-page: 1235
  year: 2020
  end-page: 1245
  ident: b0055
  article-title: Light Intensity Improves Growth, Lipid Productivity, and Fatty Acid Profile of Chlorococcum oleofaciens (Chlorophyceae) for Biodiesel Production
  publication-title: Bioenergy Res
– volume: 101
  start-page: 9587
  year: 2010
  end-page: 9593
  ident: b0265
  article-title: Response surface modeling to predict biodiesel yield in a multi-feedstock biodiesel production plant
  publication-title: Bioresour Technol
– volume: 120
  start-page: 79
  year: 2014
  end-page: 88
  ident: b0075
  article-title: Production and characterization of biodiesel from algae
  publication-title: Fuel Process Technol
– volume: 38
  start-page: 368
  year: 2014
  end-page: 382
  ident: b0080
  article-title: Biodiesel production using chemical and biological methods - A review of process, catalyst, acyl acceptor, source and process variables
  publication-title: Renew Sustain Energy Rev
– volume: 50
  start-page: 262
  year: 2009
  end-page: 267
  ident: b0005
  article-title: Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations - Response surface methodology analysis
  publication-title: Energy Convers Manage
– volume: 292
  start-page: 141
  year: 1993
  end-page: 159
  ident: b0150
  article-title: Neural nets for mass and vibrational spectra
  publication-title: J Mol Struct
– volume: 14
  start-page: 2332
  year: 2021
  ident: b0120
  article-title: Modelling and Prediction of Monthly Global Irradiation Using Different Prediction Models
  publication-title: Energies
– volume: 236
  start-page: 1400
  year: 2019
  end-page: 1407
  ident: b0125
  article-title: Estimation of low calorific value of blended coals based on support vector regression and sensitivity analysis in coal-fired power plants
  publication-title: Fuel
– volume: 136
  start-page: 187
  year: 2019
  end-page: 194
  ident: b0160
  article-title: Analysing machine learning techniques for predicting the hole-filling in pin-in-paste technology
  publication-title: Comput Ind Eng
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  ident: b0250
  article-title: Taking the human out of the loop: A review of Bayesian optimization
  publication-title: Proc IEEE
– volume: 12
  start-page: 100608
  year: 2020
  ident: b0020
  article-title: The current scenario and challenges of biodiesel production in Asian countries: A review
  publication-title: Bioresour Technol Reports
– volume: 11
  start-page: 291
  year: 2018
  end-page: 306
  ident: b0220
  article-title: A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing
  publication-title: SAE Int J Commer Veh
– volume: 137
  start-page: 110498
  year: 2021
  ident: b0070
  article-title: Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review
  publication-title: Renew Sustain Energy Rev
– volume: 69
  start-page: 31
  year: 2015
  end-page: 49
  ident: b0015
  article-title: Review of fossil fuels and future energy technologies
  publication-title: Futures
– volume: 4
  start-page: 2951
  year: 2012
  end-page: 2959
  ident: b0240
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv Neural Inf Process Syst.
– volume: 156
  start-page: 269
  year: 2018
  end-page: 278
  ident: b0090
  article-title: Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition
  publication-title: Energy Convers Manage
– volume: 159
  start-page: 1075
  year: 2018
  end-page: 1087
  ident: b0190
  article-title: Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine
  publication-title: Energy
– volume: 35
  start-page: 291
  year: 2011
  end-page: 311
  ident: b0045
  article-title: A review on microalgae, a versatile source for sustainable energy and materials
  publication-title: Int J Energy Res
– volume: 41
  start-page: 1313
  year: 2018
  end-page: 1323
  ident: b0105
  article-title: Optimization of CO
  publication-title: Chem Eng Technol
– volume: 143
  year: 2021
  ident: b0215
  article-title: An Automated Machine Learning-Genetic Algorithm Framework With Active Learning for Design Optimization
  publication-title: J Energy Resour Technol
– volume: 55
  start-page: 519
  year: 2013
  end-page: 528
  ident: b0195
  article-title: Modeling and optimization of biodiesel engine performance using advanced machine learning methods
  publication-title: Energy
– year: 1992
  ident: b0145
  article-title: Introduction to artificial neural systems
– volume: 44
  start-page: 9757
  year: 2020
  end-page: 9771
  ident: b0065
  article-title: Conceptual design of a hybrid thin layer cascade photobioreactor for microalgal biodiesel synthesis
  publication-title: Int J Energy Res
– year: 1989
  ident: b0235
  publication-title: Global Optimization and the Bayesian Approach. D
– year: 2005
  ident: b0255
  publication-title: Gaussian Processes for Machine Learning
– volume: 27
  start-page: 622
  year: 2013
  end-page: 653
  ident: b0025
  article-title: Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing - A review
  publication-title: Renew Sustain Energy Rev
– volume: 43
  start-page: 8572
  year: 2019
  end-page: 8591
  ident: b0170
  article-title: Experimental and deep learning artificial neural network approach for evaluating grid-connected photovoltaic systems
  publication-title: Int J Energy Res
– volume: 22
  start-page: 717
  year: 2000
  end-page: 727
  ident: b0155
  article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research
  publication-title: J Pharm Biomed Anal
– volume: 171
  start-page: 108727
  year: 2021
  ident: b0115
  article-title: Developing new measuring and ANN prediction method for the longitudinal diameter of intermingled untwisted heat set bulk continues filament yarns
  publication-title: Meas J Int Meas Confed
– volume: 43
  start-page: 1928
  year: 2019
  end-page: 1973
  ident: b0175
  article-title: A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems
  publication-title: Int J Energy Res
– year: 1999
  ident: b0230
  article-title: The Nature of Statistical Learning Theory
– volume: 6
  start-page: 325
  year: 2020
  end-page: 332
  ident: b0050
  article-title: Economic analysis of microalgae biodiesel production in a small-scale facility
  publication-title: Energy Rep
– volume: 282
  start-page: 348
  year: 2019
  end-page: 352
  ident: b0085
  article-title: Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous Poly Ethylene Glycol (PEG) encapsulated ZnOMn2+ nanocatalyst
  publication-title: Bioresour Technol
– volume: 72
  start-page: 266
  year: 2014
  end-page: 273
  ident: b0165
  article-title: Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis
  publication-title: Energy
– volume: 243
  start-page: 118216
  year: 2020
  ident: b0110
  article-title: An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete
  publication-title: Constr Build Mater
– volume: 41
  start-page: 761
  year: 2017
  end-page: 789
  ident: b0060
  article-title: Microalgae as a potential source for biodiesel production: techniques, methods, and other challenges
  publication-title: Int J Energy Res
– volume: 11
  start-page: 2995
  year: 2018
  ident: b0275
  article-title: Optimizing Biodiesel Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines
  publication-title: Energies
– volume: 7
  start-page: 150
  year: 2012
  end-page: 158
  ident: b0200
  article-title: Modeling of ammonia conversion rate in ammonia synthesis based on a hybrid algorithm and least squares support vector regression
  publication-title: Asia-Pacific J Chem Eng
– volume: 12
  start-page: 958
  year: 2019
  end-page: 965
  ident: b0035
  article-title: Microalgae Biodiesel as a Valuable Alternative to Fossil Fuels
  publication-title: Bioenergy Res
– volume: 97
  start-page: 2969
  year: 2019
  end-page: 2978
  ident: b0185
  article-title: Hybrid Intelligent Modelling of the Viscoelastic Moduli of Coal Fly Ash Based Polymer Gel System for Water Shutoff Treatment in Oil and Gas Wells
  publication-title: Can J Chem Eng
– volume: 13
  start-page: 1255
  year: 2016
  end-page: 1263
  ident: b0260
  article-title: Optimization of biodiesel production from spent palm cooking oil using fractional factorial design combined with the response surface methodology
  publication-title: Am J Appl Sci
– volume: 7
  start-page: 1105
  year: 2016
  end-page: 1114
  ident: b0095
  article-title: Optimization of Transesterification of Chlorella protothecoides Oil to Biodiesel Using Box-Behnken Design Method
  publication-title: Waste Biomass Valorization
– volume: 8
  start-page: 178
  year: 2013
  end-page: 188
  ident: b0180
  article-title: Cell voltage and chlorine current efficiency of aqueous HCl electrolysis: artificial neural network modeling
  publication-title: Asia-Pacific J Chem Eng
– volume: 291
  start-page: 120218
  year: 2021
  ident: b0100
  article-title: Biodiesel yield and properties optimization from Kusum oil by RSM
  publication-title: Fuel
– volume: 291
  start-page: 120151
  year: 2021
  ident: b0130
  article-title: Waste glass catalyst for biodiesel production from waste chicken fat: Optimization by RSM and ANNs and toxicity assessment
  publication-title: Fuel
– volume: 5
  start-page: 847
  year: 2010
  end-page: 861
  ident: b0205
  article-title: Development of a hybrid support vector machine and genetic algorithm model for regime identification of slurry transport in pipelines
  publication-title: Asia-Pacific J Chem Eng
– volume: 149
  start-page: 102887
  year: 2020
  ident: b0135
  article-title: Soft computing approaches for comparative prediction of the mechanical properties of jute fiber reinforced concrete
  publication-title: Adv Eng Softw
– volume: 22
  start-page: 6
  year: 2016
  end-page: 16
  ident: b0140
  article-title: Extraction, analysis and desaturation of gmelina seed oil using different soft computing approaches
  publication-title: South African J Chem Eng
– volume: 17
  start-page: 26
  year: 2019
  end-page: 40
  ident: b0245
  article-title: Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimizationb
  publication-title: J Electron Sci Technol
– volume: 41
  start-page: 924
  year: 2017
  end-page: 951
  ident: b0040
  article-title: Algae as a promising resource for biofuel industry: facts and challenges
  publication-title: Int J Energy Res
– volume: 110
  start-page: 412
  year: 2018
  end-page: 427
  ident: b0225
  article-title: Wavelet support vector machine-based prediction model of dam deformation
  publication-title: Mech Syst Signal Process
– volume: 79
  start-page: 1189
  year: 2017
  end-page: 1211
  ident: b0030
  article-title: Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation
  publication-title: Renew Sustain Energy Rev
– year: 2021
  ident: b0210
  article-title: Application of an automated machine learning-genetic algorithm (AutoML-GA) coupled with computational fluid dynamics simulations for rapid engine design optimization
  publication-title: Https://DoiOrg/101177/14680874211023466
– volume: 41
  start-page: 924
  issue: 7
  year: 2017
  ident: 10.1016/j.fuel.2021.122184_b0040
  article-title: Algae as a promising resource for biofuel industry: facts and challenges
  publication-title: Int J Energy Res
  doi: 10.1002/er.3699
– volume: 79
  start-page: 1189
  year: 2017
  ident: 10.1016/j.fuel.2021.122184_b0030
  article-title: Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.091
– volume: 22
  start-page: 100238
  year: 2019
  ident: 10.1016/j.fuel.2021.122184_b0270
  article-title: Analysis of waste groundnut oil biodiesel production using response surface methodology and artificial neural network
  publication-title: Chem Data Collect
  doi: 10.1016/j.cdc.2019.100238
– volume: 43
  start-page: 8572
  issue: 14
  year: 2019
  ident: 10.1016/j.fuel.2021.122184_b0170
  article-title: Experimental and deep learning artificial neural network approach for evaluating grid-connected photovoltaic systems
  publication-title: Int J Energy Res
  doi: 10.1002/er.4855
– volume: 41
  start-page: 761
  issue: 6
  year: 2017
  ident: 10.1016/j.fuel.2021.122184_b0060
  article-title: Microalgae as a potential source for biodiesel production: techniques, methods, and other challenges
  publication-title: Int J Energy Res
  doi: 10.1002/er.3663
– volume: 12
  start-page: 100608
  year: 2020
  ident: 10.1016/j.fuel.2021.122184_b0020
  article-title: The current scenario and challenges of biodiesel production in Asian countries: A review
  publication-title: Bioresour Technol Reports
  doi: 10.1016/j.biteb.2020.100608
– volume: 243
  start-page: 118216
  year: 2020
  ident: 10.1016/j.fuel.2021.122184_b0110
  article-title: An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.118216
– volume: 282
  start-page: 348
  year: 2019
  ident: 10.1016/j.fuel.2021.122184_b0085
  article-title: Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous Poly Ethylene Glycol (PEG) encapsulated ZnOMn2+ nanocatalyst
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2019.03.030
– volume: 14
  start-page: 2332
  year: 2021
  ident: 10.1016/j.fuel.2021.122184_b0120
  article-title: Modelling and Prediction of Monthly Global Irradiation Using Different Prediction Models
  publication-title: Energies
  doi: 10.3390/en14082332
– volume: 27
  start-page: 622
  year: 2013
  ident: 10.1016/j.fuel.2021.122184_b0025
  article-title: Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing - A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.05.063
– volume: 291
  start-page: 120218
  year: 2021
  ident: 10.1016/j.fuel.2021.122184_b0100
  article-title: Biodiesel yield and properties optimization from Kusum oil by RSM
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.120218
– volume: 72
  start-page: 266
  year: 2014
  ident: 10.1016/j.fuel.2021.122184_b0165
  article-title: Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.033
– volume: 22
  start-page: 6
  year: 2016
  ident: 10.1016/j.fuel.2021.122184_b0140
  article-title: Extraction, analysis and desaturation of gmelina seed oil using different soft computing approaches
  publication-title: South African J Chem Eng
  doi: 10.1016/j.sajce.2016.07.001
– volume: 50
  start-page: 262
  issue: 2
  year: 2009
  ident: 10.1016/j.fuel.2021.122184_b0005
  article-title: Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations - Response surface methodology analysis
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.09.024
– year: 1999
  ident: 10.1016/j.fuel.2021.122184_b0230
– volume: 4
  start-page: 2951
  year: 2012
  ident: 10.1016/j.fuel.2021.122184_b0240
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv Neural Inf Process Syst.
– volume: 97
  start-page: 2969
  issue: 11
  year: 2019
  ident: 10.1016/j.fuel.2021.122184_b0185
  article-title: Hybrid Intelligent Modelling of the Viscoelastic Moduli of Coal Fly Ash Based Polymer Gel System for Water Shutoff Treatment in Oil and Gas Wells
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.23436
– volume: 13
  start-page: 1235
  issue: 4
  year: 2020
  ident: 10.1016/j.fuel.2021.122184_b0055
  article-title: Light Intensity Improves Growth, Lipid Productivity, and Fatty Acid Profile of Chlorococcum oleofaciens (Chlorophyceae) for Biodiesel Production
  publication-title: Bioenergy Res
  doi: 10.1007/s12155-020-10144-5
– volume: 236
  start-page: 1400
  year: 2019
  ident: 10.1016/j.fuel.2021.122184_b0125
  article-title: Estimation of low calorific value of blended coals based on support vector regression and sensitivity analysis in coal-fired power plants
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.09.117
– volume: 156
  start-page: 269
  year: 2018
  ident: 10.1016/j.fuel.2021.122184_b0090
  article-title: Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.10.093
– volume: 291
  start-page: 120151
  year: 2021
  ident: 10.1016/j.fuel.2021.122184_b0130
  article-title: Waste glass catalyst for biodiesel production from waste chicken fat: Optimization by RSM and ANNs and toxicity assessment
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.120151
– volume: 149
  start-page: 102887
  year: 2020
  ident: 10.1016/j.fuel.2021.122184_b0135
  article-title: Soft computing approaches for comparative prediction of the mechanical properties of jute fiber reinforced concrete
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2020.102887
– volume: 7
  start-page: 150
  issue: 1
  year: 2012
  ident: 10.1016/j.fuel.2021.122184_b0200
  article-title: Modeling of ammonia conversion rate in ammonia synthesis based on a hybrid algorithm and least squares support vector regression
  publication-title: Asia-Pacific J Chem Eng
  doi: 10.1002/apj.517
– volume: 38
  start-page: 368
  year: 2014
  ident: 10.1016/j.fuel.2021.122184_b0080
  article-title: Biodiesel production using chemical and biological methods - A review of process, catalyst, acyl acceptor, source and process variables
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.05.084
– volume: 120
  start-page: 79
  year: 2014
  ident: 10.1016/j.fuel.2021.122184_b0075
  article-title: Production and characterization of biodiesel from algae
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2013.12.003
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  ident: 10.1016/j.fuel.2021.122184_b0250
  article-title: Taking the human out of the loop: A review of Bayesian optimization
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 13
  start-page: 1255
  issue: 11
  year: 2016
  ident: 10.1016/j.fuel.2021.122184_b0260
  article-title: Optimization of biodiesel production from spent palm cooking oil using fractional factorial design combined with the response surface methodology
  publication-title: Am J Appl Sci
  doi: 10.3844/ajassp.2016.1255.1263
– volume: 292
  start-page: 141
  year: 1993
  ident: 10.1016/j.fuel.2021.122184_b0150
  article-title: Neural nets for mass and vibrational spectra
  publication-title: J Mol Struct
  doi: 10.1016/0022-2860(93)80097-F
– year: 1989
  ident: 10.1016/j.fuel.2021.122184_b0235
– volume: 69
  start-page: 31
  year: 2015
  ident: 10.1016/j.fuel.2021.122184_b0015
  article-title: Review of fossil fuels and future energy technologies
  publication-title: Futures
  doi: 10.1016/j.futures.2015.03.003
– volume: 8
  start-page: 178
  issue: 1
  year: 2013
  ident: 10.1016/j.fuel.2021.122184_b0180
  article-title: Cell voltage and chlorine current efficiency of aqueous HCl electrolysis: artificial neural network modeling
  publication-title: Asia-Pacific J Chem Eng
  doi: 10.1002/apj.1660
– volume: 41
  start-page: 1313
  issue: 7
  year: 2018
  ident: 10.1016/j.fuel.2021.122184_b0105
  article-title: Optimization of CO 2 Biofixation by Chlorella vulgaris Using a Tubular Photobioreactor
  publication-title: Chem Eng Technol
  doi: 10.1002/ceat.201700210
– volume: 143
  year: 2021
  ident: 10.1016/j.fuel.2021.122184_b0215
  article-title: An Automated Machine Learning-Genetic Algorithm Framework With Active Learning for Design Optimization
  publication-title: J Energy Resour Technol
  doi: 10.1115/1.4050489
– volume: 17
  start-page: 26
  year: 2019
  ident: 10.1016/j.fuel.2021.122184_b0245
  article-title: Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimizationb
  publication-title: J Electron Sci Technol
– volume: 11
  start-page: 291
  issue: 5
  year: 2018
  ident: 10.1016/j.fuel.2021.122184_b0220
  article-title: A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing
  publication-title: SAE Int J Commer Veh
  doi: 10.4271/2018-01-0190
– volume: 7
  start-page: 1105
  issue: 5
  year: 2016
  ident: 10.1016/j.fuel.2021.122184_b0095
  article-title: Optimization of Transesterification of Chlorella protothecoides Oil to Biodiesel Using Box-Behnken Design Method
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-016-9485-5
– year: 2021
  ident: 10.1016/j.fuel.2021.122184_b0210
  article-title: Application of an automated machine learning-genetic algorithm (AutoML-GA) coupled with computational fluid dynamics simulations for rapid engine design optimization
  publication-title: Https://DoiOrg/101177/14680874211023466
– volume: 171
  start-page: 108727
  year: 2021
  ident: 10.1016/j.fuel.2021.122184_b0115
  article-title: Developing new measuring and ANN prediction method for the longitudinal diameter of intermingled untwisted heat set bulk continues filament yarns
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2020.108727
– year: 2005
  ident: 10.1016/j.fuel.2021.122184_b0255
– volume: 159
  start-page: 1075
  year: 2018
  ident: 10.1016/j.fuel.2021.122184_b0190
  article-title: Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.202
– volume: 12
  start-page: 958
  issue: 4
  year: 2019
  ident: 10.1016/j.fuel.2021.122184_b0035
  article-title: Microalgae Biodiesel as a Valuable Alternative to Fossil Fuels
  publication-title: Bioenergy Res
  doi: 10.1007/s12155-019-10033-6
– volume: 137
  start-page: 110498
  year: 2021
  ident: 10.1016/j.fuel.2021.122184_b0070
  article-title: Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.110498
– volume: 11
  start-page: 2995
  year: 2018
  ident: 10.1016/j.fuel.2021.122184_b0275
  article-title: Optimizing Biodiesel Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines
  publication-title: Energies
  doi: 10.3390/en11112995
– volume: 55
  start-page: 519
  year: 2013
  ident: 10.1016/j.fuel.2021.122184_b0195
  article-title: Modeling and optimization of biodiesel engine performance using advanced machine learning methods
  publication-title: Energy
  doi: 10.1016/j.energy.2013.03.057
– volume: 5
  start-page: 847
  issue: 6
  year: 2010
  ident: 10.1016/j.fuel.2021.122184_b0205
  article-title: Development of a hybrid support vector machine and genetic algorithm model for regime identification of slurry transport in pipelines
  publication-title: Asia-Pacific J Chem Eng
  doi: 10.1002/apj.410
– volume: 110
  start-page: 412
  year: 2018
  ident: 10.1016/j.fuel.2021.122184_b0225
  article-title: Wavelet support vector machine-based prediction model of dam deformation
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.03.022
– volume: 136
  start-page: 187
  year: 2019
  ident: 10.1016/j.fuel.2021.122184_b0160
  article-title: Analysing machine learning techniques for predicting the hole-filling in pin-in-paste technology
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.07.033
– volume: 6
  start-page: 325
  year: 2020
  ident: 10.1016/j.fuel.2021.122184_b0050
  article-title: Economic analysis of microalgae biodiesel production in a small-scale facility
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2020.11.156
– volume: 37
  start-page: 181
  issue: 1
  year: 2009
  ident: 10.1016/j.fuel.2021.122184_b0010
  article-title: When will fossil fuel reserves be diminished?
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.08.016
– volume: 44
  start-page: 9757
  issue: 12
  year: 2020
  ident: 10.1016/j.fuel.2021.122184_b0065
  article-title: Conceptual design of a hybrid thin layer cascade photobioreactor for microalgal biodiesel synthesis
  publication-title: Int J Energy Res
  doi: 10.1002/er.5699
– year: 1992
  ident: 10.1016/j.fuel.2021.122184_b0145
– volume: 35
  start-page: 291
  issue: 4
  year: 2011
  ident: 10.1016/j.fuel.2021.122184_b0045
  article-title: A review on microalgae, a versatile source for sustainable energy and materials
  publication-title: Int J Energy Res
  doi: 10.1002/er.1695
– volume: 101
  start-page: 9587
  issue: 24
  year: 2010
  ident: 10.1016/j.fuel.2021.122184_b0265
  article-title: Response surface modeling to predict biodiesel yield in a multi-feedstock biodiesel production plant
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.07.076
– volume: 43
  start-page: 1928
  issue: 6
  year: 2019
  ident: 10.1016/j.fuel.2021.122184_b0175
  article-title: A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems
  publication-title: Int J Energy Res
  doi: 10.1002/er.4333
– volume: 22
  start-page: 717
  issue: 5
  year: 2000
  ident: 10.1016/j.fuel.2021.122184_b0155
  article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/S0731-7085(99)00272-1
SSID ssj0007854
Score 2.6229365
Snippet •Bayesian optimization algorithm (BOA) was implemented to tune hyperparameters.•Hybrid BOA-ANN and BOA-SVR were developed for the prediction of biodiesel...
Biodiesel has appeared as a renewable and clean energy resource and a means of diminishing global warming. This study provides Bayesian optimization algorithm...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122184
SubjectTerms Algae
Algorithms
Aquatic microorganisms
Artificial neural networks
Bayesian analysis
Bayesian optimization
Biodiesel
Biodiesel fuels
Biofuels
Clean energy
Climate change
Diesel
Energy sources
Global warming
Hybridization
Learning algorithms
Learning theory
Machine learning
Mathematical models
Microalgae
Modeling
Modelling
Neural networks
Oil
Optimization
Optimization algorithms
Performance enhancement
Root-mean-square errors
Support vector machines
Title Prediction of biodiesel production from microalgal oil using Bayesian optimization algorithm-based machine learning approaches
URI https://dx.doi.org/10.1016/j.fuel.2021.122184
https://www.proquest.com/docview/2621880468
Volume 309
WOSCitedRecordID wos000706521900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xsCAfEJcoq-btHAvqClApK20XVVwsx07YrtK09LFaLvwcficzsZ10K6jgwCWq8m6_r-Px-JsZQl7JsKfSMATrF0e-G3p-5gogihtLpiIJk-xQ1tX1h8loxCaT9LTT-WlzYa7KpKrY9XW6-K9Qwz4AG1Nn_wHu5qawAz4D6LAF2GH7V8CfLnHtxTqC2XSOOsG8RCWW0qVidU7JDKV4mMkB3ui0dDZ10OCN-J7XaZVzMCUzk6PpwFnz5XR9MXNx0FPOrFZg5rblxNemMrkRJNq2nxt4LIYhsPW2FtE3YYezTQluqdAG_sLK6lHGu1oJXdfgzPnofAEHt5EP97PNSoibXZD7pagyLRIfbUcwYPLbu6EGaVNrPm9bai92sTCMHqe0cWZJ4CaeLi5srXfQS7fsr_fbUUEHKC6PC_jax_AG3rHn49S2HQPtuv_oEz85Hw75eDAZv158c7E7Ga7im1Ytt8iBn0Qp65KD_vvB5EMz5ics0vW-zVub9CytJNx97J9coB1noPZwxvfJPTM1oX1NqQekk1cPyd2tgpWPyI-WXHRe0IZctCUXRXLRllwUyEVrclFLLrpNLrpDLmrIRS25aEuux-T8ZDB--841HTxcGfhs7UYFK3pFlkSKhQWLc_BNFQtkIKMgL2LhqRTDhL6v4szLmRBpkakikEqKKATTooInpFvNq_wpoUmqQriZkDnMoWM_ST0Frm_MWIZL9SE7JJ79Ubk05e2xy0rJrY7xkiMQHIHgGohD4jTXLHRxl71nRxYrbtxT7XZy4Nne644ssNzYiRX3Yx8rIYYxe7b_8HNyp_3PHJHuernJX5Db8mo9XS1fGh7-AjrsvJo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+biodiesel+production+from+microalgal+oil+using+Bayesian+optimization+algorithm-based+machine+learning+approaches&rft.jtitle=Fuel+%28Guildford%29&rft.au=Sultana%2C+Nahid&rft.au=Hossain%2C+S+M+Zakir&rft.au=Abusaad%2C+M&rft.au=Alanbar%2C+N&rft.date=2022-02-01&rft.pub=Elsevier+BV&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=309&rft.spage=1&rft_id=info:doi/10.1016%2Fj.fuel.2021.122184&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon