Prediction of biodiesel production from microalgal oil using Bayesian optimization algorithm-based machine learning approaches
•Bayesian optimization algorithm (BOA) was implemented to tune hyperparameters.•Hybrid BOA-ANN and BOA-SVR were developed for the prediction of biodiesel yield.•The performance was compared between the developed and the existing models.•Hybrid BOA-SVR outperformed the most recent existing model in t...
Uloženo v:
| Vydáno v: | Fuel (Guildford) Ročník 309; s. 122184 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.02.2022
Elsevier BV |
| Témata: | |
| ISSN: | 0016-2361, 1873-7153 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Bayesian optimization algorithm (BOA) was implemented to tune hyperparameters.•Hybrid BOA-ANN and BOA-SVR were developed for the prediction of biodiesel yield.•The performance was compared between the developed and the existing models.•Hybrid BOA-SVR outperformed the most recent existing model in the literature.•The BOA-SVR model was validated further using extra literate data.
Biodiesel has appeared as a renewable and clean energy resource and a means of diminishing global warming. This study provides Bayesian optimization algorithm (BOA) based machine learning techniques such as artificial neural network (ANN) and Support vector regression (SVR) as the potential tool for modeling biodiesel production using microalgae oil as feedstock. Novelties of this study as in comparison with the existing Raj et al. model include (i) implementation of BOA to tune the model hyperparameters, (ii) hybridization of BOA with ANN, and SVR for modeling biodiesel production for the first time, (iii) the model performance was compared between the developed models and the existing model using several performance indicators (viz., Rpred2, residual analysis, RE, MAE, RMSE), and (iv) validation of the model using extra experimental data published elsewhere. The developed hybrid BOA-ANN and BOA-SVR models show better performance in comparison with the existing Raj et al. model. Comparing BOA-ANN and BOA-SVR, the later model shows excellent performance. Based on root mean square error (RMSE), the developed hybrid BOA-SVR shows higher performance than Raj et al. model with a performance enhancement of 36.03%. The precision of the hybrid BOA-SVR model was further validated with extra literature data. Thus, the proposed model would certify rapid estimation of biodiesel yield from microalgal oil that may reduce laborious, expensive, and time-consuming laboratory trials. |
|---|---|
| AbstractList | Biodiesel has appeared as a renewable and clean energy resource and a means of diminishing global warming. This study provides Bayesian optimization algorithm (BOA) based machine learning techniques such as artificial neural network (ANN) and Support vector regression (SVR) as the potential tool for modeling biodiesel production using microalgae oil as feedstock. Novelties of this study as in comparison with the existing Raj et al. model include (i) implementation of BOA to tune the model hyperparameters, (ii) hybridization of BOA with ANN, and SVR for modeling biodiesel production for the first time, (iii) the model performance was compared between the developed models and the existing model using several performance indicators (viz., R2pred, residual analysis, RE, MAE, RMSE), and (iv) validation of the model using extra experimental data published elsewhere. The developed hybrid BOA-ANN and BOA-SVR models show better performance in comparison with the existing Raj et al. model. Comparing BOA-ANN and BOA-SVR, the later model shows excellent performance. Based on root mean square error (RMSE), the developed hybrid BOA-SVR shows higher performance than Raj et al. model with a performance enhancement of 36.03%. The precision of the hybrid BOA-SVR model was further validated with extra literature data. Thus, the proposed model would certify rapid estimation of biodiesel yield from microalgal oil that may reduce laborious, expensive, and time-consuming laboratory trials. •Bayesian optimization algorithm (BOA) was implemented to tune hyperparameters.•Hybrid BOA-ANN and BOA-SVR were developed for the prediction of biodiesel yield.•The performance was compared between the developed and the existing models.•Hybrid BOA-SVR outperformed the most recent existing model in the literature.•The BOA-SVR model was validated further using extra literate data. Biodiesel has appeared as a renewable and clean energy resource and a means of diminishing global warming. This study provides Bayesian optimization algorithm (BOA) based machine learning techniques such as artificial neural network (ANN) and Support vector regression (SVR) as the potential tool for modeling biodiesel production using microalgae oil as feedstock. Novelties of this study as in comparison with the existing Raj et al. model include (i) implementation of BOA to tune the model hyperparameters, (ii) hybridization of BOA with ANN, and SVR for modeling biodiesel production for the first time, (iii) the model performance was compared between the developed models and the existing model using several performance indicators (viz., Rpred2, residual analysis, RE, MAE, RMSE), and (iv) validation of the model using extra experimental data published elsewhere. The developed hybrid BOA-ANN and BOA-SVR models show better performance in comparison with the existing Raj et al. model. Comparing BOA-ANN and BOA-SVR, the later model shows excellent performance. Based on root mean square error (RMSE), the developed hybrid BOA-SVR shows higher performance than Raj et al. model with a performance enhancement of 36.03%. The precision of the hybrid BOA-SVR model was further validated with extra literature data. Thus, the proposed model would certify rapid estimation of biodiesel yield from microalgal oil that may reduce laborious, expensive, and time-consuming laboratory trials. |
| ArticleNumber | 122184 |
| Author | Sultana, Nahid Razzak, S.A. Hossain, S.M. Zakir Abusaad, M. Senan, Y. Alanbar, N. |
| Author_xml | – sequence: 1 givenname: Nahid surname: Sultana fullname: Sultana, Nahid email: nszakir@iau.edu.sa organization: Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia – sequence: 2 givenname: S.M. Zakir surname: Hossain fullname: Hossain, S.M. Zakir email: zhossain@uob.edu.bh organization: Department of Chemical Engineering, College of Engineering, University of Bahrain, Zallaq, Bahrain – sequence: 3 givenname: M. surname: Abusaad fullname: Abusaad, M. organization: Department of Chemical Engineering, College of Engineering, University of Bahrain, Zallaq, Bahrain – sequence: 4 givenname: N. surname: Alanbar fullname: Alanbar, N. organization: Department of Chemical Engineering, College of Engineering, University of Bahrain, Zallaq, Bahrain – sequence: 5 givenname: Y. surname: Senan fullname: Senan, Y. organization: Department of Chemical Engineering, College of Engineering, University of Bahrain, Zallaq, Bahrain – sequence: 6 givenname: S.A. surname: Razzak fullname: Razzak, S.A. organization: Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| BookMark | eNp9kU1P3DAQhq0KpC7QP9CTpZ6z-CPJeqVeABWohASH9mxN7DHMKom3dlIJDvz2egmnHjiNNHqfGc0zJ-xojCMy9lWKtRSyPd-tw4z9Wgkl11IpaepPbCXNRlcb2egjthIlVSndys_sJOedEGJjmnrFXh8SenITxZHHwDuKnjBjz_cp-nnphxQHPpBLEfpH6Hmkns-Zxkd-Cc-YCQq6n2igF3jLl1RMND0NVQcZPR_APdGIvEdI4wGDfZlempjP2HGAPuOX93rKfl__-HV1W93d3_y8urirnFZmqppgggjdpvGmDqbFrRTeaKddozG0IP1WbIVWyredRAOwDZ0P2nkHTe0ceH3Kvi1zy-I_M-bJ7uKcxrLSqrboMqJuTUmpJVVOzTlhsPtEA6RnK4U9eLY7e_BsD57t4rlA5j_I0fQmYkpA_cfo9wXFcvpfwmSzIxxd-UhCN1kf6SP8H5hknxk |
| CitedBy_id | crossref_primary_10_1016_j_jenvman_2024_121138 crossref_primary_10_3390_smartcities8020065 crossref_primary_10_1016_j_rineng_2024_103236 crossref_primary_10_1016_j_biombioe_2024_107303 crossref_primary_10_1016_j_biortech_2022_128523 crossref_primary_10_1016_j_fuel_2022_124150 crossref_primary_10_1371_journal_pone_0328880 crossref_primary_10_1016_j_algal_2024_103422 crossref_primary_10_1016_j_applthermaleng_2023_122090 crossref_primary_10_1016_j_renene_2024_121888 crossref_primary_10_1007_s00521_023_09121_8 crossref_primary_10_1016_j_chemolab_2025_105391 crossref_primary_10_1016_j_biortech_2023_129145 crossref_primary_10_1016_j_scitotenv_2024_172863 crossref_primary_10_1002_asia_202400307 crossref_primary_10_1016_j_enconman_2023_117395 crossref_primary_10_1016_j_algal_2023_103094 crossref_primary_10_1016_j_fuel_2025_134901 crossref_primary_10_1109_TASC_2024_3421903 crossref_primary_10_1016_j_fuel_2022_127194 crossref_primary_10_3390_en15020407 crossref_primary_10_1038_s41598_022_11395_2 crossref_primary_10_1007_s40726_025_00352_y crossref_primary_10_1016_j_engappai_2023_107500 crossref_primary_10_1016_j_molliq_2024_126475 crossref_primary_10_1016_j_algal_2025_103935 crossref_primary_10_1016_j_apenergy_2023_122597 crossref_primary_10_1080_01430750_2025_2543914 crossref_primary_10_1016_j_fuel_2023_128546 crossref_primary_10_1016_j_mechmachtheory_2022_104970 crossref_primary_10_1016_j_energy_2022_126432 crossref_primary_10_1080_01614940_2022_2082650 crossref_primary_10_3390_bioengineering11111143 crossref_primary_10_1007_s11831_024_10144_0 crossref_primary_10_3389_fenvs_2024_1437644 crossref_primary_10_1016_j_jarmap_2024_100594 crossref_primary_10_3389_fmars_2022_947394 crossref_primary_10_1016_j_biortech_2023_130246 crossref_primary_10_3390_ijgi13080286 crossref_primary_10_1007_s42250_025_01293_1 crossref_primary_10_1016_j_biteb_2024_101805 crossref_primary_10_1016_j_compbiomed_2024_108248 crossref_primary_10_1007_s11356_025_36530_0 crossref_primary_10_1109_TIE_2022_3222655 crossref_primary_10_1177_03019233251314962 crossref_primary_10_1007_s10311_023_01609_y crossref_primary_10_1007_s10489_024_06109_2 crossref_primary_10_1007_s11274_025_04494_5 crossref_primary_10_1016_j_biotechadv_2025_108519 crossref_primary_10_1016_j_scitotenv_2023_162797 crossref_primary_10_3390_en16042035 crossref_primary_10_3390_pr13092929 crossref_primary_10_3390_microorganisms11081875 crossref_primary_10_1002_nag_3654 crossref_primary_10_1016_j_jenvman_2024_120135 crossref_primary_10_1016_j_watres_2024_121861 crossref_primary_10_1016_j_compchemeng_2025_109087 crossref_primary_10_1007_s00521_023_09272_8 crossref_primary_10_1016_j_enbenv_2025_05_012 crossref_primary_10_1016_j_fuel_2022_125312 crossref_primary_10_1016_j_fuel_2022_126249 crossref_primary_10_1016_j_compchemeng_2025_109355 crossref_primary_10_1080_14685248_2022_2134571 crossref_primary_10_2118_219749_PA crossref_primary_10_1007_s10668_024_05362_2 crossref_primary_10_1016_j_energy_2023_128336 crossref_primary_10_3390_en15093425 crossref_primary_10_1080_00295450_2025_2461426 crossref_primary_10_3390_app12010181 crossref_primary_10_1016_j_flatc_2023_100501 |
| Cites_doi | 10.1002/er.3699 10.1016/j.rser.2017.05.091 10.1016/j.cdc.2019.100238 10.1002/er.4855 10.1002/er.3663 10.1016/j.biteb.2020.100608 10.1016/j.conbuildmat.2020.118216 10.1016/j.biortech.2019.03.030 10.3390/en14082332 10.1016/j.rser.2013.05.063 10.1016/j.fuel.2021.120218 10.1016/j.energy.2014.05.033 10.1016/j.sajce.2016.07.001 10.1016/j.enconman.2008.09.024 10.1002/cjce.23436 10.1007/s12155-020-10144-5 10.1016/j.fuel.2018.09.117 10.1016/j.enconman.2017.10.093 10.1016/j.fuel.2021.120151 10.1016/j.advengsoft.2020.102887 10.1002/apj.517 10.1016/j.rser.2014.05.084 10.1016/j.fuproc.2013.12.003 10.1109/JPROC.2015.2494218 10.3844/ajassp.2016.1255.1263 10.1016/0022-2860(93)80097-F 10.1016/j.futures.2015.03.003 10.1002/apj.1660 10.1002/ceat.201700210 10.1115/1.4050489 10.4271/2018-01-0190 10.1007/s12649-016-9485-5 10.1016/j.measurement.2020.108727 10.1016/j.energy.2018.06.202 10.1007/s12155-019-10033-6 10.1016/j.rser.2020.110498 10.3390/en11112995 10.1016/j.energy.2013.03.057 10.1002/apj.410 10.1016/j.ymssp.2018.03.022 10.1016/j.cie.2019.07.033 10.1016/j.egyr.2020.11.156 10.1016/j.enpol.2008.08.016 10.1002/er.5699 10.1002/er.1695 10.1016/j.biortech.2010.07.076 10.1002/er.4333 10.1016/S0731-7085(99)00272-1 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Feb 1, 2022 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Feb 1, 2022 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| DOI | 10.1016/j.fuel.2021.122184 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7153 |
| ExternalDocumentID | 10_1016_j_fuel_2021_122184 S0016236121020603 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 ~HD 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| ID | FETCH-LOGICAL-c328t-5f8f0fb75d84f86e910d83c3c53ef6a1d9090322d6b1e8aa9fbdf3cdca54ccad3 |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706521900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-2361 |
| IngestDate | Wed Aug 13 07:19:45 EDT 2025 Tue Nov 18 21:19:00 EST 2025 Sat Nov 29 06:53:01 EST 2025 Fri Feb 23 02:45:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Microalgae Bayesian optimization Biodiesel Modeling Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-5f8f0fb75d84f86e910d83c3c53ef6a1d9090322d6b1e8aa9fbdf3cdca54ccad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2621880468 |
| PQPubID | 2045474 |
| ParticipantIDs | proquest_journals_2621880468 crossref_primary_10_1016_j_fuel_2021_122184 crossref_citationtrail_10_1016_j_fuel_2021_122184 elsevier_sciencedirect_doi_10_1016_j_fuel_2021_122184 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Agatonovic-Kustrin, Beresford (b0155) 2000; 22 Shahriari, Swersky, Wang, Adams, de Freitas (b0250) 2016; 104 Srivastava, Paul, Goud (b0090) 2018; 156 Kumar, Sharma (b0095) 2016; 7 Dadgar (b0115) 2021; 171 Foroutan, Mohammadi, Ramavandi (b0130) 2021; 291 Sultana, Hossain, Alam, Hashish, Islam (b0110) 2020; 243 Salama, Kurade, Abou-Shanab, El-Dalatony, Yang, Min (b0030) 2017; 79 Zurada (b0145) 1992 Mockus (b0235) 1989 Nautiyal, Subramanian, Dastidar (b0075) 2014; 120 Hossain, Hossain, Razzak (b0105) 2018; 41 Adewunmi, Ismail, Owolabi, Sultan, Olatunji, Ahmad (b0185) 2019; 97 Rayati, Rajabi Islami, Shamsaie Mehrgan (b0055) 2020; 13 Betiku, Omilakin, Ajala, Okeleye, Taiwo, Solomon (b0165) 2014; 72 Syafiuddin, Chong, Yuniarto, Hadibarata (b0020) 2020; 12 Bharathiraja, Chakravarthy, Kumar, Yuvaraj, Jayamuthunagai, Kumar (b0080) 2014; 38 Uzoh, Onukwuli (b0140) 2016; 22 Ayoola, Hymore, Omonhinmin, Olawole, Fayomi, Babatunde (b0270) 2019; 22 Vasistha, Khanra, Clifford, Rai (b0070) 2021; 137 Kose, Oncel (b0040) 2017; 41 Owoyele, Pal, Vidal (b0215) 2021; 143 Kazem, Yousif, Chaichan, Al-Waeli (b0170) 2019; 43 Lahiri, Ghanta (b0205) 2010; 5 Rahpeyma, Raheb (b0035) 2019; 12 Satyanarayana, Mariano, Vargas (b0045) 2011; 35 Gasteiger, Li, Simon, Novič, Zupan (b0150) 1993; 292 (b0255) 2005 Branco-Vieira, Mata, Martins, Freitas, Caetano (b0050) 2020; 6 Martinek, Krammer (b0160) 2019; 136 Qi, Luo, Wei, Fu (b0125) 2019; 236 Corral Bobadilla, Fernández Martínez, Lostado Lorza, Somovilla Gómez, Vergara González (b0275) 2018; 11 Vinoth Arul Raj, Bharathiraja, Vijayakumar, Arokiyaraj, Iyyappan, Praveen (b0085) 2019; 282 Moiz, Pal, Probst, Pei, Zhang, Som (b0220) 2018; 11 Bilanovic, Andargatchew, Kroeger, Shelef (b0005) 2009; 50 Abas, Kalair, Khan (b0015) 2015; 69 Vapnik, Vapnik (b0230) 1999 Singh Pali, Sharma, Kumar, Singh (b0100) 2021; 291 Xu, Zhang, Gu (b0200) 2012; 7 Owoyele, Pal, Torreira, Probst, Shaxted, Wilde (b0210) 2021 Pinzi, Lopez-Gimenez, Ruiz, Dorado (b0265) 2010; 101 Razzak, Hossain, Lucky, Bassi, De Lasa (b0025) 2013; 27 Wong, Wong, Cheung, Vong (b0195) 2013; 55 Tan, Tan, Ho, Lam, Show, Nguyen (b0065) 2020; 44 Snoek, Larochelle, Adams (b0240) 2012; 4 Wu, Chen, Zhang, Xiong, Lei, Deng (b0245) 2019; 17 Cheng, Yu (b0175) 2019; 43 Arenas, Rodriguez Palacio, Juantorena, Fernando, Sebastian (b0060) 2017; 41 Sultana, Zakir Hossain, Alam, Islam, Abtah (b0135) 2020; 149 Hossain, Sultana, Irfan, Elkanzi, Al-Aali, Taha (b0260) 2016; 13 Shafiee, Topal (b0010) 2009; 37 Martinez-Castillo, Astray, Mejuto (b0120) 2021; 14 Abbasian, Sattari (b0180) 2013; 8 Su, Li, Yang, Wen (b0225) 2018; 110 Silitonga, Masjuki, Ong, Sebayang, Dharma, Kusumo (b0190) 2018; 159 Arenas (10.1016/j.fuel.2021.122184_b0060) 2017; 41 Gasteiger (10.1016/j.fuel.2021.122184_b0150) 1993; 292 Martinek (10.1016/j.fuel.2021.122184_b0160) 2019; 136 Pinzi (10.1016/j.fuel.2021.122184_b0265) 2010; 101 Tan (10.1016/j.fuel.2021.122184_b0065) 2020; 44 Sultana (10.1016/j.fuel.2021.122184_b0110) 2020; 243 Shafiee (10.1016/j.fuel.2021.122184_b0010) 2009; 37 Vinoth Arul Raj (10.1016/j.fuel.2021.122184_b0085) 2019; 282 Kumar (10.1016/j.fuel.2021.122184_b0095) 2016; 7 Uzoh (10.1016/j.fuel.2021.122184_b0140) 2016; 22 Dadgar (10.1016/j.fuel.2021.122184_b0115) 2021; 171 Kazem (10.1016/j.fuel.2021.122184_b0170) 2019; 43 Vapnik (10.1016/j.fuel.2021.122184_b0230) 1999 Satyanarayana (10.1016/j.fuel.2021.122184_b0045) 2011; 35 Vasistha (10.1016/j.fuel.2021.122184_b0070) 2021; 137 Kose (10.1016/j.fuel.2021.122184_b0040) 2017; 41 Cheng (10.1016/j.fuel.2021.122184_b0175) 2019; 43 Bilanovic (10.1016/j.fuel.2021.122184_b0005) 2009; 50 Qi (10.1016/j.fuel.2021.122184_b0125) 2019; 236 Silitonga (10.1016/j.fuel.2021.122184_b0190) 2018; 159 Shahriari (10.1016/j.fuel.2021.122184_b0250) 2016; 104 Zurada (10.1016/j.fuel.2021.122184_b0145) 1992 Rayati (10.1016/j.fuel.2021.122184_b0055) 2020; 13 Corral Bobadilla (10.1016/j.fuel.2021.122184_b0275) 2018; 11 Srivastava (10.1016/j.fuel.2021.122184_b0090) 2018; 156 Owoyele (10.1016/j.fuel.2021.122184_b0215) 2021; 143 Singh Pali (10.1016/j.fuel.2021.122184_b0100) 2021; 291 Lahiri (10.1016/j.fuel.2021.122184_b0205) 2010; 5 Hossain (10.1016/j.fuel.2021.122184_b0260) 2016; 13 Branco-Vieira (10.1016/j.fuel.2021.122184_b0050) 2020; 6 Agatonovic-Kustrin (10.1016/j.fuel.2021.122184_b0155) 2000; 22 Xu (10.1016/j.fuel.2021.122184_b0200) 2012; 7 Salama (10.1016/j.fuel.2021.122184_b0030) 2017; 79 Wu (10.1016/j.fuel.2021.122184_b0245) 2019; 17 Nautiyal (10.1016/j.fuel.2021.122184_b0075) 2014; 120 Bharathiraja (10.1016/j.fuel.2021.122184_b0080) 2014; 38 Syafiuddin (10.1016/j.fuel.2021.122184_b0020) 2020; 12 Betiku (10.1016/j.fuel.2021.122184_b0165) 2014; 72 Abbasian (10.1016/j.fuel.2021.122184_b0180) 2013; 8 Mockus (10.1016/j.fuel.2021.122184_b0235) 1989 Moiz (10.1016/j.fuel.2021.122184_b0220) 2018; 11 Wong (10.1016/j.fuel.2021.122184_b0195) 2013; 55 Abas (10.1016/j.fuel.2021.122184_b0015) 2015; 69 Foroutan (10.1016/j.fuel.2021.122184_b0130) 2021; 291 Rahpeyma (10.1016/j.fuel.2021.122184_b0035) 2019; 12 Razzak (10.1016/j.fuel.2021.122184_b0025) 2013; 27 Adewunmi (10.1016/j.fuel.2021.122184_b0185) 2019; 97 Owoyele (10.1016/j.fuel.2021.122184_b0210) 2021 (10.1016/j.fuel.2021.122184_b0255) 2005 Sultana (10.1016/j.fuel.2021.122184_b0135) 2020; 149 Ayoola (10.1016/j.fuel.2021.122184_b0270) 2019; 22 Su (10.1016/j.fuel.2021.122184_b0225) 2018; 110 Martinez-Castillo (10.1016/j.fuel.2021.122184_b0120) 2021; 14 Snoek (10.1016/j.fuel.2021.122184_b0240) 2012; 4 Hossain (10.1016/j.fuel.2021.122184_b0105) 2018; 41 |
| References_xml | – volume: 37 start-page: 181 year: 2009 end-page: 189 ident: b0010 article-title: When will fossil fuel reserves be diminished? publication-title: Energy Policy – volume: 22 start-page: 100238 year: 2019 ident: b0270 article-title: Analysis of waste groundnut oil biodiesel production using response surface methodology and artificial neural network publication-title: Chem Data Collect – volume: 13 start-page: 1235 year: 2020 end-page: 1245 ident: b0055 article-title: Light Intensity Improves Growth, Lipid Productivity, and Fatty Acid Profile of Chlorococcum oleofaciens (Chlorophyceae) for Biodiesel Production publication-title: Bioenergy Res – volume: 101 start-page: 9587 year: 2010 end-page: 9593 ident: b0265 article-title: Response surface modeling to predict biodiesel yield in a multi-feedstock biodiesel production plant publication-title: Bioresour Technol – volume: 120 start-page: 79 year: 2014 end-page: 88 ident: b0075 article-title: Production and characterization of biodiesel from algae publication-title: Fuel Process Technol – volume: 38 start-page: 368 year: 2014 end-page: 382 ident: b0080 article-title: Biodiesel production using chemical and biological methods - A review of process, catalyst, acyl acceptor, source and process variables publication-title: Renew Sustain Energy Rev – volume: 50 start-page: 262 year: 2009 end-page: 267 ident: b0005 article-title: Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations - Response surface methodology analysis publication-title: Energy Convers Manage – volume: 292 start-page: 141 year: 1993 end-page: 159 ident: b0150 article-title: Neural nets for mass and vibrational spectra publication-title: J Mol Struct – volume: 14 start-page: 2332 year: 2021 ident: b0120 article-title: Modelling and Prediction of Monthly Global Irradiation Using Different Prediction Models publication-title: Energies – volume: 236 start-page: 1400 year: 2019 end-page: 1407 ident: b0125 article-title: Estimation of low calorific value of blended coals based on support vector regression and sensitivity analysis in coal-fired power plants publication-title: Fuel – volume: 136 start-page: 187 year: 2019 end-page: 194 ident: b0160 article-title: Analysing machine learning techniques for predicting the hole-filling in pin-in-paste technology publication-title: Comput Ind Eng – volume: 104 start-page: 148 year: 2016 end-page: 175 ident: b0250 article-title: Taking the human out of the loop: A review of Bayesian optimization publication-title: Proc IEEE – volume: 12 start-page: 100608 year: 2020 ident: b0020 article-title: The current scenario and challenges of biodiesel production in Asian countries: A review publication-title: Bioresour Technol Reports – volume: 11 start-page: 291 year: 2018 end-page: 306 ident: b0220 article-title: A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing publication-title: SAE Int J Commer Veh – volume: 137 start-page: 110498 year: 2021 ident: b0070 article-title: Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review publication-title: Renew Sustain Energy Rev – volume: 69 start-page: 31 year: 2015 end-page: 49 ident: b0015 article-title: Review of fossil fuels and future energy technologies publication-title: Futures – volume: 4 start-page: 2951 year: 2012 end-page: 2959 ident: b0240 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Adv Neural Inf Process Syst. – volume: 156 start-page: 269 year: 2018 end-page: 278 ident: b0090 article-title: Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition publication-title: Energy Convers Manage – volume: 159 start-page: 1075 year: 2018 end-page: 1087 ident: b0190 article-title: Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine publication-title: Energy – volume: 35 start-page: 291 year: 2011 end-page: 311 ident: b0045 article-title: A review on microalgae, a versatile source for sustainable energy and materials publication-title: Int J Energy Res – volume: 41 start-page: 1313 year: 2018 end-page: 1323 ident: b0105 article-title: Optimization of CO publication-title: Chem Eng Technol – volume: 143 year: 2021 ident: b0215 article-title: An Automated Machine Learning-Genetic Algorithm Framework With Active Learning for Design Optimization publication-title: J Energy Resour Technol – volume: 55 start-page: 519 year: 2013 end-page: 528 ident: b0195 article-title: Modeling and optimization of biodiesel engine performance using advanced machine learning methods publication-title: Energy – year: 1992 ident: b0145 article-title: Introduction to artificial neural systems – volume: 44 start-page: 9757 year: 2020 end-page: 9771 ident: b0065 article-title: Conceptual design of a hybrid thin layer cascade photobioreactor for microalgal biodiesel synthesis publication-title: Int J Energy Res – year: 1989 ident: b0235 publication-title: Global Optimization and the Bayesian Approach. D – year: 2005 ident: b0255 publication-title: Gaussian Processes for Machine Learning – volume: 27 start-page: 622 year: 2013 end-page: 653 ident: b0025 article-title: Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing - A review publication-title: Renew Sustain Energy Rev – volume: 43 start-page: 8572 year: 2019 end-page: 8591 ident: b0170 article-title: Experimental and deep learning artificial neural network approach for evaluating grid-connected photovoltaic systems publication-title: Int J Energy Res – volume: 22 start-page: 717 year: 2000 end-page: 727 ident: b0155 article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research publication-title: J Pharm Biomed Anal – volume: 171 start-page: 108727 year: 2021 ident: b0115 article-title: Developing new measuring and ANN prediction method for the longitudinal diameter of intermingled untwisted heat set bulk continues filament yarns publication-title: Meas J Int Meas Confed – volume: 43 start-page: 1928 year: 2019 end-page: 1973 ident: b0175 article-title: A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems publication-title: Int J Energy Res – year: 1999 ident: b0230 article-title: The Nature of Statistical Learning Theory – volume: 6 start-page: 325 year: 2020 end-page: 332 ident: b0050 article-title: Economic analysis of microalgae biodiesel production in a small-scale facility publication-title: Energy Rep – volume: 282 start-page: 348 year: 2019 end-page: 352 ident: b0085 article-title: Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous Poly Ethylene Glycol (PEG) encapsulated ZnOMn2+ nanocatalyst publication-title: Bioresour Technol – volume: 72 start-page: 266 year: 2014 end-page: 273 ident: b0165 article-title: Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis publication-title: Energy – volume: 243 start-page: 118216 year: 2020 ident: b0110 article-title: An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete publication-title: Constr Build Mater – volume: 41 start-page: 761 year: 2017 end-page: 789 ident: b0060 article-title: Microalgae as a potential source for biodiesel production: techniques, methods, and other challenges publication-title: Int J Energy Res – volume: 11 start-page: 2995 year: 2018 ident: b0275 article-title: Optimizing Biodiesel Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines publication-title: Energies – volume: 7 start-page: 150 year: 2012 end-page: 158 ident: b0200 article-title: Modeling of ammonia conversion rate in ammonia synthesis based on a hybrid algorithm and least squares support vector regression publication-title: Asia-Pacific J Chem Eng – volume: 12 start-page: 958 year: 2019 end-page: 965 ident: b0035 article-title: Microalgae Biodiesel as a Valuable Alternative to Fossil Fuels publication-title: Bioenergy Res – volume: 97 start-page: 2969 year: 2019 end-page: 2978 ident: b0185 article-title: Hybrid Intelligent Modelling of the Viscoelastic Moduli of Coal Fly Ash Based Polymer Gel System for Water Shutoff Treatment in Oil and Gas Wells publication-title: Can J Chem Eng – volume: 13 start-page: 1255 year: 2016 end-page: 1263 ident: b0260 article-title: Optimization of biodiesel production from spent palm cooking oil using fractional factorial design combined with the response surface methodology publication-title: Am J Appl Sci – volume: 7 start-page: 1105 year: 2016 end-page: 1114 ident: b0095 article-title: Optimization of Transesterification of Chlorella protothecoides Oil to Biodiesel Using Box-Behnken Design Method publication-title: Waste Biomass Valorization – volume: 8 start-page: 178 year: 2013 end-page: 188 ident: b0180 article-title: Cell voltage and chlorine current efficiency of aqueous HCl electrolysis: artificial neural network modeling publication-title: Asia-Pacific J Chem Eng – volume: 291 start-page: 120218 year: 2021 ident: b0100 article-title: Biodiesel yield and properties optimization from Kusum oil by RSM publication-title: Fuel – volume: 291 start-page: 120151 year: 2021 ident: b0130 article-title: Waste glass catalyst for biodiesel production from waste chicken fat: Optimization by RSM and ANNs and toxicity assessment publication-title: Fuel – volume: 5 start-page: 847 year: 2010 end-page: 861 ident: b0205 article-title: Development of a hybrid support vector machine and genetic algorithm model for regime identification of slurry transport in pipelines publication-title: Asia-Pacific J Chem Eng – volume: 149 start-page: 102887 year: 2020 ident: b0135 article-title: Soft computing approaches for comparative prediction of the mechanical properties of jute fiber reinforced concrete publication-title: Adv Eng Softw – volume: 22 start-page: 6 year: 2016 end-page: 16 ident: b0140 article-title: Extraction, analysis and desaturation of gmelina seed oil using different soft computing approaches publication-title: South African J Chem Eng – volume: 17 start-page: 26 year: 2019 end-page: 40 ident: b0245 article-title: Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimizationb publication-title: J Electron Sci Technol – volume: 41 start-page: 924 year: 2017 end-page: 951 ident: b0040 article-title: Algae as a promising resource for biofuel industry: facts and challenges publication-title: Int J Energy Res – volume: 110 start-page: 412 year: 2018 end-page: 427 ident: b0225 article-title: Wavelet support vector machine-based prediction model of dam deformation publication-title: Mech Syst Signal Process – volume: 79 start-page: 1189 year: 2017 end-page: 1211 ident: b0030 article-title: Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation publication-title: Renew Sustain Energy Rev – year: 2021 ident: b0210 article-title: Application of an automated machine learning-genetic algorithm (AutoML-GA) coupled with computational fluid dynamics simulations for rapid engine design optimization publication-title: Https://DoiOrg/101177/14680874211023466 – volume: 41 start-page: 924 issue: 7 year: 2017 ident: 10.1016/j.fuel.2021.122184_b0040 article-title: Algae as a promising resource for biofuel industry: facts and challenges publication-title: Int J Energy Res doi: 10.1002/er.3699 – volume: 79 start-page: 1189 year: 2017 ident: 10.1016/j.fuel.2021.122184_b0030 article-title: Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.091 – volume: 22 start-page: 100238 year: 2019 ident: 10.1016/j.fuel.2021.122184_b0270 article-title: Analysis of waste groundnut oil biodiesel production using response surface methodology and artificial neural network publication-title: Chem Data Collect doi: 10.1016/j.cdc.2019.100238 – volume: 43 start-page: 8572 issue: 14 year: 2019 ident: 10.1016/j.fuel.2021.122184_b0170 article-title: Experimental and deep learning artificial neural network approach for evaluating grid-connected photovoltaic systems publication-title: Int J Energy Res doi: 10.1002/er.4855 – volume: 41 start-page: 761 issue: 6 year: 2017 ident: 10.1016/j.fuel.2021.122184_b0060 article-title: Microalgae as a potential source for biodiesel production: techniques, methods, and other challenges publication-title: Int J Energy Res doi: 10.1002/er.3663 – volume: 12 start-page: 100608 year: 2020 ident: 10.1016/j.fuel.2021.122184_b0020 article-title: The current scenario and challenges of biodiesel production in Asian countries: A review publication-title: Bioresour Technol Reports doi: 10.1016/j.biteb.2020.100608 – volume: 243 start-page: 118216 year: 2020 ident: 10.1016/j.fuel.2021.122184_b0110 article-title: An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.118216 – volume: 282 start-page: 348 year: 2019 ident: 10.1016/j.fuel.2021.122184_b0085 article-title: Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous Poly Ethylene Glycol (PEG) encapsulated ZnOMn2+ nanocatalyst publication-title: Bioresour Technol doi: 10.1016/j.biortech.2019.03.030 – volume: 14 start-page: 2332 year: 2021 ident: 10.1016/j.fuel.2021.122184_b0120 article-title: Modelling and Prediction of Monthly Global Irradiation Using Different Prediction Models publication-title: Energies doi: 10.3390/en14082332 – volume: 27 start-page: 622 year: 2013 ident: 10.1016/j.fuel.2021.122184_b0025 article-title: Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing - A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.05.063 – volume: 291 start-page: 120218 year: 2021 ident: 10.1016/j.fuel.2021.122184_b0100 article-title: Biodiesel yield and properties optimization from Kusum oil by RSM publication-title: Fuel doi: 10.1016/j.fuel.2021.120218 – volume: 72 start-page: 266 year: 2014 ident: 10.1016/j.fuel.2021.122184_b0165 article-title: Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis publication-title: Energy doi: 10.1016/j.energy.2014.05.033 – volume: 22 start-page: 6 year: 2016 ident: 10.1016/j.fuel.2021.122184_b0140 article-title: Extraction, analysis and desaturation of gmelina seed oil using different soft computing approaches publication-title: South African J Chem Eng doi: 10.1016/j.sajce.2016.07.001 – volume: 50 start-page: 262 issue: 2 year: 2009 ident: 10.1016/j.fuel.2021.122184_b0005 article-title: Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations - Response surface methodology analysis publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.09.024 – year: 1999 ident: 10.1016/j.fuel.2021.122184_b0230 – volume: 4 start-page: 2951 year: 2012 ident: 10.1016/j.fuel.2021.122184_b0240 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Adv Neural Inf Process Syst. – volume: 97 start-page: 2969 issue: 11 year: 2019 ident: 10.1016/j.fuel.2021.122184_b0185 article-title: Hybrid Intelligent Modelling of the Viscoelastic Moduli of Coal Fly Ash Based Polymer Gel System for Water Shutoff Treatment in Oil and Gas Wells publication-title: Can J Chem Eng doi: 10.1002/cjce.23436 – volume: 13 start-page: 1235 issue: 4 year: 2020 ident: 10.1016/j.fuel.2021.122184_b0055 article-title: Light Intensity Improves Growth, Lipid Productivity, and Fatty Acid Profile of Chlorococcum oleofaciens (Chlorophyceae) for Biodiesel Production publication-title: Bioenergy Res doi: 10.1007/s12155-020-10144-5 – volume: 236 start-page: 1400 year: 2019 ident: 10.1016/j.fuel.2021.122184_b0125 article-title: Estimation of low calorific value of blended coals based on support vector regression and sensitivity analysis in coal-fired power plants publication-title: Fuel doi: 10.1016/j.fuel.2018.09.117 – volume: 156 start-page: 269 year: 2018 ident: 10.1016/j.fuel.2021.122184_b0090 article-title: Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.10.093 – volume: 291 start-page: 120151 year: 2021 ident: 10.1016/j.fuel.2021.122184_b0130 article-title: Waste glass catalyst for biodiesel production from waste chicken fat: Optimization by RSM and ANNs and toxicity assessment publication-title: Fuel doi: 10.1016/j.fuel.2021.120151 – volume: 149 start-page: 102887 year: 2020 ident: 10.1016/j.fuel.2021.122184_b0135 article-title: Soft computing approaches for comparative prediction of the mechanical properties of jute fiber reinforced concrete publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2020.102887 – volume: 7 start-page: 150 issue: 1 year: 2012 ident: 10.1016/j.fuel.2021.122184_b0200 article-title: Modeling of ammonia conversion rate in ammonia synthesis based on a hybrid algorithm and least squares support vector regression publication-title: Asia-Pacific J Chem Eng doi: 10.1002/apj.517 – volume: 38 start-page: 368 year: 2014 ident: 10.1016/j.fuel.2021.122184_b0080 article-title: Biodiesel production using chemical and biological methods - A review of process, catalyst, acyl acceptor, source and process variables publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.05.084 – volume: 120 start-page: 79 year: 2014 ident: 10.1016/j.fuel.2021.122184_b0075 article-title: Production and characterization of biodiesel from algae publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2013.12.003 – volume: 104 start-page: 148 issue: 1 year: 2016 ident: 10.1016/j.fuel.2021.122184_b0250 article-title: Taking the human out of the loop: A review of Bayesian optimization publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 13 start-page: 1255 issue: 11 year: 2016 ident: 10.1016/j.fuel.2021.122184_b0260 article-title: Optimization of biodiesel production from spent palm cooking oil using fractional factorial design combined with the response surface methodology publication-title: Am J Appl Sci doi: 10.3844/ajassp.2016.1255.1263 – volume: 292 start-page: 141 year: 1993 ident: 10.1016/j.fuel.2021.122184_b0150 article-title: Neural nets for mass and vibrational spectra publication-title: J Mol Struct doi: 10.1016/0022-2860(93)80097-F – year: 1989 ident: 10.1016/j.fuel.2021.122184_b0235 – volume: 69 start-page: 31 year: 2015 ident: 10.1016/j.fuel.2021.122184_b0015 article-title: Review of fossil fuels and future energy technologies publication-title: Futures doi: 10.1016/j.futures.2015.03.003 – volume: 8 start-page: 178 issue: 1 year: 2013 ident: 10.1016/j.fuel.2021.122184_b0180 article-title: Cell voltage and chlorine current efficiency of aqueous HCl electrolysis: artificial neural network modeling publication-title: Asia-Pacific J Chem Eng doi: 10.1002/apj.1660 – volume: 41 start-page: 1313 issue: 7 year: 2018 ident: 10.1016/j.fuel.2021.122184_b0105 article-title: Optimization of CO 2 Biofixation by Chlorella vulgaris Using a Tubular Photobioreactor publication-title: Chem Eng Technol doi: 10.1002/ceat.201700210 – volume: 143 year: 2021 ident: 10.1016/j.fuel.2021.122184_b0215 article-title: An Automated Machine Learning-Genetic Algorithm Framework With Active Learning for Design Optimization publication-title: J Energy Resour Technol doi: 10.1115/1.4050489 – volume: 17 start-page: 26 year: 2019 ident: 10.1016/j.fuel.2021.122184_b0245 article-title: Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimizationb publication-title: J Electron Sci Technol – volume: 11 start-page: 291 issue: 5 year: 2018 ident: 10.1016/j.fuel.2021.122184_b0220 article-title: A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing publication-title: SAE Int J Commer Veh doi: 10.4271/2018-01-0190 – volume: 7 start-page: 1105 issue: 5 year: 2016 ident: 10.1016/j.fuel.2021.122184_b0095 article-title: Optimization of Transesterification of Chlorella protothecoides Oil to Biodiesel Using Box-Behnken Design Method publication-title: Waste Biomass Valorization doi: 10.1007/s12649-016-9485-5 – year: 2021 ident: 10.1016/j.fuel.2021.122184_b0210 article-title: Application of an automated machine learning-genetic algorithm (AutoML-GA) coupled with computational fluid dynamics simulations for rapid engine design optimization publication-title: Https://DoiOrg/101177/14680874211023466 – volume: 171 start-page: 108727 year: 2021 ident: 10.1016/j.fuel.2021.122184_b0115 article-title: Developing new measuring and ANN prediction method for the longitudinal diameter of intermingled untwisted heat set bulk continues filament yarns publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2020.108727 – year: 2005 ident: 10.1016/j.fuel.2021.122184_b0255 – volume: 159 start-page: 1075 year: 2018 ident: 10.1016/j.fuel.2021.122184_b0190 article-title: Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2018.06.202 – volume: 12 start-page: 958 issue: 4 year: 2019 ident: 10.1016/j.fuel.2021.122184_b0035 article-title: Microalgae Biodiesel as a Valuable Alternative to Fossil Fuels publication-title: Bioenergy Res doi: 10.1007/s12155-019-10033-6 – volume: 137 start-page: 110498 year: 2021 ident: 10.1016/j.fuel.2021.122184_b0070 article-title: Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110498 – volume: 11 start-page: 2995 year: 2018 ident: 10.1016/j.fuel.2021.122184_b0275 article-title: Optimizing Biodiesel Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines publication-title: Energies doi: 10.3390/en11112995 – volume: 55 start-page: 519 year: 2013 ident: 10.1016/j.fuel.2021.122184_b0195 article-title: Modeling and optimization of biodiesel engine performance using advanced machine learning methods publication-title: Energy doi: 10.1016/j.energy.2013.03.057 – volume: 5 start-page: 847 issue: 6 year: 2010 ident: 10.1016/j.fuel.2021.122184_b0205 article-title: Development of a hybrid support vector machine and genetic algorithm model for regime identification of slurry transport in pipelines publication-title: Asia-Pacific J Chem Eng doi: 10.1002/apj.410 – volume: 110 start-page: 412 year: 2018 ident: 10.1016/j.fuel.2021.122184_b0225 article-title: Wavelet support vector machine-based prediction model of dam deformation publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.03.022 – volume: 136 start-page: 187 year: 2019 ident: 10.1016/j.fuel.2021.122184_b0160 article-title: Analysing machine learning techniques for predicting the hole-filling in pin-in-paste technology publication-title: Comput Ind Eng doi: 10.1016/j.cie.2019.07.033 – volume: 6 start-page: 325 year: 2020 ident: 10.1016/j.fuel.2021.122184_b0050 article-title: Economic analysis of microalgae biodiesel production in a small-scale facility publication-title: Energy Rep doi: 10.1016/j.egyr.2020.11.156 – volume: 37 start-page: 181 issue: 1 year: 2009 ident: 10.1016/j.fuel.2021.122184_b0010 article-title: When will fossil fuel reserves be diminished? publication-title: Energy Policy doi: 10.1016/j.enpol.2008.08.016 – volume: 44 start-page: 9757 issue: 12 year: 2020 ident: 10.1016/j.fuel.2021.122184_b0065 article-title: Conceptual design of a hybrid thin layer cascade photobioreactor for microalgal biodiesel synthesis publication-title: Int J Energy Res doi: 10.1002/er.5699 – year: 1992 ident: 10.1016/j.fuel.2021.122184_b0145 – volume: 35 start-page: 291 issue: 4 year: 2011 ident: 10.1016/j.fuel.2021.122184_b0045 article-title: A review on microalgae, a versatile source for sustainable energy and materials publication-title: Int J Energy Res doi: 10.1002/er.1695 – volume: 101 start-page: 9587 issue: 24 year: 2010 ident: 10.1016/j.fuel.2021.122184_b0265 article-title: Response surface modeling to predict biodiesel yield in a multi-feedstock biodiesel production plant publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.07.076 – volume: 43 start-page: 1928 issue: 6 year: 2019 ident: 10.1016/j.fuel.2021.122184_b0175 article-title: A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems publication-title: Int J Energy Res doi: 10.1002/er.4333 – volume: 22 start-page: 717 issue: 5 year: 2000 ident: 10.1016/j.fuel.2021.122184_b0155 article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research publication-title: J Pharm Biomed Anal doi: 10.1016/S0731-7085(99)00272-1 |
| SSID | ssj0007854 |
| Score | 2.6228836 |
| Snippet | •Bayesian optimization algorithm (BOA) was implemented to tune hyperparameters.•Hybrid BOA-ANN and BOA-SVR were developed for the prediction of biodiesel... Biodiesel has appeared as a renewable and clean energy resource and a means of diminishing global warming. This study provides Bayesian optimization algorithm... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122184 |
| SubjectTerms | Algae Algorithms Aquatic microorganisms Artificial neural networks Bayesian analysis Bayesian optimization Biodiesel Biodiesel fuels Biofuels Clean energy Climate change Diesel Energy sources Global warming Hybridization Learning algorithms Learning theory Machine learning Mathematical models Microalgae Modeling Modelling Neural networks Oil Optimization Optimization algorithms Performance enhancement Root-mean-square errors Support vector machines |
| Title | Prediction of biodiesel production from microalgal oil using Bayesian optimization algorithm-based machine learning approaches |
| URI | https://dx.doi.org/10.1016/j.fuel.2021.122184 https://www.proquest.com/docview/2621880468 |
| Volume | 309 |
| WOSCitedRecordID | wos000706521900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RKGgP3Cxb8Xt9DKgIkBpVapEiLtZ6HzSVY1dxXJVL_0f_LbPeXdtEtKIHLlZkrTebzJfZbyffzCD0IaNklnIhXcp45EZFkLgZZ9LlwEUI9cNUCt1sIl0syHKZHU8mNzYX5rJMq4pcXWUX_9XUcA-MrVJn72HuflK4Aa_B6HAFs8P1nwx_vFH_vVgiWKxqpRMUpVJicV0qVueUrJUUT2VyABtdlU7bBQ0-0l-iS6uswZWsTY6mA6PqzWp7tnbVpseddafAFLblxM--MrkRJNq2ny28rQpDqNbbWkTfhx1O2hJoKdUO_szK6pWMt2mormtw4h15zg9guL1-eF60DdWYPPL6myWtCi0TX3jjIAacf2e9IMQ4Zj9xVR2YsWMOZ9nItfqBOo3-1evrAMS5J-FjwZE_8L1h8J8ltne2vl6QaLVu57maI1dz5HqOB2gvSOOMTNHe_Ovh8lu_zack1iW-zcpNRpYWD-6u5DbWs7P_d6Tm9Cl6Yk4jeK5R9AxNRPUcPR7VqHyBrgc84VriHk94wBNWeMIDnjDgCXd4whZPeIwnvIMnbPCELZ7wgKeX6Pvnw9NPX1zTtMNlYUC2biyJnMkijTmJJEkE0FFOQhayOBQyoT7PVGQwCHhS-IJQmsmCy5BxRuMIvAkPX6FpVVfiNcJcJkRkKS1ikkVwFKE8SGAkkGJFu2dsH_n2S82ZqWivGquU-e3m3EdO_8yFrudy5-jY2io3jFQzzRygd-dzB9awuXENTR4kgSp-GCXkzb0W8RY9Gn4yB2i63bTiHXrILrerZvPewPI3eri7oA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+biodiesel+production+from+microalgal+oil+using+Bayesian+optimization+algorithm-based+machine+learning+approaches&rft.jtitle=Fuel+%28Guildford%29&rft.au=Sultana%2C+Nahid&rft.au=Hossain%2C+S.M.+Zakir&rft.au=Abusaad%2C+M.&rft.au=Alanbar%2C+N.&rft.date=2022-02-01&rft.issn=0016-2361&rft.volume=309&rft.spage=122184&rft_id=info:doi/10.1016%2Fj.fuel.2021.122184&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2021_122184 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |