Data-Driven Finite-Horizon H∞ Tracking Control With Event-Triggered Mechanism for the Continuous-Time Nonlinear Systems

In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 34; H. 8; S. 4687 - 4701
Hauptverfasser: Zhang, Huaguang, Ming, Zhongyang, Yan, Yuqing, Wang, Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> optimal tracking control problem with constrained control input. First, using available input-output data, a data-driven model is established by a recurrent NN (RNN) to reconstruct the unknown system. Then, an augmented system with event-triggered mechanism is obtained by a tracking error system and a command generator. We present a novel event-triggering condition without Zeno behavior. On this basis, the relationship between event-triggered Hamilton-Jacobi-Isaacs (HJI) equation and time-triggered HJI equation is given in <xref ref-type="theorem" rid="theorem3">Theorem 3 . Since the solution of the HJI equation is time-dependent for the augmented system, the time-dependent activation functions of NNs are considered. Moreover, an extra error is incorporated to satisfy the terminal constraints of cost function. This adaptive control pattern finds, in real time, approximations of the optimal value while also ensuring the uniform ultimate boundedness of the closed-loop system. Finally, the effectiveness of the proposed near-optimal control pattern is verified by two simulation examples.
AbstractList In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon [Formula Omitted] optimal tracking control problem with constrained control input. First, using available input–output data, a data-driven model is established by a recurrent NN (RNN) to reconstruct the unknown system. Then, an augmented system with event-triggered mechanism is obtained by a tracking error system and a command generator. We present a novel event-triggering condition without Zeno behavior. On this basis, the relationship between event-triggered Hamilton–Jacobi–Isaacs (HJI) equation and time-triggered HJI equation is given in Theorem 3 . Since the solution of the HJI equation is time-dependent for the augmented system, the time-dependent activation functions of NNs are considered. Moreover, an extra error is incorporated to satisfy the terminal constraints of cost function. This adaptive control pattern finds, in real time, approximations of the optimal value while also ensuring the uniform ultimate boundedness of the closed-loop system. Finally, the effectiveness of the proposed near-optimal control pattern is verified by two simulation examples.
In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> optimal tracking control problem with constrained control input. First, using available input-output data, a data-driven model is established by a recurrent NN (RNN) to reconstruct the unknown system. Then, an augmented system with event-triggered mechanism is obtained by a tracking error system and a command generator. We present a novel event-triggering condition without Zeno behavior. On this basis, the relationship between event-triggered Hamilton-Jacobi-Isaacs (HJI) equation and time-triggered HJI equation is given in <xref ref-type="theorem" rid="theorem3">Theorem 3 . Since the solution of the HJI equation is time-dependent for the augmented system, the time-dependent activation functions of NNs are considered. Moreover, an extra error is incorporated to satisfy the terminal constraints of cost function. This adaptive control pattern finds, in real time, approximations of the optimal value while also ensuring the uniform ultimate boundedness of the closed-loop system. Finally, the effectiveness of the proposed near-optimal control pattern is verified by two simulation examples.
In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon H∞ optimal tracking control problem with constrained control input. First, using available input-output data, a data-driven model is established by a recurrent NN (RNN) to reconstruct the unknown system. Then, an augmented system with event-triggered mechanism is obtained by a tracking error system and a command generator. We present a novel event-triggering condition without Zeno behavior. On this basis, the relationship between event-triggered Hamilton-Jacobi-Isaacs (HJI) equation and time-triggered HJI equation is given in Theorem 3. Since the solution of the HJI equation is time-dependent for the augmented system, the time-dependent activation functions of NNs are considered. Moreover, an extra error is incorporated to satisfy the terminal constraints of cost function. This adaptive control pattern finds, in real time, approximations of the optimal value while also ensuring the uniform ultimate boundedness of the closed-loop system. Finally, the effectiveness of the proposed near-optimal control pattern is verified by two simulation examples.In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon H∞ optimal tracking control problem with constrained control input. First, using available input-output data, a data-driven model is established by a recurrent NN (RNN) to reconstruct the unknown system. Then, an augmented system with event-triggered mechanism is obtained by a tracking error system and a command generator. We present a novel event-triggering condition without Zeno behavior. On this basis, the relationship between event-triggered Hamilton-Jacobi-Isaacs (HJI) equation and time-triggered HJI equation is given in Theorem 3. Since the solution of the HJI equation is time-dependent for the augmented system, the time-dependent activation functions of NNs are considered. Moreover, an extra error is incorporated to satisfy the terminal constraints of cost function. This adaptive control pattern finds, in real time, approximations of the optimal value while also ensuring the uniform ultimate boundedness of the closed-loop system. Finally, the effectiveness of the proposed near-optimal control pattern is verified by two simulation examples.
Author Yan, Yuqing
Wang, Wei
Ming, Zhongyang
Zhang, Huaguang
Author_xml – sequence: 1
  givenname: Huaguang
  orcidid: 0000-0002-2375-9824
  surname: Zhang
  fullname: Zhang, Huaguang
  email: hgzhang@ieee.org
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, Liaoning, China
– sequence: 2
  givenname: Zhongyang
  surname: Ming
  fullname: Ming, Zhongyang
  email: zhongyangming427@163.com
  organization: School of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
– sequence: 3
  givenname: Yuqing
  surname: Yan
  fullname: Yan, Yuqing
  email: yanyuqing815@163.com
  organization: School of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0003-4683-3166
  surname: Wang
  fullname: Wang, Wei
  email: weiwei@stumail.neu.edu.cn
  organization: School of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
BookMark eNp9kUtuFDEQhi0URB7kArCxxIZND350u-0lmjwGaRgWaQS7lrHLMw7ddrA9SMMJOAWH4yT0ZKIssqA2VYvvr_pV_yk6CjEAQq8omVFK1LtutVrezBhhdMYpFbWon6ETRgWrGJfy6HFuvx6j85xvyVSCNKJWL9AxrwXniosTtLvQRVcXyf-EgK988AWqRUz-Vwx48ff3H9wlbb77sMbzGEqKA_7iywZfTnipuuTXa0hg8UcwGx18HrGLCZcN3OM-bOM2V50fAa9iGHwAnfDNLhcY80v03Okhw_lDP0Ofry67-aJafrr-MH-_rAxnslQN-2Yps9YQQtua6lo7YaFVVlHLpVDCOaosqUljrGNMmbpxklilSeO4M5afobeHvXcp_thCLv3os4Fh0AEmdz1rJGWtorKd0DdP0Nu4TWFy1zNZN62QiuwpdqBMijkncP1d8qNOu56Sfp9Nf59Nv8-mf8hmEsknIuOLLn7_VO2H_0tfH6QeAB5vqUYIQRX_B-Q4nl4
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s11071_022_07592_3
crossref_primary_10_1109_TASE_2024_3461873
crossref_primary_10_1109_TAI_2023_3313105
crossref_primary_10_1016_j_fss_2024_109119
crossref_primary_10_1109_TCYB_2025_3533139
crossref_primary_10_1109_TASE_2024_3484412
crossref_primary_10_1109_TSMC_2022_3220026
crossref_primary_10_1016_j_isatra_2025_08_044
crossref_primary_10_1109_TSMC_2024_3510594
crossref_primary_10_1002_rnc_7083
crossref_primary_10_1016_j_neucom_2024_128665
crossref_primary_10_1109_TASE_2024_3424458
crossref_primary_10_1109_TSMC_2025_3560421
crossref_primary_10_1016_j_amc_2024_128979
crossref_primary_10_1155_2022_6512906
crossref_primary_10_1109_TCYB_2025_3583666
crossref_primary_10_1109_TCYB_2024_3354945
crossref_primary_10_1016_j_amc_2025_129345
crossref_primary_10_1109_TASE_2024_3491913
crossref_primary_10_1109_TCYB_2024_3403680
crossref_primary_10_1002_acs_3971
crossref_primary_10_1109_TCSII_2022_3215203
crossref_primary_10_1177_01423312241259816
crossref_primary_10_1016_j_chaos_2025_116852
crossref_primary_10_1002_asjc_3569
crossref_primary_10_1109_TETCI_2023_3303095
crossref_primary_10_1109_TVT_2024_3406347
crossref_primary_10_1016_j_chaos_2025_116459
crossref_primary_10_1016_j_jfranklin_2025_107513
crossref_primary_10_1109_TCYB_2024_3418904
crossref_primary_10_1016_j_neunet_2024_106388
crossref_primary_10_1016_j_neunet_2025_107852
crossref_primary_10_1109_ACCESS_2022_3175828
crossref_primary_10_1109_TFUZZ_2025_3570996
Cites_doi 10.1016/j.automatica.2010.10.033
10.1016/j.automatica.2014.05.011
10.1109/TCYB.2019.2903108
10.1109/TFUZZ.2018.2799187
10.1109/TSG.2015.2412779
10.1109/JAS.2014.7004686
10.1109/TAC.2020.2989773
10.1109/TSMC.2018.2876370
10.1109/TCYB.2020.3044595
10.1109/TNNLS.2016.2642128
10.1109/TNN.2011.2168538
10.1016/j.neunet.2020.08.004
10.1007/978-1-84882-548-2
10.1109/TCYB.2021.3068631
10.1109/TSMC.2019.2946857
10.1007/s11432-019-2663-y
10.1109/TSMC.2019.2897379
10.1109/TCYB.2020.3008020
10.1109/TNN.2009.2034742
10.1016/j.neunet.2009.06.014
10.1109/TCYB.2020.3031933
10.1109/TNNLS.2020.2965208
10.1109/TNNLS.2021.3090570
10.1109/TSMCB.2012.2203336
10.1109/TNN.2009.2027233
10.1109/TFUZZ.2013.2281993
10.1109/TNNLS.2016.2614002
10.1109/TFUZZ.2020.2992632
10.1109/TCYB.2020.2984791
10.1109/TNNLS.2020.3003950
10.1016/j.jfranklin.2020.03.039
10.1109/TCYB.2021.3065995
10.1109/TNNLS.2019.2958107
10.1109/TII.2019.2958988
10.1109/TCYB.2020.2979614
10.1109/TSMC.2019.2931316
10.1109/TSMC.2013.2295351
10.1109/TNNLS.2017.2669099
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3116464
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 4701
ExternalDocumentID 10_1109_TNNLS_2021_3116464
9566619
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61627809
  funderid: 10.13039/501100001809
– fundername: Liaoning Revitalization Talents Program
  grantid: XLYC1801005
  funderid: 10.13039/501100018617
– fundername: National Key Research and Development Program of China
  grantid: 2018YFA0702200
  funderid: 10.13039/501100012166
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c328t-52bd12ddc001741a4af6de79d91d38696ff19d0405cdf229c45f80d9a05f3fcd3
IEDL.DBID RIE
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732384000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Wed Oct 01 13:27:34 EDT 2025
Mon Jun 30 04:39:14 EDT 2025
Sat Nov 29 08:07:05 EST 2025
Tue Nov 18 21:01:01 EST 2025
Wed Aug 27 02:04:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-52bd12ddc001741a4af6de79d91d38696ff19d0405cdf229c45f80d9a05f3fcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2375-9824
0000-0003-4683-3166
PMID 34633936
PQID 2845768907
PQPubID 85436
PageCount 15
ParticipantIDs crossref_primary_10_1109_TNNLS_2021_3116464
proquest_miscellaneous_2581279187
proquest_journals_2845768907
ieee_primary_9566619
crossref_citationtrail_10_1109_TNNLS_2021_3116464
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1016/j.automatica.2010.10.033
– ident: ref9
  doi: 10.1016/j.automatica.2014.05.011
– ident: ref10
  doi: 10.1109/TCYB.2019.2903108
– ident: ref27
  doi: 10.1109/TFUZZ.2018.2799187
– ident: ref18
  doi: 10.1109/TSG.2015.2412779
– ident: ref29
  doi: 10.1109/JAS.2014.7004686
– ident: ref26
  doi: 10.1109/TAC.2020.2989773
– ident: ref21
  doi: 10.1109/TSMC.2018.2876370
– ident: ref25
  doi: 10.1109/TCYB.2020.3044595
– ident: ref7
  doi: 10.1109/TNNLS.2016.2642128
– ident: ref4
  doi: 10.1109/TNN.2011.2168538
– ident: ref28
  doi: 10.1016/j.neunet.2020.08.004
– ident: ref38
  doi: 10.1007/978-1-84882-548-2
– ident: ref24
  doi: 10.1109/TCYB.2021.3068631
– ident: ref32
  doi: 10.1109/TSMC.2019.2946857
– ident: ref14
  doi: 10.1007/s11432-019-2663-y
– ident: ref2
  doi: 10.1109/TSMC.2019.2897379
– ident: ref12
  doi: 10.1109/TCYB.2020.3008020
– ident: ref36
  doi: 10.1109/TNN.2009.2034742
– ident: ref5
  doi: 10.1016/j.neunet.2009.06.014
– ident: ref16
  doi: 10.1109/TCYB.2020.3031933
– ident: ref37
  doi: 10.1109/TNNLS.2020.2965208
– ident: ref20
  doi: 10.1109/TNNLS.2021.3090570
– ident: ref35
  doi: 10.1109/TSMCB.2012.2203336
– ident: ref33
  doi: 10.1109/TNN.2009.2027233
– ident: ref34
  doi: 10.1109/TFUZZ.2013.2281993
– ident: ref30
  doi: 10.1109/TNNLS.2016.2614002
– ident: ref11
  doi: 10.1109/TFUZZ.2020.2992632
– ident: ref23
  doi: 10.1109/TCYB.2020.2984791
– ident: ref19
  doi: 10.1109/TNNLS.2020.3003950
– ident: ref15
  doi: 10.1016/j.jfranklin.2020.03.039
– ident: ref3
  doi: 10.1109/TCYB.2021.3065995
– ident: ref17
  doi: 10.1109/TNNLS.2019.2958107
– ident: ref22
  doi: 10.1109/TII.2019.2958988
– ident: ref1
  doi: 10.1109/TCYB.2020.2979614
– ident: ref31
  doi: 10.1109/TSMC.2019.2931316
– ident: ref6
  doi: 10.1109/TSMC.2013.2295351
– ident: ref13
  doi: 10.1109/TNNLS.2017.2669099
SSID ssj0000605649
Score 2.59407
Snippet In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4687
SubjectTerms Adaptation models
Adaptive control
Adaptive dynamic programming (ADP)
Artificial neural networks
Closed loops
Control methods
Cost function
data driven
Dynamic programming
event triggered
Feedback control
finite horizon
H-infinity control
Mathematical models
Neural networks
neural networks (NNs)
Nonlinear systems
Optimal control
Power system dynamics
Terminal constraints
Time dependence
Tracking control
Tracking errors
Title Data-Driven Finite-Horizon H∞ Tracking Control With Event-Triggered Mechanism for the Continuous-Time Nonlinear Systems
URI https://ieeexplore.ieee.org/document/9566619
https://www.proquest.com/docview/2845768907
https://www.proquest.com/docview/2581279187
Volume 34
WOSCitedRecordID wos000732384000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbaigMXWiiIpaUyEjcwjX_y4yNqu9pDiZBYYG-R1z80EiRoN1sJnqBP0YfrkzDjZMMBhISUQ6Q4ieXxeL6xZ74h5CVPl3icZllYBscUAGKmJTdMC5OlISlUGnOrPl3mZVksFvr9Dnk95sJ472PwmX-Dt_Es37V2g1tlp4DlwZzoXbKb51mfqzXupySAy7OIdgXPBBMyX2xzZBJ9Oi_Lyw_gDQoOTipSamE9HqkyKXUkZ_5tkmKNlT8W5mhtpvv_188D8mBAlfRtPw0ekh3fPCL724oNdFDgQ_Lj3HSGna9wiaPTGvEmm7Wr-mfb0NndzS0F02Vx85ye9SHs9HPdXdELDIpkc3Dkv2BpT_rOY75wvf5GAfJSgJCxed1s2s2aYVIJLXsGDgP_7inRH5OP04v52YwNxReYlaLowEFdOi6cs2jHFDfKhMz5XDvNnSwynYXAtYMlILUuCKGtSkOROG2SNMhgnXxC9pq28U8JFYFLpxIH2q-Vls4gJ_4yNYULcKkwIXw7_pUdmMmxQMbXKnooia6i-CoUXzWIb0Jeje9873k5_tn6EKU0thwENCHHWzFXg-quK7DX6IPpJJ-QF-NjUDo8STGNh5GsRAq4KNe8yJ_9_ctH5D7Wpe8jBY_JXrfa-Ofknr3u6vXqBObvojiJ8_cXd7PrqQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEB_OU9AXTz0PV0-N4JvGa5L-y6Pc3bLiXhFcdd9CNn-0oK3sdgX9BH4KP5yfxEzarQ-KIPSh0LQNmUzmN8nM_AAes2yFx2mG-pW3NA2AmErBNJVc55lPyjSLuVVv50VVlculfLUHT8dcGOdcDD5zz_A2nuXb1mxxq-wkYPlgTuQluIzMWUO21rijkgRknke8y1nOKRfFcpclk8iTRVXNXwd_kLPgpmJRLWTkEWkuhIzlmX8bpciy8sfSHO3N9OD_enoDrg-4kjzvJ8JN2HPNLTjYcTaQQYUP4euZ7jQ9W-MiR6Y1Ik46a9f1t7Yhs5_ff5BgvAxun5PTPoidvKu7D-QcwyLpIrjy75Hck1w4zBiuN59IAL0kgMjYvG627XZDMa2EVH0NDh3-3RdFvw1vpueL0xkd6BeoEbzsgou6soxba9CSpUyn2ufWFdJKZkWZy9x7Jm1YBDJjPefSpJkvEyt1knnhjRVHsN-0jbsDhHsmbJrYoP8ylcJqrIq_ynRpfbhSPwG2G39lhtrkSJHxUUUfJZEqik-h-NQgvgk8Gd_53Ffm-GfrQ5TS2HIQ0ASOd2JWg_JuVLDY6IXJpJjAo_FxUDs8S9GNCyOpeBaQUSFZWdz9-5cfwtXZ4mKu5i-ql_fgGrLU93GDx7DfrbfuPlwxX7p6s34QZ_EvUy7uCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Finite-Horizon+H+%E2%88%9E+Tracking+Control+With+Event-Triggered+Mechanism+for+the+Continuous-Time+Nonlinear+Systems&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Huaguang&rft.au=Zhongyang+Ming&rft.au=Yan%2C+Yuqing&rft.au=Wang%2C+Wei&rft.date=2023-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=34&rft.issue=8&rft.spage=4687&rft_id=info:doi/10.1109%2FTNNLS.2021.3116464&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon