Data-Driven Finite-Horizon H∞ Tracking Control With Event-Triggered Mechanism for the Continuous-Time Nonlinear Systems
In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></i...
Gespeichert in:
| Veröffentlicht in: | IEEE transaction on neural networks and learning systems Jg. 34; H. 8; S. 4687 - 4701 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> optimal tracking control problem with constrained control input. First, using available input-output data, a data-driven model is established by a recurrent NN (RNN) to reconstruct the unknown system. Then, an augmented system with event-triggered mechanism is obtained by a tracking error system and a command generator. We present a novel event-triggering condition without Zeno behavior. On this basis, the relationship between event-triggered Hamilton-Jacobi-Isaacs (HJI) equation and time-triggered HJI equation is given in <xref ref-type="theorem" rid="theorem3">Theorem 3 . Since the solution of the HJI equation is time-dependent for the augmented system, the time-dependent activation functions of NNs are considered. Moreover, an extra error is incorporated to satisfy the terminal constraints of cost function. This adaptive control pattern finds, in real time, approximations of the optimal value while also ensuring the uniform ultimate boundedness of the closed-loop system. Finally, the effectiveness of the proposed near-optimal control pattern is verified by two simulation examples. |
|---|---|
| AbstractList | In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon [Formula Omitted] optimal tracking control problem with constrained control input. First, using available input–output data, a data-driven model is established by a recurrent NN (RNN) to reconstruct the unknown system. Then, an augmented system with event-triggered mechanism is obtained by a tracking error system and a command generator. We present a novel event-triggering condition without Zeno behavior. On this basis, the relationship between event-triggered Hamilton–Jacobi–Isaacs (HJI) equation and time-triggered HJI equation is given in Theorem 3 . Since the solution of the HJI equation is time-dependent for the augmented system, the time-dependent activation functions of NNs are considered. Moreover, an extra error is incorporated to satisfy the terminal constraints of cost function. This adaptive control pattern finds, in real time, approximations of the optimal value while also ensuring the uniform ultimate boundedness of the closed-loop system. Finally, the effectiveness of the proposed near-optimal control pattern is verified by two simulation examples. In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> optimal tracking control problem with constrained control input. First, using available input-output data, a data-driven model is established by a recurrent NN (RNN) to reconstruct the unknown system. Then, an augmented system with event-triggered mechanism is obtained by a tracking error system and a command generator. We present a novel event-triggering condition without Zeno behavior. On this basis, the relationship between event-triggered Hamilton-Jacobi-Isaacs (HJI) equation and time-triggered HJI equation is given in <xref ref-type="theorem" rid="theorem3">Theorem 3 . Since the solution of the HJI equation is time-dependent for the augmented system, the time-dependent activation functions of NNs are considered. Moreover, an extra error is incorporated to satisfy the terminal constraints of cost function. This adaptive control pattern finds, in real time, approximations of the optimal value while also ensuring the uniform ultimate boundedness of the closed-loop system. Finally, the effectiveness of the proposed near-optimal control pattern is verified by two simulation examples. In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon H∞ optimal tracking control problem with constrained control input. First, using available input-output data, a data-driven model is established by a recurrent NN (RNN) to reconstruct the unknown system. Then, an augmented system with event-triggered mechanism is obtained by a tracking error system and a command generator. We present a novel event-triggering condition without Zeno behavior. On this basis, the relationship between event-triggered Hamilton-Jacobi-Isaacs (HJI) equation and time-triggered HJI equation is given in Theorem 3. Since the solution of the HJI equation is time-dependent for the augmented system, the time-dependent activation functions of NNs are considered. Moreover, an extra error is incorporated to satisfy the terminal constraints of cost function. This adaptive control pattern finds, in real time, approximations of the optimal value while also ensuring the uniform ultimate boundedness of the closed-loop system. Finally, the effectiveness of the proposed near-optimal control pattern is verified by two simulation examples.In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal control policy for the model-free finite-horizon H∞ optimal tracking control problem with constrained control input. First, using available input-output data, a data-driven model is established by a recurrent NN (RNN) to reconstruct the unknown system. Then, an augmented system with event-triggered mechanism is obtained by a tracking error system and a command generator. We present a novel event-triggering condition without Zeno behavior. On this basis, the relationship between event-triggered Hamilton-Jacobi-Isaacs (HJI) equation and time-triggered HJI equation is given in Theorem 3. Since the solution of the HJI equation is time-dependent for the augmented system, the time-dependent activation functions of NNs are considered. Moreover, an extra error is incorporated to satisfy the terminal constraints of cost function. This adaptive control pattern finds, in real time, approximations of the optimal value while also ensuring the uniform ultimate boundedness of the closed-loop system. Finally, the effectiveness of the proposed near-optimal control pattern is verified by two simulation examples. |
| Author | Yan, Yuqing Wang, Wei Ming, Zhongyang Zhang, Huaguang |
| Author_xml | – sequence: 1 givenname: Huaguang orcidid: 0000-0002-2375-9824 surname: Zhang fullname: Zhang, Huaguang email: hgzhang@ieee.org organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, Liaoning, China – sequence: 2 givenname: Zhongyang surname: Ming fullname: Ming, Zhongyang email: zhongyangming427@163.com organization: School of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China – sequence: 3 givenname: Yuqing surname: Yan fullname: Yan, Yuqing email: yanyuqing815@163.com organization: School of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China – sequence: 4 givenname: Wei orcidid: 0000-0003-4683-3166 surname: Wang fullname: Wang, Wei email: weiwei@stumail.neu.edu.cn organization: School of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China |
| BookMark | eNp9kUtuFDEQhi0URB7kArCxxIZND350u-0lmjwGaRgWaQS7lrHLMw7ddrA9SMMJOAWH4yT0ZKIssqA2VYvvr_pV_yk6CjEAQq8omVFK1LtutVrezBhhdMYpFbWon6ETRgWrGJfy6HFuvx6j85xvyVSCNKJWL9AxrwXniosTtLvQRVcXyf-EgK988AWqRUz-Vwx48ff3H9wlbb77sMbzGEqKA_7iywZfTnipuuTXa0hg8UcwGx18HrGLCZcN3OM-bOM2V50fAa9iGHwAnfDNLhcY80v03Okhw_lDP0Ofry67-aJafrr-MH-_rAxnslQN-2Yps9YQQtua6lo7YaFVVlHLpVDCOaosqUljrGNMmbpxklilSeO4M5afobeHvXcp_thCLv3os4Fh0AEmdz1rJGWtorKd0DdP0Nu4TWFy1zNZN62QiuwpdqBMijkncP1d8qNOu56Sfp9Nf59Nv8-mf8hmEsknIuOLLn7_VO2H_0tfH6QeAB5vqUYIQRX_B-Q4nl4 |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s11071_022_07592_3 crossref_primary_10_1109_TASE_2024_3461873 crossref_primary_10_1109_TAI_2023_3313105 crossref_primary_10_1016_j_fss_2024_109119 crossref_primary_10_1109_TCYB_2025_3533139 crossref_primary_10_1109_TASE_2024_3484412 crossref_primary_10_1109_TSMC_2022_3220026 crossref_primary_10_1016_j_isatra_2025_08_044 crossref_primary_10_1109_TSMC_2024_3510594 crossref_primary_10_1002_rnc_7083 crossref_primary_10_1016_j_neucom_2024_128665 crossref_primary_10_1109_TASE_2024_3424458 crossref_primary_10_1109_TSMC_2025_3560421 crossref_primary_10_1016_j_amc_2024_128979 crossref_primary_10_1155_2022_6512906 crossref_primary_10_1109_TCYB_2025_3583666 crossref_primary_10_1109_TCYB_2024_3354945 crossref_primary_10_1016_j_amc_2025_129345 crossref_primary_10_1109_TASE_2024_3491913 crossref_primary_10_1109_TCYB_2024_3403680 crossref_primary_10_1002_acs_3971 crossref_primary_10_1109_TCSII_2022_3215203 crossref_primary_10_1177_01423312241259816 crossref_primary_10_1016_j_chaos_2025_116852 crossref_primary_10_1002_asjc_3569 crossref_primary_10_1109_TETCI_2023_3303095 crossref_primary_10_1109_TVT_2024_3406347 crossref_primary_10_1016_j_chaos_2025_116459 crossref_primary_10_1016_j_jfranklin_2025_107513 crossref_primary_10_1109_TCYB_2024_3418904 crossref_primary_10_1016_j_neunet_2024_106388 crossref_primary_10_1016_j_neunet_2025_107852 crossref_primary_10_1109_ACCESS_2022_3175828 crossref_primary_10_1109_TFUZZ_2025_3570996 |
| Cites_doi | 10.1016/j.automatica.2010.10.033 10.1016/j.automatica.2014.05.011 10.1109/TCYB.2019.2903108 10.1109/TFUZZ.2018.2799187 10.1109/TSG.2015.2412779 10.1109/JAS.2014.7004686 10.1109/TAC.2020.2989773 10.1109/TSMC.2018.2876370 10.1109/TCYB.2020.3044595 10.1109/TNNLS.2016.2642128 10.1109/TNN.2011.2168538 10.1016/j.neunet.2020.08.004 10.1007/978-1-84882-548-2 10.1109/TCYB.2021.3068631 10.1109/TSMC.2019.2946857 10.1007/s11432-019-2663-y 10.1109/TSMC.2019.2897379 10.1109/TCYB.2020.3008020 10.1109/TNN.2009.2034742 10.1016/j.neunet.2009.06.014 10.1109/TCYB.2020.3031933 10.1109/TNNLS.2020.2965208 10.1109/TNNLS.2021.3090570 10.1109/TSMCB.2012.2203336 10.1109/TNN.2009.2027233 10.1109/TFUZZ.2013.2281993 10.1109/TNNLS.2016.2614002 10.1109/TFUZZ.2020.2992632 10.1109/TCYB.2020.2984791 10.1109/TNNLS.2020.3003950 10.1016/j.jfranklin.2020.03.039 10.1109/TCYB.2021.3065995 10.1109/TNNLS.2019.2958107 10.1109/TII.2019.2958988 10.1109/TCYB.2020.2979614 10.1109/TSMC.2019.2931316 10.1109/TSMC.2013.2295351 10.1109/TNNLS.2017.2669099 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2021.3116464 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 4701 |
| ExternalDocumentID | 10_1109_TNNLS_2021_3116464 9566619 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61627809 funderid: 10.13039/501100001809 – fundername: Liaoning Revitalization Talents Program grantid: XLYC1801005 funderid: 10.13039/501100018617 – fundername: National Key Research and Development Program of China grantid: 2018YFA0702200 funderid: 10.13039/501100012166 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c328t-52bd12ddc001741a4af6de79d91d38696ff19d0405cdf229c45f80d9a05f3fcd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732384000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Wed Oct 01 13:27:34 EDT 2025 Mon Jun 30 04:39:14 EDT 2025 Sat Nov 29 08:07:05 EST 2025 Tue Nov 18 21:01:01 EST 2025 Wed Aug 27 02:04:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-52bd12ddc001741a4af6de79d91d38696ff19d0405cdf229c45f80d9a05f3fcd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2375-9824 0000-0003-4683-3166 |
| PMID | 34633936 |
| PQID | 2845768907 |
| PQPubID | 85436 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TNNLS_2021_3116464 proquest_miscellaneous_2581279187 proquest_journals_2845768907 ieee_primary_9566619 crossref_citationtrail_10_1109_TNNLS_2021_3116464 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref8 doi: 10.1016/j.automatica.2010.10.033 – ident: ref9 doi: 10.1016/j.automatica.2014.05.011 – ident: ref10 doi: 10.1109/TCYB.2019.2903108 – ident: ref27 doi: 10.1109/TFUZZ.2018.2799187 – ident: ref18 doi: 10.1109/TSG.2015.2412779 – ident: ref29 doi: 10.1109/JAS.2014.7004686 – ident: ref26 doi: 10.1109/TAC.2020.2989773 – ident: ref21 doi: 10.1109/TSMC.2018.2876370 – ident: ref25 doi: 10.1109/TCYB.2020.3044595 – ident: ref7 doi: 10.1109/TNNLS.2016.2642128 – ident: ref4 doi: 10.1109/TNN.2011.2168538 – ident: ref28 doi: 10.1016/j.neunet.2020.08.004 – ident: ref38 doi: 10.1007/978-1-84882-548-2 – ident: ref24 doi: 10.1109/TCYB.2021.3068631 – ident: ref32 doi: 10.1109/TSMC.2019.2946857 – ident: ref14 doi: 10.1007/s11432-019-2663-y – ident: ref2 doi: 10.1109/TSMC.2019.2897379 – ident: ref12 doi: 10.1109/TCYB.2020.3008020 – ident: ref36 doi: 10.1109/TNN.2009.2034742 – ident: ref5 doi: 10.1016/j.neunet.2009.06.014 – ident: ref16 doi: 10.1109/TCYB.2020.3031933 – ident: ref37 doi: 10.1109/TNNLS.2020.2965208 – ident: ref20 doi: 10.1109/TNNLS.2021.3090570 – ident: ref35 doi: 10.1109/TSMCB.2012.2203336 – ident: ref33 doi: 10.1109/TNN.2009.2027233 – ident: ref34 doi: 10.1109/TFUZZ.2013.2281993 – ident: ref30 doi: 10.1109/TNNLS.2016.2614002 – ident: ref11 doi: 10.1109/TFUZZ.2020.2992632 – ident: ref23 doi: 10.1109/TCYB.2020.2984791 – ident: ref19 doi: 10.1109/TNNLS.2020.3003950 – ident: ref15 doi: 10.1016/j.jfranklin.2020.03.039 – ident: ref3 doi: 10.1109/TCYB.2021.3065995 – ident: ref17 doi: 10.1109/TNNLS.2019.2958107 – ident: ref22 doi: 10.1109/TII.2019.2958988 – ident: ref1 doi: 10.1109/TCYB.2020.2979614 – ident: ref31 doi: 10.1109/TSMC.2019.2931316 – ident: ref6 doi: 10.1109/TSMC.2013.2295351 – ident: ref13 doi: 10.1109/TNNLS.2017.2669099 |
| SSID | ssj0000605649 |
| Score | 2.59407 |
| Snippet | In this article, the neural network (NN)-based adaptive dynamic programming (ADP) event-triggered control method is presented to obtain the near-optimal... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4687 |
| SubjectTerms | Adaptation models Adaptive control Adaptive dynamic programming (ADP) Artificial neural networks Closed loops Control methods Cost function data driven Dynamic programming event triggered Feedback control finite horizon H-infinity control Mathematical models Neural networks neural networks (NNs) Nonlinear systems Optimal control Power system dynamics Terminal constraints Time dependence Tracking control Tracking errors |
| Title | Data-Driven Finite-Horizon H∞ Tracking Control With Event-Triggered Mechanism for the Continuous-Time Nonlinear Systems |
| URI | https://ieeexplore.ieee.org/document/9566619 https://www.proquest.com/docview/2845768907 https://www.proquest.com/docview/2581279187 |
| Volume | 34 |
| WOSCitedRecordID | wos000732384000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbaigMXWiiIpaUyEjcwjX_y4yNqu9pDiZBYYG-R1z80EiRoN1sJnqBP0YfrkzDjZMMBhISUQ6Q4ieXxeL6xZ74h5CVPl3icZllYBscUAGKmJTdMC5OlISlUGnOrPl3mZVksFvr9Dnk95sJ472PwmX-Dt_Es37V2g1tlp4DlwZzoXbKb51mfqzXupySAy7OIdgXPBBMyX2xzZBJ9Oi_Lyw_gDQoOTipSamE9HqkyKXUkZ_5tkmKNlT8W5mhtpvv_188D8mBAlfRtPw0ekh3fPCL724oNdFDgQ_Lj3HSGna9wiaPTGvEmm7Wr-mfb0NndzS0F02Vx85ye9SHs9HPdXdELDIpkc3Dkv2BpT_rOY75wvf5GAfJSgJCxed1s2s2aYVIJLXsGDgP_7inRH5OP04v52YwNxReYlaLowEFdOi6cs2jHFDfKhMz5XDvNnSwynYXAtYMlILUuCKGtSkOROG2SNMhgnXxC9pq28U8JFYFLpxIH2q-Vls4gJ_4yNYULcKkwIXw7_pUdmMmxQMbXKnooia6i-CoUXzWIb0Jeje9873k5_tn6EKU0thwENCHHWzFXg-quK7DX6IPpJJ-QF-NjUDo8STGNh5GsRAq4KNe8yJ_9_ctH5D7Wpe8jBY_JXrfa-Ofknr3u6vXqBObvojiJ8_cXd7PrqQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEB_OU9AXTz0PV0-N4JvGa5L-y6Pc3bLiXhFcdd9CNn-0oK3sdgX9BH4KP5yfxEzarQ-KIPSh0LQNmUzmN8nM_AAes2yFx2mG-pW3NA2AmErBNJVc55lPyjSLuVVv50VVlculfLUHT8dcGOdcDD5zz_A2nuXb1mxxq-wkYPlgTuQluIzMWUO21rijkgRknke8y1nOKRfFcpclk8iTRVXNXwd_kLPgpmJRLWTkEWkuhIzlmX8bpciy8sfSHO3N9OD_enoDrg-4kjzvJ8JN2HPNLTjYcTaQQYUP4euZ7jQ9W-MiR6Y1Ik46a9f1t7Yhs5_ff5BgvAxun5PTPoidvKu7D-QcwyLpIrjy75Hck1w4zBiuN59IAL0kgMjYvG627XZDMa2EVH0NDh3-3RdFvw1vpueL0xkd6BeoEbzsgou6soxba9CSpUyn2ufWFdJKZkWZy9x7Jm1YBDJjPefSpJkvEyt1knnhjRVHsN-0jbsDhHsmbJrYoP8ylcJqrIq_ynRpfbhSPwG2G39lhtrkSJHxUUUfJZEqik-h-NQgvgk8Gd_53Ffm-GfrQ5TS2HIQ0ASOd2JWg_JuVLDY6IXJpJjAo_FxUDs8S9GNCyOpeBaQUSFZWdz9-5cfwtXZ4mKu5i-ql_fgGrLU93GDx7DfrbfuPlwxX7p6s34QZ_EvUy7uCg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Finite-Horizon+H+%E2%88%9E+Tracking+Control+With+Event-Triggered+Mechanism+for+the+Continuous-Time+Nonlinear+Systems&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Huaguang&rft.au=Zhongyang+Ming&rft.au=Yan%2C+Yuqing&rft.au=Wang%2C+Wei&rft.date=2023-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=34&rft.issue=8&rft.spage=4687&rft_id=info:doi/10.1109%2FTNNLS.2021.3116464&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |