Communication-efficient federated recommendation model based on many-objective evolutionary algorithm
•A novel communication-efficient federated recommendation model is proposed.•A many-objective evolutionary method is used to achieve parameter reduction.•Recommended performances and communication cost are optimized simultaneously. The federated recommendation system (FedRS), which is the applicatio...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 201; s. 116963 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Ltd
01.09.2022
Elsevier BV |
| Predmet: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A novel communication-efficient federated recommendation model is proposed.•A many-objective evolutionary method is used to achieve parameter reduction.•Recommended performances and communication cost are optimized simultaneously.
The federated recommendation system (FedRS), which is the application of the recommendation system (RS) in federated learning, has been creatively developed as increasing attention has been paid to user privacy protection. However, traditional federated learning consumes excessive communication time and resource, which seriously limits the development of the FedRS. To reduce the communication cost and improve the recommendation performance of FedRS, an improved many-objective federated recommendation model with a novel parameter reduction strategy is proposed in this paper. The model aims to optimize the number of parameters shared between the server and client to improve communication efficiency in the federated process. Optimal parameter selection solutions can be obtained using the many-objective evolutionary algorithm (MaOEA), which can optimize the recommendation accuracy, novelty, diversity, and communication efficiency of FedRS simultaneously. Furthermore, the reference vector guided evolutionary algorithm (RVEA) was adopted to evaluate the proposed model. Experiments were performed on two famous recommendation datasets to examine the superiority of RVEA for the evaluation. The performance results indicated that the proposed model can not only provide accurate, diverse, and novel recommendations for the client, but can also realize efficient communication. |
|---|---|
| AbstractList | •A novel communication-efficient federated recommendation model is proposed.•A many-objective evolutionary method is used to achieve parameter reduction.•Recommended performances and communication cost are optimized simultaneously.
The federated recommendation system (FedRS), which is the application of the recommendation system (RS) in federated learning, has been creatively developed as increasing attention has been paid to user privacy protection. However, traditional federated learning consumes excessive communication time and resource, which seriously limits the development of the FedRS. To reduce the communication cost and improve the recommendation performance of FedRS, an improved many-objective federated recommendation model with a novel parameter reduction strategy is proposed in this paper. The model aims to optimize the number of parameters shared between the server and client to improve communication efficiency in the federated process. Optimal parameter selection solutions can be obtained using the many-objective evolutionary algorithm (MaOEA), which can optimize the recommendation accuracy, novelty, diversity, and communication efficiency of FedRS simultaneously. Furthermore, the reference vector guided evolutionary algorithm (RVEA) was adopted to evaluate the proposed model. Experiments were performed on two famous recommendation datasets to examine the superiority of RVEA for the evaluation. The performance results indicated that the proposed model can not only provide accurate, diverse, and novel recommendations for the client, but can also realize efficient communication. The federated recommendation system (FedRS), which is the application of the recommendation system (RS) in federated learning, has been creatively developed as increasing attention has been paid to user privacy protection. However, traditional federated learning consumes excessive communication time and resource, which seriously limits the development of the FedRS. To reduce the communication cost and improve the recommendation performance of FedRS, an improved many-objective federated recommendation model with a novel parameter reduction strategy is proposed in this paper. The model aims to optimize the number of parameters shared between the server and client to improve communication efficiency in the federated process. Optimal parameter selection solutions can be obtained using the many-objective evolutionary algorithm (MaOEA), which can optimize the recommendation accuracy, novelty, diversity, and communication efficiency of FedRS simultaneously. Furthermore, the reference vector guided evolutionary algorithm (RVEA) was adopted to evaluate the proposed model. Experiments were performed on two famous recommendation datasets to examine the superiority of RVEA for the evaluation. The performance results indicated that the proposed model can not only provide accurate, diverse, and novel recommendations for the client, but can also realize efficient communication. |
| ArticleNumber | 116963 |
| Author | Zhang, Zhixia Cui, Zhihua Lan, Yang Wen, Jie Cai, Jianghui |
| Author_xml | – sequence: 1 givenname: Zhihua surname: Cui fullname: Cui, Zhihua email: cuizhihua@tyust.edu.cn – sequence: 2 givenname: Jie surname: Wen fullname: Wen, Jie email: wj_110926@163.com – sequence: 3 givenname: Yang surname: Lan fullname: Lan, Yang email: lanyangvip1020@163.com – sequence: 4 givenname: Zhixia surname: Zhang fullname: Zhang, Zhixia email: zhixiazhang@stu.tyust.edu.cn – sequence: 5 givenname: Jianghui surname: Cai fullname: Cai, Jianghui email: jianghui@tyust.edu.cn |
| BookMark | eNp9kMtOAyEUQImpiW31B1xN4noqMA-GxI1pfCVN3Oia8Lgok5mhAq3p3zvTunLhihDOgctZoNngB0DomuAVwaS-bVcQv-WKYkpXhNS8Ls7QnDSsyGvGixmaY16xvCSsvECLGFuMCcOYzRGsfd_vBqdlcn7IwVqnHQwps2AgyAQmC6BHBgZzRLLeG-gyJeN4NG3lcMi9akEnt4cM9r7bTZwMh0x2Hz649NlfonMruwhXv-sSvT8-vK2f883r08v6fpPrgjYpL63ENTElsaqUTWMZk1ZSDqXSjNcEGFAMhikFlhtFixIKwiulCDUFr0hVLNHN6d5t8F87iEm0fheG8UlBa1bVnDUUjxQ9UTr4GANYsQ2uHwcWBIspp2jFlFNMOcUp5yg1fyTt0rFICtJ1_6t3JxXGr-8dBBGnxhqMG9smYbz7T_8BN9WVbw |
| CitedBy_id | crossref_primary_10_1007_s42979_025_04230_8 crossref_primary_10_1016_j_energy_2024_130432 crossref_primary_10_1109_TCSS_2023_3283574 crossref_primary_10_1002_cpe_7479 crossref_primary_10_1109_TETCI_2024_3359093 crossref_primary_10_1002_cpe_8153 crossref_primary_10_1109_JIOT_2024_3406634 crossref_primary_10_1007_s10489_023_04775_2 crossref_primary_10_3390_app14072720 crossref_primary_10_1145_3708982 crossref_primary_10_1016_j_ins_2024_121552 crossref_primary_10_1002_cpe_7947 crossref_primary_10_1016_j_swevo_2025_101853 crossref_primary_10_32604_cmes_2023_022287 crossref_primary_10_1016_j_eswa_2023_121870 crossref_primary_10_1016_j_eswa_2024_123460 crossref_primary_10_1016_j_artmed_2023_102691 crossref_primary_10_1007_s13042_022_01647_y crossref_primary_10_1016_j_future_2024_04_051 |
| Cites_doi | 10.1007/s40747-021-00315-y 10.1109/TNNLS.2019.2919699 10.1109/JIOT.2019.2956615 10.1145/3298981 10.1002/cpe.5861 10.1016/j.ipm.2018.02.005 10.1007/s11042-014-1950-1 10.1109/TPAMI.2016.2605085 10.1007/s10489-019-01537-x 10.1016/j.knosys.2013.03.012 10.1109/JIOT.2020.3040019 10.1109/TNNLS.2019.2953131 10.1109/TSC.2014.2355842 10.1109/MCI.2017.2742868 10.1016/j.knosys.2021.106946 10.1109/TCOMM.2020.2990686 10.1109/TPDS.2020.2996273 10.1109/JIOT.2020.2991401 10.1016/j.ins.2019.01.030 10.1016/j.eswa.2018.11.003 10.1109/JIOT.2020.2988033 10.1109/TEVC.2016.2519378 10.1109/TIFS.2019.2929409 10.1016/j.comcom.2013.06.009 10.1109/TSC.2020.2964552 10.1016/j.future.2015.12.001 10.1016/j.ins.2020.05.067 10.1016/j.dss.2015.03.008 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Sep 1, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Sep 1, 2022 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2022.116963 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2022_116963 S095741742200389X |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-4fa061d41fb4a88f77afa29e4bc7961e7e20ed7bbef9db234e3195bb12d395153 |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000801762500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 08:02:37 EDT 2025 Sat Nov 29 07:08:20 EST 2025 Tue Nov 18 22:12:49 EST 2025 Fri Feb 23 02:39:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Many-objective evolutionary algorithm Federated learning RVEA Federated recommendation model Recommendation system |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-4fa061d41fb4a88f77afa29e4bc7961e7e20ed7bbef9db234e3195bb12d395153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2675697820 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2675697820 crossref_primary_10_1016_j_eswa_2022_116963 crossref_citationtrail_10_1016_j_eswa_2022_116963 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116963 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Zhang, Chen, Huang, Wu, Li (b0190) 2017; 66 Zheng, Wang, Wu, Wu (b0200) 2020; 50 Ammad-Ud-Din, M., Ivannikova, E., Khan, S. A., Oyomno, W., Tan, Q. Fu, K. E., & Flanagan, A. (2019). Xu, Li, Liu, Yang, Lin (b0160) 2020; 15 Cai, Hu, Chen (b0020) 2020; 537 Xie, Hu, Cai, Zhang, Chen (b0150) 2021; 7 Xu (b0155) 2018; 54 Yao, Sheng, Ngu, Yu, Segev (b0185) 2015; 8 He, Zhang, Kan, Chua (b0050) 2016 Cui, Xu, Xue, Cai, Cao, Zhang, Chen (b0045) 2020; 13 Jain, Nagar, Singh, Dhar (b0055) 2020; 161 Cai, Geng, Wu, Cai, Chen (b0015) 2021; 8 Ma, Huang, Yang, Wang, Wang (b0100) 2021 Mills, Hu, Min (b0115) 2020; 7 Kamp, Adilova, Sicking, Hüger, Wrobel (b0060) 2018 Konečný, J., McMahan, H. B., Yu, F. X., Richtáriknes, P., & Suresh, A. T. (2016). Yang, Guo, Liu, Steck (b0180) 2014; 41 In: NIPS workshop on private multi-party machine learning. Luo, Xie, Rao, Wang (b0085) 2019; 119 Wu, Geng, Cai, Zhang, Xue (b0145) 2020; 14 Yang, Huang, Liang, Wang, Ming (b0170) 2021; 220 Bobadilla, Ortega, Hernando, Gutiérrez (b0010) 2013; 46 Soares, Viana (b0125) 2015; 74 Pokhrel, Choi (b0120) 2020; 68 Cai, Hu, Zhao, Zhang, Chen (b0025) 2020; 159 Retrieved from Kwon, Jeon, Park, Kim, Cho (b0070) 2020; 7 Lu, Wu, Mao, Wang, Zhang (b0080) 2015; 74 McMahan, H. B., Moore, E., Ramage, D., & Hampson, S. (2017). Ma, Wang, Chen, Cheng, Wang, Lin, Huang (b0105) 2020; 509 . Ma, Cheng, Shi (b0095) 2020 Wang, Zhu, Dai, Xu, Gao (b0135) 2020; 15 Tian, Cheng, Zhang, Jin (b0130) 2017; 13 Wang, Wang, Bo (b0140) 2019 Cheng, Jin, Olhofer, Sendhoff (b0040) 2016; 20 In: Artificial Intelligence and Statistics, PMLR. pp. 1273–1282. Chen, Sun, Jin (b0035) 2020; 31 Zhang, Xie (b0195) 2020; 32 Yang, Lei, Liu, Li (b0165) 2017; 39 Zhu, Jin (b0205) 2020; 31 Lyu, Yu, Nandakumar, Li, Ma, Jin, Ng (b0090) 2020; 31 Chai, Wang, Chen, Yang (b0030) 2020 Liu, Yu, Kang, Niyato, Zhang (b0075) 2020; 7 Yang, Liu, Chen, Tong (b0175) 2019; 10 Xie (10.1016/j.eswa.2022.116963_b0150) 2021; 7 Jain (10.1016/j.eswa.2022.116963_b0055) 2020; 161 Tian (10.1016/j.eswa.2022.116963_b0130) 2017; 13 Cui (10.1016/j.eswa.2022.116963_b0045) 2020; 13 10.1016/j.eswa.2022.116963_b0065 Mills (10.1016/j.eswa.2022.116963_b0115) 2020; 7 Yang (10.1016/j.eswa.2022.116963_b0175) 2019; 10 Cai (10.1016/j.eswa.2022.116963_b0025) 2020; 159 Luo (10.1016/j.eswa.2022.116963_b0085) 2019; 119 Kwon (10.1016/j.eswa.2022.116963_b0070) 2020; 7 Wang (10.1016/j.eswa.2022.116963_b0135) 2020; 15 Soares (10.1016/j.eswa.2022.116963_b0125) 2015; 74 Yang (10.1016/j.eswa.2022.116963_b0170) 2021; 220 Zhang (10.1016/j.eswa.2022.116963_b0190) 2017; 66 Zhu (10.1016/j.eswa.2022.116963_b0205) 2020; 31 Pokhrel (10.1016/j.eswa.2022.116963_b0120) 2020; 68 Liu (10.1016/j.eswa.2022.116963_b0075) 2020; 7 Lu (10.1016/j.eswa.2022.116963_b0080) 2015; 74 Xu (10.1016/j.eswa.2022.116963_b0160) 2020; 15 Wu (10.1016/j.eswa.2022.116963_b0145) 2020; 14 Zhang (10.1016/j.eswa.2022.116963_b0195) 2020; 32 Xu (10.1016/j.eswa.2022.116963_b0155) 2018; 54 10.1016/j.eswa.2022.116963_b0110 Yang (10.1016/j.eswa.2022.116963_b0165) 2017; 39 Ma (10.1016/j.eswa.2022.116963_b0105) 2020; 509 Kamp (10.1016/j.eswa.2022.116963_b0060) 2018 Ma (10.1016/j.eswa.2022.116963_b0095) 2020 Ma (10.1016/j.eswa.2022.116963_b0100) 2021 Chen (10.1016/j.eswa.2022.116963_b0035) 2020; 31 Bobadilla (10.1016/j.eswa.2022.116963_b0010) 2013; 46 Wang (10.1016/j.eswa.2022.116963_b0140) 2019 Zheng (10.1016/j.eswa.2022.116963_b0200) 2020; 50 Cheng (10.1016/j.eswa.2022.116963_b0040) 2016; 20 10.1016/j.eswa.2022.116963_b0005 Cai (10.1016/j.eswa.2022.116963_b0015) 2021; 8 Lyu (10.1016/j.eswa.2022.116963_b0090) 2020; 31 Yao (10.1016/j.eswa.2022.116963_b0185) 2015; 8 Cai (10.1016/j.eswa.2022.116963_b0020) 2020; 537 Yang (10.1016/j.eswa.2022.116963_b0180) 2014; 41 Chai (10.1016/j.eswa.2022.116963_b0030) 2020 He (10.1016/j.eswa.2022.116963_b0050) 2016 |
| References_xml | – volume: 74 start-page: 12 year: 2015 end-page: 32 ident: b0080 article-title: Recommender system application developments: A survey publication-title: Decision Support Systems – volume: 159 year: 2020 ident: b0025 article-title: A hybrid recommendation system with many-objective evolutionary algorithm publication-title: Expert Systems with Applications – year: 2020 ident: b0030 article-title: Secure federated matrix factorization publication-title: Intelligent Systems IEEE – volume: 68 start-page: 4734 year: 2020 end-page: 4746 ident: b0120 article-title: Federated learning with blockchain for autonomous vehicles: Analysis and design challenges publication-title: IEEE Transactions on Communications – year: 2018 ident: b0060 article-title: Efficient decentralized deep learning by dynamic model averaging publication-title: . ECML PKDD 2018. Lecture Notes in Computer Science – volume: 13 start-page: 685 year: 2020 end-page: 695 ident: b0045 article-title: Personalized recommendation system based on collaborative filtering for IoT scenarios publication-title: IEEE Transactions on Services Computing – reference: . In: NIPS workshop on private multi-party machine learning. – reference: In: Artificial Intelligence and Statistics, PMLR. pp. 1273–1282. – reference: Konečný, J., McMahan, H. B., Yu, F. X., Richtáriknes, P., & Suresh, A. T. (2016). – volume: 220 year: 2021 ident: b0170 article-title: FCMF: Federated collective matrix factorization for heterogeneous collaborative filtering publication-title: Knowledge-Based Systems – volume: 537 start-page: 148 year: 2020 end-page: 161 ident: b0020 article-title: A many-objective optimization recommendation algorithm based on knowledge mining publication-title: Information Sciences – reference: McMahan, H. B., Moore, E., Ramage, D., & Hampson, S. (2017). – volume: 41 start-page: 1 year: 2014 end-page: 10 ident: b0180 article-title: A survey of collaborative filtering based social recommender systems publication-title: Computer Communications – reference: . Retrieved from – reference: Ammad-Ud-Din, M., Ivannikova, E., Khan, S. A., Oyomno, W., Tan, Q. Fu, K. E., & Flanagan, A. (2019). – volume: 14 start-page: 514 year: 2020 end-page: 537 ident: b0145 article-title: A many-objective optimization WSN energy balance model publication-title: KSII Transactions on Internet and Information Systems – volume: 7 start-page: 7751 year: 2020 end-page: 7763 ident: b0075 article-title: Privacy-preserving traffic flow prediction: A federated learning approach publication-title: IEEE Internet of Things Journal – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: b0040 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 13 start-page: 73 year: 2017 end-page: 87 ident: b0130 article-title: PlatEMO: AMATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Computational Intelligence Magazine – volume: 15 year: 2020 ident: b0135 article-title: Low-rank and sparse matrix factorization with prior relations for recommender systems publication-title: Applied Intelligence – volume: 8 start-page: 453 year: 2015 end-page: 466 ident: b0185 article-title: Unified collaborative and content-based web service recommendation publication-title: IEEE Transactions on Services Computing – volume: 31 start-page: 2524 year: 2020 end-page: 2541 ident: b0090 article-title: Towards fair and privacy-preserving federated deep models publication-title: IEEE Transactions on Parallel and Distributed Systems – year: 2020 ident: b0095 article-title: Enhancing learning efficiency of brain storm optimization via orthogonal learning design publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems, – volume: 509 start-page: 437 year: 2020 end-page: 456 ident: b0105 article-title: A novel many-objective evolutionary algorithm based on transfer matrix with Kriging model publication-title: Information Sciences – volume: 50 start-page: 487 year: 2020 end-page: 501 ident: b0200 article-title: Feature subset selection combining maximal information entropy and maximal information coefficient publication-title: Applied Intelligence – volume: 31 start-page: 4229 year: 2020 end-page: 4238 ident: b0035 article-title: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 46 start-page: 109 year: 2013 end-page: 132 ident: b0010 article-title: Recommender systems survey publication-title: Knowledge-Based Systems – volume: 8 start-page: 9645 year: 2021 end-page: 9653 ident: b0015 article-title: A multicloud-model-based many-objective intelligent algorithm for efficient Task scheduling in internet of things publication-title: IEEE Internet of Things Journal – reference: . – volume: 39 start-page: 1633 year: 2017 end-page: 1647 ident: b0165 article-title: Social collaborative filtering by trust publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 66 start-page: 30 year: 2017 end-page: 35 ident: b0190 article-title: iDoctor: Personalized and professionalized medical recommendations based on hybrid matrix factorization publication-title: Future Generation Computer Systems-the International Journal of Escience – volume: 7 start-page: 5986 year: 2020 end-page: 5994 ident: b0115 article-title: Communication-efficient federated learning for wireless edge intelligence in IoT publication-title: IEEE Internet of Things Journal – volume: 161 year: 2020 ident: b0055 article-title: EMUCF: Enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems publication-title: Expert Systems with Applications – volume: 7 start-page: 9895 year: 2020 end-page: 9903 ident: b0070 article-title: Multiagent DDPG-based deep learning for smart ocean federated learning IoT networks publication-title: IEEE Internet of Things Journal – volume: 7 start-page: 1241 year: 2021 end-page: 1252 ident: b0150 article-title: Explainable recommendation based on knowledge graph and multi-objective optimization publication-title: Complex & Intelligent Systems – year: 2019 ident: b0140 article-title: CMFL: Mitigating communication overhead for federated learning publication-title: Paper presented at the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) – year: 2016 ident: b0050 article-title: Fast matrix factorization for online recommendation with implicit feedback – volume: 10 year: 2019 ident: b0175 article-title: Federated machine learning: Concept and applications publication-title: Acm Transactions on Intelligent Systems and Technology – volume: 32 year: 2020 ident: b0195 article-title: A many-objective integrated evolutionary algorithm for feature selection in anomaly detection publication-title: Concurrency and Computation: Practice and Experience – volume: 31 start-page: 1310 year: 2020 end-page: 1322 ident: b0205 article-title: Multi-objective evolutionary federated learning publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 74 start-page: 7015 year: 2015 end-page: 7036 ident: b0125 article-title: Tuning metadata for better movie content-based recommendation systems publication-title: Multimedia Tools and Applications – volume: 54 start-page: 463 year: 2018 end-page: 474 ident: b0155 article-title: A novel recommendation method based on social network using matrix factorization technique publication-title: Information Processing & Management – volume: 119 start-page: 311 year: 2019 end-page: 321 ident: b0085 article-title: Personalized recommendation by matrix co-factorization with tags and time information publication-title: Expert Systems with Applications – volume: 15 start-page: 911 year: 2020 end-page: 926 ident: b0160 article-title: VerifyNet: Secure and verifiable federated learning publication-title: IEEE Transactions on Information Forensics and Security – year: 2021 ident: b0100 article-title: An adaptive localized decision variable analysis approach to large-scale multi-objective and many-objective optimization publication-title: IEEE Transactions on Cybernetics – ident: 10.1016/j.eswa.2022.116963_b0110 – volume: 7 start-page: 1241 issue: 3 year: 2021 ident: 10.1016/j.eswa.2022.116963_b0150 article-title: Explainable recommendation based on knowledge graph and multi-objective optimization publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-021-00315-y – volume: 159 issue: 10 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0025 article-title: A hybrid recommendation system with many-objective evolutionary algorithm publication-title: Expert Systems with Applications – volume: 31 start-page: 1310 issue: 4 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0205 article-title: Multi-objective evolutionary federated learning publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2919699 – volume: 7 start-page: 5986 issue: 7 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0115 article-title: Communication-efficient federated learning for wireless edge intelligence in IoT publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2019.2956615 – volume: 10 issue: 2 year: 2019 ident: 10.1016/j.eswa.2022.116963_b0175 article-title: Federated machine learning: Concept and applications publication-title: Acm Transactions on Intelligent Systems and Technology doi: 10.1145/3298981 – volume: 32 issue: 22 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0195 article-title: A many-objective integrated evolutionary algorithm for feature selection in anomaly detection publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.5861 – volume: 54 start-page: 463 issue: 3 year: 2018 ident: 10.1016/j.eswa.2022.116963_b0155 article-title: A novel recommendation method based on social network using matrix factorization technique publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.02.005 – year: 2019 ident: 10.1016/j.eswa.2022.116963_b0140 article-title: CMFL: Mitigating communication overhead for federated learning – volume: 74 start-page: 7015 issue: 17 year: 2015 ident: 10.1016/j.eswa.2022.116963_b0125 article-title: Tuning metadata for better movie content-based recommendation systems publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-014-1950-1 – year: 2020 ident: 10.1016/j.eswa.2022.116963_b0030 article-title: Secure federated matrix factorization publication-title: Intelligent Systems IEEE – volume: 39 start-page: 1633 issue: 8 year: 2017 ident: 10.1016/j.eswa.2022.116963_b0165 article-title: Social collaborative filtering by trust publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2605085 – volume: 50 start-page: 487 issue: 2 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0200 article-title: Feature subset selection combining maximal information entropy and maximal information coefficient publication-title: Applied Intelligence doi: 10.1007/s10489-019-01537-x – volume: 46 start-page: 109 issue: 1 year: 2013 ident: 10.1016/j.eswa.2022.116963_b0010 article-title: Recommender systems survey publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2013.03.012 – volume: 8 start-page: 9645 issue: 12 year: 2021 ident: 10.1016/j.eswa.2022.116963_b0015 article-title: A multicloud-model-based many-objective intelligent algorithm for efficient Task scheduling in internet of things publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2020.3040019 – volume: 31 start-page: 4229 issue: 10 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0035 article-title: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2953131 – volume: 8 start-page: 453 issue: 3 year: 2015 ident: 10.1016/j.eswa.2022.116963_b0185 article-title: Unified collaborative and content-based web service recommendation publication-title: IEEE Transactions on Services Computing doi: 10.1109/TSC.2014.2355842 – volume: 13 start-page: 73 issue: 4 year: 2017 ident: 10.1016/j.eswa.2022.116963_b0130 article-title: PlatEMO: AMATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2017.2742868 – volume: 220 year: 2021 ident: 10.1016/j.eswa.2022.116963_b0170 article-title: FCMF: Federated collective matrix factorization for heterogeneous collaborative filtering publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.106946 – volume: 68 start-page: 4734 issue: 8 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0120 article-title: Federated learning with blockchain for autonomous vehicles: Analysis and design challenges publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2020.2990686 – volume: 15 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0135 article-title: Low-rank and sparse matrix factorization with prior relations for recommender systems publication-title: Applied Intelligence – volume: 31 start-page: 2524 issue: 11 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0090 article-title: Towards fair and privacy-preserving federated deep models publication-title: IEEE Transactions on Parallel and Distributed Systems doi: 10.1109/TPDS.2020.2996273 – year: 2021 ident: 10.1016/j.eswa.2022.116963_b0100 article-title: An adaptive localized decision variable analysis approach to large-scale multi-objective and many-objective optimization publication-title: IEEE Transactions on Cybernetics – volume: 14 start-page: 514 issue: 2 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0145 article-title: A many-objective optimization WSN energy balance model publication-title: KSII Transactions on Internet and Information Systems – volume: 7 start-page: 7751 issue: 8 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0075 article-title: Privacy-preserving traffic flow prediction: A federated learning approach publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2020.2991401 – volume: 509 start-page: 437 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0105 article-title: A novel many-objective evolutionary algorithm based on transfer matrix with Kriging model publication-title: Information Sciences doi: 10.1016/j.ins.2019.01.030 – ident: 10.1016/j.eswa.2022.116963_b0005 – volume: 119 start-page: 311 year: 2019 ident: 10.1016/j.eswa.2022.116963_b0085 article-title: Personalized recommendation by matrix co-factorization with tags and time information publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.11.003 – volume: 7 start-page: 9895 issue: 10 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0070 article-title: Multiagent DDPG-based deep learning for smart ocean federated learning IoT networks publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2020.2988033 – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 10.1016/j.eswa.2022.116963_b0040 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2016.2519378 – year: 2016 ident: 10.1016/j.eswa.2022.116963_b0050 article-title: Fast matrix factorization for online recommendation with implicit feedback – volume: 15 start-page: 911 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0160 article-title: VerifyNet: Secure and verifiable federated learning publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2019.2929409 – year: 2020 ident: 10.1016/j.eswa.2022.116963_b0095 article-title: Enhancing learning efficiency of brain storm optimization via orthogonal learning design publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems, – year: 2018 ident: 10.1016/j.eswa.2022.116963_b0060 article-title: Efficient decentralized deep learning by dynamic model averaging – volume: 41 start-page: 1 year: 2014 ident: 10.1016/j.eswa.2022.116963_b0180 article-title: A survey of collaborative filtering based social recommender systems publication-title: Computer Communications doi: 10.1016/j.comcom.2013.06.009 – volume: 13 start-page: 685 issue: 4 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0045 article-title: Personalized recommendation system based on collaborative filtering for IoT scenarios publication-title: IEEE Transactions on Services Computing doi: 10.1109/TSC.2020.2964552 – volume: 66 start-page: 30 year: 2017 ident: 10.1016/j.eswa.2022.116963_b0190 article-title: iDoctor: Personalized and professionalized medical recommendations based on hybrid matrix factorization publication-title: Future Generation Computer Systems-the International Journal of Escience doi: 10.1016/j.future.2015.12.001 – ident: 10.1016/j.eswa.2022.116963_b0065 – volume: 537 start-page: 148 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0020 article-title: A many-objective optimization recommendation algorithm based on knowledge mining publication-title: Information Sciences doi: 10.1016/j.ins.2020.05.067 – volume: 161 issue: 22 year: 2020 ident: 10.1016/j.eswa.2022.116963_b0055 article-title: EMUCF: Enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems publication-title: Expert Systems with Applications – volume: 74 start-page: 12 year: 2015 ident: 10.1016/j.eswa.2022.116963_b0080 article-title: Recommender system application developments: A survey publication-title: Decision Support Systems doi: 10.1016/j.dss.2015.03.008 |
| SSID | ssj0017007 |
| Score | 2.5151062 |
| Snippet | •A novel communication-efficient federated recommendation model is proposed.•A many-objective evolutionary method is used to achieve parameter... The federated recommendation system (FedRS), which is the application of the recommendation system (RS) in federated learning, has been creatively developed as... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116963 |
| SubjectTerms | Communication Evolutionary algorithms Federated learning Federated recommendation model Genetic algorithms Many-objective evolutionary algorithm Mathematical models Optimization Performance evaluation Process parameters Recommendation system Recommender systems RVEA |
| Title | Communication-efficient federated recommendation model based on many-objective evolutionary algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.116963 https://www.proquest.com/docview/2675697820 |
| Volume | 201 |
| WOSCitedRecordID | wos000801762500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL34jBQD5wqzw1thPbx2kaAoQmJIZUuER27NBUbTq1aemfPzu202ZoEyBxiZIotiO_n997fn4fALwrU8w1twvQCEMQJYYhJZlEWClcZnpEdKnbYhPs4oKPx-LLYLCJsTCbGatrvt2Kq_9KavvOEtuFzv4FubtO7Qt7b4lur5bs9vpHhO-FfCDTpohoMzC5tBHSKZhuEzyfm1BOyRfDGTpxpt3RwdyyB7RQU88Jh2YT_ta518nZz8WyaibznkHfZUtuQk7oGC23dy7eHXOsW8-BH5Nqst4JgxAcUnUA--xNst9lkKn7Vm3bdlvJfUuF3eRGV6xgPoshNDt_JW-HZIgmvlTPifFcmDOCMuZLJ0Y2jX1Xv7F8b32YnpjVL5dHCmMrBTIRuGY_lfZXN5gbCzuXPC7G98AhZqmwDP3w9OP5-FN3_sRGPtA-_lwIt_KegTdHuk2luSHcW43l8jF4GLYa8NRD5AkYmPopeBTLeMDA1Z8BcwtiYIcY2EcMbBEDW8RA99hDDNxHDOwQ8xx8e39-efYBheobqCCYN4iW0up6mialopLzkjFZSiwMVQUTWWKYwSOjmVKmFFphQo3l5qlSCdbEqu0peQEO6kVtXgLIR0VqqBUumGVUS-qMCtJIUiSSJJIVRyCJE5gXITW9q5Ayy6MP4jR3k567Sc_9pB-BYdfmyidmufPrNNIlD6qlVxlzC6M72x1HIuZhja9ybDfZmXCJJl_9Y7evwYPdAjkGB81ybd6A-8WmqVbLtwGM18r6reE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Communication-efficient+federated+recommendation+model+based+on+many-objective+evolutionary+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Cui%2C+Zhihua&rft.au=Wen%2C+Jie&rft.au=Lan%2C+Yang&rft.au=Zhang%2C+Zhixia&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=201&rft_id=info:doi/10.1016%2Fj.eswa.2022.116963&rft.externalDocID=S095741742200389X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |