Communication-efficient federated recommendation model based on many-objective evolutionary algorithm

•A novel communication-efficient federated recommendation model is proposed.•A many-objective evolutionary method is used to achieve parameter reduction.•Recommended performances and communication cost are optimized simultaneously. The federated recommendation system (FedRS), which is the applicatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 201; s. 116963
Hlavní autori: Cui, Zhihua, Wen, Jie, Lan, Yang, Zhang, Zhixia, Cai, Jianghui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 01.09.2022
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A novel communication-efficient federated recommendation model is proposed.•A many-objective evolutionary method is used to achieve parameter reduction.•Recommended performances and communication cost are optimized simultaneously. The federated recommendation system (FedRS), which is the application of the recommendation system (RS) in federated learning, has been creatively developed as increasing attention has been paid to user privacy protection. However, traditional federated learning consumes excessive communication time and resource, which seriously limits the development of the FedRS. To reduce the communication cost and improve the recommendation performance of FedRS, an improved many-objective federated recommendation model with a novel parameter reduction strategy is proposed in this paper. The model aims to optimize the number of parameters shared between the server and client to improve communication efficiency in the federated process. Optimal parameter selection solutions can be obtained using the many-objective evolutionary algorithm (MaOEA), which can optimize the recommendation accuracy, novelty, diversity, and communication efficiency of FedRS simultaneously. Furthermore, the reference vector guided evolutionary algorithm (RVEA) was adopted to evaluate the proposed model. Experiments were performed on two famous recommendation datasets to examine the superiority of RVEA for the evaluation. The performance results indicated that the proposed model can not only provide accurate, diverse, and novel recommendations for the client, but can also realize efficient communication.
AbstractList •A novel communication-efficient federated recommendation model is proposed.•A many-objective evolutionary method is used to achieve parameter reduction.•Recommended performances and communication cost are optimized simultaneously. The federated recommendation system (FedRS), which is the application of the recommendation system (RS) in federated learning, has been creatively developed as increasing attention has been paid to user privacy protection. However, traditional federated learning consumes excessive communication time and resource, which seriously limits the development of the FedRS. To reduce the communication cost and improve the recommendation performance of FedRS, an improved many-objective federated recommendation model with a novel parameter reduction strategy is proposed in this paper. The model aims to optimize the number of parameters shared between the server and client to improve communication efficiency in the federated process. Optimal parameter selection solutions can be obtained using the many-objective evolutionary algorithm (MaOEA), which can optimize the recommendation accuracy, novelty, diversity, and communication efficiency of FedRS simultaneously. Furthermore, the reference vector guided evolutionary algorithm (RVEA) was adopted to evaluate the proposed model. Experiments were performed on two famous recommendation datasets to examine the superiority of RVEA for the evaluation. The performance results indicated that the proposed model can not only provide accurate, diverse, and novel recommendations for the client, but can also realize efficient communication.
The federated recommendation system (FedRS), which is the application of the recommendation system (RS) in federated learning, has been creatively developed as increasing attention has been paid to user privacy protection. However, traditional federated learning consumes excessive communication time and resource, which seriously limits the development of the FedRS. To reduce the communication cost and improve the recommendation performance of FedRS, an improved many-objective federated recommendation model with a novel parameter reduction strategy is proposed in this paper. The model aims to optimize the number of parameters shared between the server and client to improve communication efficiency in the federated process. Optimal parameter selection solutions can be obtained using the many-objective evolutionary algorithm (MaOEA), which can optimize the recommendation accuracy, novelty, diversity, and communication efficiency of FedRS simultaneously. Furthermore, the reference vector guided evolutionary algorithm (RVEA) was adopted to evaluate the proposed model. Experiments were performed on two famous recommendation datasets to examine the superiority of RVEA for the evaluation. The performance results indicated that the proposed model can not only provide accurate, diverse, and novel recommendations for the client, but can also realize efficient communication.
ArticleNumber 116963
Author Zhang, Zhixia
Cui, Zhihua
Lan, Yang
Wen, Jie
Cai, Jianghui
Author_xml – sequence: 1
  givenname: Zhihua
  surname: Cui
  fullname: Cui, Zhihua
  email: cuizhihua@tyust.edu.cn
– sequence: 2
  givenname: Jie
  surname: Wen
  fullname: Wen, Jie
  email: wj_110926@163.com
– sequence: 3
  givenname: Yang
  surname: Lan
  fullname: Lan, Yang
  email: lanyangvip1020@163.com
– sequence: 4
  givenname: Zhixia
  surname: Zhang
  fullname: Zhang, Zhixia
  email: zhixiazhang@stu.tyust.edu.cn
– sequence: 5
  givenname: Jianghui
  surname: Cai
  fullname: Cai, Jianghui
  email: jianghui@tyust.edu.cn
BookMark eNp9kMtOAyEUQImpiW31B1xN4noqMA-GxI1pfCVN3Oia8Lgok5mhAq3p3zvTunLhihDOgctZoNngB0DomuAVwaS-bVcQv-WKYkpXhNS8Ls7QnDSsyGvGixmaY16xvCSsvECLGFuMCcOYzRGsfd_vBqdlcn7IwVqnHQwps2AgyAQmC6BHBgZzRLLeG-gyJeN4NG3lcMi9akEnt4cM9r7bTZwMh0x2Hz649NlfonMruwhXv-sSvT8-vK2f883r08v6fpPrgjYpL63ENTElsaqUTWMZk1ZSDqXSjNcEGFAMhikFlhtFixIKwiulCDUFr0hVLNHN6d5t8F87iEm0fheG8UlBa1bVnDUUjxQ9UTr4GANYsQ2uHwcWBIspp2jFlFNMOcUp5yg1fyTt0rFICtJ1_6t3JxXGr-8dBBGnxhqMG9smYbz7T_8BN9WVbw
CitedBy_id crossref_primary_10_1007_s42979_025_04230_8
crossref_primary_10_1016_j_energy_2024_130432
crossref_primary_10_1109_TCSS_2023_3283574
crossref_primary_10_1002_cpe_7479
crossref_primary_10_1109_TETCI_2024_3359093
crossref_primary_10_1002_cpe_8153
crossref_primary_10_1109_JIOT_2024_3406634
crossref_primary_10_1007_s10489_023_04775_2
crossref_primary_10_3390_app14072720
crossref_primary_10_1145_3708982
crossref_primary_10_1016_j_ins_2024_121552
crossref_primary_10_1002_cpe_7947
crossref_primary_10_1016_j_swevo_2025_101853
crossref_primary_10_32604_cmes_2023_022287
crossref_primary_10_1016_j_eswa_2023_121870
crossref_primary_10_1016_j_eswa_2024_123460
crossref_primary_10_1016_j_artmed_2023_102691
crossref_primary_10_1007_s13042_022_01647_y
crossref_primary_10_1016_j_future_2024_04_051
Cites_doi 10.1007/s40747-021-00315-y
10.1109/TNNLS.2019.2919699
10.1109/JIOT.2019.2956615
10.1145/3298981
10.1002/cpe.5861
10.1016/j.ipm.2018.02.005
10.1007/s11042-014-1950-1
10.1109/TPAMI.2016.2605085
10.1007/s10489-019-01537-x
10.1016/j.knosys.2013.03.012
10.1109/JIOT.2020.3040019
10.1109/TNNLS.2019.2953131
10.1109/TSC.2014.2355842
10.1109/MCI.2017.2742868
10.1016/j.knosys.2021.106946
10.1109/TCOMM.2020.2990686
10.1109/TPDS.2020.2996273
10.1109/JIOT.2020.2991401
10.1016/j.ins.2019.01.030
10.1016/j.eswa.2018.11.003
10.1109/JIOT.2020.2988033
10.1109/TEVC.2016.2519378
10.1109/TIFS.2019.2929409
10.1016/j.comcom.2013.06.009
10.1109/TSC.2020.2964552
10.1016/j.future.2015.12.001
10.1016/j.ins.2020.05.067
10.1016/j.dss.2015.03.008
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Sep 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 1, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2022.116963
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_116963
S095741742200389X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-4fa061d41fb4a88f77afa29e4bc7961e7e20ed7bbef9db234e3195bb12d395153
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000801762500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 08:02:37 EDT 2025
Sat Nov 29 07:08:20 EST 2025
Tue Nov 18 22:12:49 EST 2025
Fri Feb 23 02:39:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Many-objective evolutionary algorithm
Federated learning
RVEA
Federated recommendation model
Recommendation system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-4fa061d41fb4a88f77afa29e4bc7961e7e20ed7bbef9db234e3195bb12d395153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2675697820
PQPubID 2045477
ParticipantIDs proquest_journals_2675697820
crossref_primary_10_1016_j_eswa_2022_116963
crossref_citationtrail_10_1016_j_eswa_2022_116963
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116963
PublicationCentury 2000
PublicationDate 2022-09-01
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhang, Chen, Huang, Wu, Li (b0190) 2017; 66
Zheng, Wang, Wu, Wu (b0200) 2020; 50
Ammad-Ud-Din, M., Ivannikova, E., Khan, S. A., Oyomno, W., Tan, Q. Fu, K. E., & Flanagan, A. (2019).
Xu, Li, Liu, Yang, Lin (b0160) 2020; 15
Cai, Hu, Chen (b0020) 2020; 537
Xie, Hu, Cai, Zhang, Chen (b0150) 2021; 7
Xu (b0155) 2018; 54
Yao, Sheng, Ngu, Yu, Segev (b0185) 2015; 8
He, Zhang, Kan, Chua (b0050) 2016
Cui, Xu, Xue, Cai, Cao, Zhang, Chen (b0045) 2020; 13
Jain, Nagar, Singh, Dhar (b0055) 2020; 161
Cai, Geng, Wu, Cai, Chen (b0015) 2021; 8
Ma, Huang, Yang, Wang, Wang (b0100) 2021
Mills, Hu, Min (b0115) 2020; 7
Kamp, Adilova, Sicking, Hüger, Wrobel (b0060) 2018
Konečný, J., McMahan, H. B., Yu, F. X., Richtáriknes, P., & Suresh, A. T. (2016).
Yang, Guo, Liu, Steck (b0180) 2014; 41
In: NIPS workshop on private multi-party machine learning.
Luo, Xie, Rao, Wang (b0085) 2019; 119
Wu, Geng, Cai, Zhang, Xue (b0145) 2020; 14
Yang, Huang, Liang, Wang, Ming (b0170) 2021; 220
Bobadilla, Ortega, Hernando, Gutiérrez (b0010) 2013; 46
Soares, Viana (b0125) 2015; 74
Pokhrel, Choi (b0120) 2020; 68
Cai, Hu, Zhao, Zhang, Chen (b0025) 2020; 159
Retrieved from
Kwon, Jeon, Park, Kim, Cho (b0070) 2020; 7
Lu, Wu, Mao, Wang, Zhang (b0080) 2015; 74
McMahan, H. B., Moore, E., Ramage, D., & Hampson, S. (2017).
Ma, Wang, Chen, Cheng, Wang, Lin, Huang (b0105) 2020; 509
.
Ma, Cheng, Shi (b0095) 2020
Wang, Zhu, Dai, Xu, Gao (b0135) 2020; 15
Tian, Cheng, Zhang, Jin (b0130) 2017; 13
Wang, Wang, Bo (b0140) 2019
Cheng, Jin, Olhofer, Sendhoff (b0040) 2016; 20
In: Artificial Intelligence and Statistics, PMLR. pp. 1273–1282.
Chen, Sun, Jin (b0035) 2020; 31
Zhang, Xie (b0195) 2020; 32
Yang, Lei, Liu, Li (b0165) 2017; 39
Zhu, Jin (b0205) 2020; 31
Lyu, Yu, Nandakumar, Li, Ma, Jin, Ng (b0090) 2020; 31
Chai, Wang, Chen, Yang (b0030) 2020
Liu, Yu, Kang, Niyato, Zhang (b0075) 2020; 7
Yang, Liu, Chen, Tong (b0175) 2019; 10
Xie (10.1016/j.eswa.2022.116963_b0150) 2021; 7
Jain (10.1016/j.eswa.2022.116963_b0055) 2020; 161
Tian (10.1016/j.eswa.2022.116963_b0130) 2017; 13
Cui (10.1016/j.eswa.2022.116963_b0045) 2020; 13
10.1016/j.eswa.2022.116963_b0065
Mills (10.1016/j.eswa.2022.116963_b0115) 2020; 7
Yang (10.1016/j.eswa.2022.116963_b0175) 2019; 10
Cai (10.1016/j.eswa.2022.116963_b0025) 2020; 159
Luo (10.1016/j.eswa.2022.116963_b0085) 2019; 119
Kwon (10.1016/j.eswa.2022.116963_b0070) 2020; 7
Wang (10.1016/j.eswa.2022.116963_b0135) 2020; 15
Soares (10.1016/j.eswa.2022.116963_b0125) 2015; 74
Yang (10.1016/j.eswa.2022.116963_b0170) 2021; 220
Zhang (10.1016/j.eswa.2022.116963_b0190) 2017; 66
Zhu (10.1016/j.eswa.2022.116963_b0205) 2020; 31
Pokhrel (10.1016/j.eswa.2022.116963_b0120) 2020; 68
Liu (10.1016/j.eswa.2022.116963_b0075) 2020; 7
Lu (10.1016/j.eswa.2022.116963_b0080) 2015; 74
Xu (10.1016/j.eswa.2022.116963_b0160) 2020; 15
Wu (10.1016/j.eswa.2022.116963_b0145) 2020; 14
Zhang (10.1016/j.eswa.2022.116963_b0195) 2020; 32
Xu (10.1016/j.eswa.2022.116963_b0155) 2018; 54
10.1016/j.eswa.2022.116963_b0110
Yang (10.1016/j.eswa.2022.116963_b0165) 2017; 39
Ma (10.1016/j.eswa.2022.116963_b0105) 2020; 509
Kamp (10.1016/j.eswa.2022.116963_b0060) 2018
Ma (10.1016/j.eswa.2022.116963_b0095) 2020
Ma (10.1016/j.eswa.2022.116963_b0100) 2021
Chen (10.1016/j.eswa.2022.116963_b0035) 2020; 31
Bobadilla (10.1016/j.eswa.2022.116963_b0010) 2013; 46
Wang (10.1016/j.eswa.2022.116963_b0140) 2019
Zheng (10.1016/j.eswa.2022.116963_b0200) 2020; 50
Cheng (10.1016/j.eswa.2022.116963_b0040) 2016; 20
10.1016/j.eswa.2022.116963_b0005
Cai (10.1016/j.eswa.2022.116963_b0015) 2021; 8
Lyu (10.1016/j.eswa.2022.116963_b0090) 2020; 31
Yao (10.1016/j.eswa.2022.116963_b0185) 2015; 8
Cai (10.1016/j.eswa.2022.116963_b0020) 2020; 537
Yang (10.1016/j.eswa.2022.116963_b0180) 2014; 41
Chai (10.1016/j.eswa.2022.116963_b0030) 2020
He (10.1016/j.eswa.2022.116963_b0050) 2016
References_xml – volume: 74
  start-page: 12
  year: 2015
  end-page: 32
  ident: b0080
  article-title: Recommender system application developments: A survey
  publication-title: Decision Support Systems
– volume: 159
  year: 2020
  ident: b0025
  article-title: A hybrid recommendation system with many-objective evolutionary algorithm
  publication-title: Expert Systems with Applications
– year: 2020
  ident: b0030
  article-title: Secure federated matrix factorization
  publication-title: Intelligent Systems IEEE
– volume: 68
  start-page: 4734
  year: 2020
  end-page: 4746
  ident: b0120
  article-title: Federated learning with blockchain for autonomous vehicles: Analysis and design challenges
  publication-title: IEEE Transactions on Communications
– year: 2018
  ident: b0060
  article-title: Efficient decentralized deep learning by dynamic model averaging
  publication-title: . ECML PKDD 2018. Lecture Notes in Computer Science
– volume: 13
  start-page: 685
  year: 2020
  end-page: 695
  ident: b0045
  article-title: Personalized recommendation system based on collaborative filtering for IoT scenarios
  publication-title: IEEE Transactions on Services Computing
– reference: . In: NIPS workshop on private multi-party machine learning.
– reference: In: Artificial Intelligence and Statistics, PMLR. pp. 1273–1282.
– reference: Konečný, J., McMahan, H. B., Yu, F. X., Richtáriknes, P., & Suresh, A. T. (2016).
– volume: 220
  year: 2021
  ident: b0170
  article-title: FCMF: Federated collective matrix factorization for heterogeneous collaborative filtering
  publication-title: Knowledge-Based Systems
– volume: 537
  start-page: 148
  year: 2020
  end-page: 161
  ident: b0020
  article-title: A many-objective optimization recommendation algorithm based on knowledge mining
  publication-title: Information Sciences
– reference: McMahan, H. B., Moore, E., Ramage, D., & Hampson, S. (2017).
– volume: 41
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0180
  article-title: A survey of collaborative filtering based social recommender systems
  publication-title: Computer Communications
– reference: . Retrieved from
– reference: Ammad-Ud-Din, M., Ivannikova, E., Khan, S. A., Oyomno, W., Tan, Q. Fu, K. E., & Flanagan, A. (2019).
– volume: 14
  start-page: 514
  year: 2020
  end-page: 537
  ident: b0145
  article-title: A many-objective optimization WSN energy balance model
  publication-title: KSII Transactions on Internet and Information Systems
– volume: 7
  start-page: 7751
  year: 2020
  end-page: 7763
  ident: b0075
  article-title: Privacy-preserving traffic flow prediction: A federated learning approach
  publication-title: IEEE Internet of Things Journal
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b0040
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 13
  start-page: 73
  year: 2017
  end-page: 87
  ident: b0130
  article-title: PlatEMO: AMATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Computational Intelligence Magazine
– volume: 15
  year: 2020
  ident: b0135
  article-title: Low-rank and sparse matrix factorization with prior relations for recommender systems
  publication-title: Applied Intelligence
– volume: 8
  start-page: 453
  year: 2015
  end-page: 466
  ident: b0185
  article-title: Unified collaborative and content-based web service recommendation
  publication-title: IEEE Transactions on Services Computing
– volume: 31
  start-page: 2524
  year: 2020
  end-page: 2541
  ident: b0090
  article-title: Towards fair and privacy-preserving federated deep models
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– year: 2020
  ident: b0095
  article-title: Enhancing learning efficiency of brain storm optimization via orthogonal learning design
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems,
– volume: 509
  start-page: 437
  year: 2020
  end-page: 456
  ident: b0105
  article-title: A novel many-objective evolutionary algorithm based on transfer matrix with Kriging model
  publication-title: Information Sciences
– volume: 50
  start-page: 487
  year: 2020
  end-page: 501
  ident: b0200
  article-title: Feature subset selection combining maximal information entropy and maximal information coefficient
  publication-title: Applied Intelligence
– volume: 31
  start-page: 4229
  year: 2020
  end-page: 4238
  ident: b0035
  article-title: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 46
  start-page: 109
  year: 2013
  end-page: 132
  ident: b0010
  article-title: Recommender systems survey
  publication-title: Knowledge-Based Systems
– volume: 8
  start-page: 9645
  year: 2021
  end-page: 9653
  ident: b0015
  article-title: A multicloud-model-based many-objective intelligent algorithm for efficient Task scheduling in internet of things
  publication-title: IEEE Internet of Things Journal
– reference: .
– volume: 39
  start-page: 1633
  year: 2017
  end-page: 1647
  ident: b0165
  article-title: Social collaborative filtering by trust
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 66
  start-page: 30
  year: 2017
  end-page: 35
  ident: b0190
  article-title: iDoctor: Personalized and professionalized medical recommendations based on hybrid matrix factorization
  publication-title: Future Generation Computer Systems-the International Journal of Escience
– volume: 7
  start-page: 5986
  year: 2020
  end-page: 5994
  ident: b0115
  article-title: Communication-efficient federated learning for wireless edge intelligence in IoT
  publication-title: IEEE Internet of Things Journal
– volume: 161
  year: 2020
  ident: b0055
  article-title: EMUCF: Enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 9895
  year: 2020
  end-page: 9903
  ident: b0070
  article-title: Multiagent DDPG-based deep learning for smart ocean federated learning IoT networks
  publication-title: IEEE Internet of Things Journal
– volume: 7
  start-page: 1241
  year: 2021
  end-page: 1252
  ident: b0150
  article-title: Explainable recommendation based on knowledge graph and multi-objective optimization
  publication-title: Complex & Intelligent Systems
– year: 2019
  ident: b0140
  article-title: CMFL: Mitigating communication overhead for federated learning
  publication-title: Paper presented at the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)
– year: 2016
  ident: b0050
  article-title: Fast matrix factorization for online recommendation with implicit feedback
– volume: 10
  year: 2019
  ident: b0175
  article-title: Federated machine learning: Concept and applications
  publication-title: Acm Transactions on Intelligent Systems and Technology
– volume: 32
  year: 2020
  ident: b0195
  article-title: A many-objective integrated evolutionary algorithm for feature selection in anomaly detection
  publication-title: Concurrency and Computation: Practice and Experience
– volume: 31
  start-page: 1310
  year: 2020
  end-page: 1322
  ident: b0205
  article-title: Multi-objective evolutionary federated learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 74
  start-page: 7015
  year: 2015
  end-page: 7036
  ident: b0125
  article-title: Tuning metadata for better movie content-based recommendation systems
  publication-title: Multimedia Tools and Applications
– volume: 54
  start-page: 463
  year: 2018
  end-page: 474
  ident: b0155
  article-title: A novel recommendation method based on social network using matrix factorization technique
  publication-title: Information Processing & Management
– volume: 119
  start-page: 311
  year: 2019
  end-page: 321
  ident: b0085
  article-title: Personalized recommendation by matrix co-factorization with tags and time information
  publication-title: Expert Systems with Applications
– volume: 15
  start-page: 911
  year: 2020
  end-page: 926
  ident: b0160
  article-title: VerifyNet: Secure and verifiable federated learning
  publication-title: IEEE Transactions on Information Forensics and Security
– year: 2021
  ident: b0100
  article-title: An adaptive localized decision variable analysis approach to large-scale multi-objective and many-objective optimization
  publication-title: IEEE Transactions on Cybernetics
– ident: 10.1016/j.eswa.2022.116963_b0110
– volume: 7
  start-page: 1241
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2022.116963_b0150
  article-title: Explainable recommendation based on knowledge graph and multi-objective optimization
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-021-00315-y
– volume: 159
  issue: 10
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0025
  article-title: A hybrid recommendation system with many-objective evolutionary algorithm
  publication-title: Expert Systems with Applications
– volume: 31
  start-page: 1310
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0205
  article-title: Multi-objective evolutionary federated learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2919699
– volume: 7
  start-page: 5986
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0115
  article-title: Communication-efficient federated learning for wireless edge intelligence in IoT
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2019.2956615
– volume: 10
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2022.116963_b0175
  article-title: Federated machine learning: Concept and applications
  publication-title: Acm Transactions on Intelligent Systems and Technology
  doi: 10.1145/3298981
– volume: 32
  issue: 22
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0195
  article-title: A many-objective integrated evolutionary algorithm for feature selection in anomaly detection
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.5861
– volume: 54
  start-page: 463
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2022.116963_b0155
  article-title: A novel recommendation method based on social network using matrix factorization technique
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.02.005
– year: 2019
  ident: 10.1016/j.eswa.2022.116963_b0140
  article-title: CMFL: Mitigating communication overhead for federated learning
– volume: 74
  start-page: 7015
  issue: 17
  year: 2015
  ident: 10.1016/j.eswa.2022.116963_b0125
  article-title: Tuning metadata for better movie content-based recommendation systems
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-014-1950-1
– year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0030
  article-title: Secure federated matrix factorization
  publication-title: Intelligent Systems IEEE
– volume: 39
  start-page: 1633
  issue: 8
  year: 2017
  ident: 10.1016/j.eswa.2022.116963_b0165
  article-title: Social collaborative filtering by trust
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2605085
– volume: 50
  start-page: 487
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0200
  article-title: Feature subset selection combining maximal information entropy and maximal information coefficient
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-019-01537-x
– volume: 46
  start-page: 109
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2022.116963_b0010
  article-title: Recommender systems survey
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.03.012
– volume: 8
  start-page: 9645
  issue: 12
  year: 2021
  ident: 10.1016/j.eswa.2022.116963_b0015
  article-title: A multicloud-model-based many-objective intelligent algorithm for efficient Task scheduling in internet of things
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2020.3040019
– volume: 31
  start-page: 4229
  issue: 10
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0035
  article-title: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2953131
– volume: 8
  start-page: 453
  issue: 3
  year: 2015
  ident: 10.1016/j.eswa.2022.116963_b0185
  article-title: Unified collaborative and content-based web service recommendation
  publication-title: IEEE Transactions on Services Computing
  doi: 10.1109/TSC.2014.2355842
– volume: 13
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2022.116963_b0130
  article-title: PlatEMO: AMATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2017.2742868
– volume: 220
  year: 2021
  ident: 10.1016/j.eswa.2022.116963_b0170
  article-title: FCMF: Federated collective matrix factorization for heterogeneous collaborative filtering
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106946
– volume: 68
  start-page: 4734
  issue: 8
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0120
  article-title: Federated learning with blockchain for autonomous vehicles: Analysis and design challenges
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2020.2990686
– volume: 15
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0135
  article-title: Low-rank and sparse matrix factorization with prior relations for recommender systems
  publication-title: Applied Intelligence
– volume: 31
  start-page: 2524
  issue: 11
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0090
  article-title: Towards fair and privacy-preserving federated deep models
  publication-title: IEEE Transactions on Parallel and Distributed Systems
  doi: 10.1109/TPDS.2020.2996273
– year: 2021
  ident: 10.1016/j.eswa.2022.116963_b0100
  article-title: An adaptive localized decision variable analysis approach to large-scale multi-objective and many-objective optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 14
  start-page: 514
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0145
  article-title: A many-objective optimization WSN energy balance model
  publication-title: KSII Transactions on Internet and Information Systems
– volume: 7
  start-page: 7751
  issue: 8
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0075
  article-title: Privacy-preserving traffic flow prediction: A federated learning approach
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2020.2991401
– volume: 509
  start-page: 437
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0105
  article-title: A novel many-objective evolutionary algorithm based on transfer matrix with Kriging model
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.01.030
– ident: 10.1016/j.eswa.2022.116963_b0005
– volume: 119
  start-page: 311
  year: 2019
  ident: 10.1016/j.eswa.2022.116963_b0085
  article-title: Personalized recommendation by matrix co-factorization with tags and time information
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.11.003
– volume: 7
  start-page: 9895
  issue: 10
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0070
  article-title: Multiagent DDPG-based deep learning for smart ocean federated learning IoT networks
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2020.2988033
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.eswa.2022.116963_b0040
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2519378
– year: 2016
  ident: 10.1016/j.eswa.2022.116963_b0050
  article-title: Fast matrix factorization for online recommendation with implicit feedback
– volume: 15
  start-page: 911
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0160
  article-title: VerifyNet: Secure and verifiable federated learning
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2019.2929409
– year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0095
  article-title: Enhancing learning efficiency of brain storm optimization via orthogonal learning design
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems,
– year: 2018
  ident: 10.1016/j.eswa.2022.116963_b0060
  article-title: Efficient decentralized deep learning by dynamic model averaging
– volume: 41
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2022.116963_b0180
  article-title: A survey of collaborative filtering based social recommender systems
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2013.06.009
– volume: 13
  start-page: 685
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0045
  article-title: Personalized recommendation system based on collaborative filtering for IoT scenarios
  publication-title: IEEE Transactions on Services Computing
  doi: 10.1109/TSC.2020.2964552
– volume: 66
  start-page: 30
  year: 2017
  ident: 10.1016/j.eswa.2022.116963_b0190
  article-title: iDoctor: Personalized and professionalized medical recommendations based on hybrid matrix factorization
  publication-title: Future Generation Computer Systems-the International Journal of Escience
  doi: 10.1016/j.future.2015.12.001
– ident: 10.1016/j.eswa.2022.116963_b0065
– volume: 537
  start-page: 148
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0020
  article-title: A many-objective optimization recommendation algorithm based on knowledge mining
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.05.067
– volume: 161
  issue: 22
  year: 2020
  ident: 10.1016/j.eswa.2022.116963_b0055
  article-title: EMUCF: Enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems
  publication-title: Expert Systems with Applications
– volume: 74
  start-page: 12
  year: 2015
  ident: 10.1016/j.eswa.2022.116963_b0080
  article-title: Recommender system application developments: A survey
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2015.03.008
SSID ssj0017007
Score 2.5151062
Snippet •A novel communication-efficient federated recommendation model is proposed.•A many-objective evolutionary method is used to achieve parameter...
The federated recommendation system (FedRS), which is the application of the recommendation system (RS) in federated learning, has been creatively developed as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116963
SubjectTerms Communication
Evolutionary algorithms
Federated learning
Federated recommendation model
Genetic algorithms
Many-objective evolutionary algorithm
Mathematical models
Optimization
Performance evaluation
Process parameters
Recommendation system
Recommender systems
RVEA
Title Communication-efficient federated recommendation model based on many-objective evolutionary algorithm
URI https://dx.doi.org/10.1016/j.eswa.2022.116963
https://www.proquest.com/docview/2675697820
Volume 201
WOSCitedRecordID wos000801762500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL34jBQD5wqzw1thPbx2kaAoQmJIZUuER27NBUbTq1aemfPzu202ZoEyBxiZIotiO_n997fn4fALwrU8w1twvQCEMQJYYhJZlEWClcZnpEdKnbYhPs4oKPx-LLYLCJsTCbGatrvt2Kq_9KavvOEtuFzv4FubtO7Qt7b4lur5bs9vpHhO-FfCDTpohoMzC5tBHSKZhuEzyfm1BOyRfDGTpxpt3RwdyyB7RQU88Jh2YT_ta518nZz8WyaibznkHfZUtuQk7oGC23dy7eHXOsW8-BH5Nqst4JgxAcUnUA--xNst9lkKn7Vm3bdlvJfUuF3eRGV6xgPoshNDt_JW-HZIgmvlTPifFcmDOCMuZLJ0Y2jX1Xv7F8b32YnpjVL5dHCmMrBTIRuGY_lfZXN5gbCzuXPC7G98AhZqmwDP3w9OP5-FN3_sRGPtA-_lwIt_KegTdHuk2luSHcW43l8jF4GLYa8NRD5AkYmPopeBTLeMDA1Z8BcwtiYIcY2EcMbBEDW8RA99hDDNxHDOwQ8xx8e39-efYBheobqCCYN4iW0up6mialopLzkjFZSiwMVQUTWWKYwSOjmVKmFFphQo3l5qlSCdbEqu0peQEO6kVtXgLIR0VqqBUumGVUS-qMCtJIUiSSJJIVRyCJE5gXITW9q5Ayy6MP4jR3k567Sc_9pB-BYdfmyidmufPrNNIlD6qlVxlzC6M72x1HIuZhja9ybDfZmXCJJl_9Y7evwYPdAjkGB81ybd6A-8WmqVbLtwGM18r6reE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Communication-efficient+federated+recommendation+model+based+on+many-objective+evolutionary+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Cui%2C+Zhihua&rft.au=Wen%2C+Jie&rft.au=Lan%2C+Yang&rft.au=Zhang%2C+Zhixia&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=201&rft_id=info:doi/10.1016%2Fj.eswa.2022.116963&rft.externalDocID=S095741742200389X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon