Fake news detection using an ensemble learning model based on Self-Adaptive Harmony Search algorithms

•The appropriate features of news are analyzed for training models.•The ensemble learning model for fake news detection is proposed in the paper.•The weights of the ensemble learning model are optimized in the paper.•The cross-domain intractability issue is investigated in the paper. In general, the...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 159; p. 113584
Main Authors: Huang, Yin-Fu, Chen, Po-Hong
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 30.11.2020
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The appropriate features of news are analyzed for training models.•The ensemble learning model for fake news detection is proposed in the paper.•The weights of the ensemble learning model are optimized in the paper.•The cross-domain intractability issue is investigated in the paper. In general, the features of fake news are almost the same as those of real news, so it is not easy to identify them. In this paper, we propose a fake news detection system using a deep learning model. First, news articles are preprocessed and analyzed based on different training models. Then, an ensemble learning model combining four different models called embedding LSTM, depth LSTM, LIWC CNN, and N-gram CNN is proposed for fake news detection. Besides, to achieve higher accuracy in fake news detection, the optimized weights of the ensemble learning model are determined using the Self-Adaptive Harmony Search (SAHS) algorithm. In the experiments, we verify that the proposed model is superior to the state-of-the-art methods, with the highest accuracy of 99.4%. Furthermore, we also investigate the cross-domain intractability issue and achieve the highest accuracy of 72.3%. Finally, we believe there is still room for improving the ensemble learning model in addressing the cross-domain intractability issue.
AbstractList •The appropriate features of news are analyzed for training models.•The ensemble learning model for fake news detection is proposed in the paper.•The weights of the ensemble learning model are optimized in the paper.•The cross-domain intractability issue is investigated in the paper. In general, the features of fake news are almost the same as those of real news, so it is not easy to identify them. In this paper, we propose a fake news detection system using a deep learning model. First, news articles are preprocessed and analyzed based on different training models. Then, an ensemble learning model combining four different models called embedding LSTM, depth LSTM, LIWC CNN, and N-gram CNN is proposed for fake news detection. Besides, to achieve higher accuracy in fake news detection, the optimized weights of the ensemble learning model are determined using the Self-Adaptive Harmony Search (SAHS) algorithm. In the experiments, we verify that the proposed model is superior to the state-of-the-art methods, with the highest accuracy of 99.4%. Furthermore, we also investigate the cross-domain intractability issue and achieve the highest accuracy of 72.3%. Finally, we believe there is still room for improving the ensemble learning model in addressing the cross-domain intractability issue.
In general, the features of fake news are almost the same as those of real news, so it is not easy to identify them. In this paper, we propose a fake news detection system using a deep learning model. First, news articles are preprocessed and analyzed based on different training models. Then, an ensemble learning model combining four different models called embedding LSTM, depth LSTM, LIWC CNN, and N-gram CNN is proposed for fake news detection. Besides, to achieve higher accuracy in fake news detection, the optimized weights of the ensemble learning model are determined using the Self-Adaptive Harmony Search (SAHS) algorithm. In the experiments, we verify that the proposed model is superior to the state-of-the-art methods, with the highest accuracy of 99.4%. Furthermore, we also investigate the cross-domain intractability issue and achieve the highest accuracy of 72.3%. Finally, we believe there is still room for improving the ensemble learning model in addressing the cross-domain intractability issue.
ArticleNumber 113584
Author Chen, Po-Hong
Huang, Yin-Fu
Author_xml – sequence: 1
  givenname: Yin-Fu
  orcidid: 0000-0001-6665-0135
  surname: Huang
  fullname: Huang, Yin-Fu
  email: huangyf@yuntech.edu.tw
– sequence: 2
  givenname: Po-Hong
  surname: Chen
  fullname: Chen, Po-Hong
BookMark eNp9kE1vGyEURVGVSHE-_kBWSFmPCwwzzEjZRFGTVLKURZo1eoZHjDsDLowT-d-Xkbvqwiukq3uAey7JWYgBCbnlbMkZb79vl5i_YCmYKAGvm05-IwveqbpqVV-fkQXrG1VJruQFucx5yxhXjKkFwSf4jTTgV6YWJzSTj4Husw8fFALFkHFcD0gHhBTmcIwWB7qGjJaW5hsOrnqwsJv8J9IXSGMMh5JCMhsKw0dMftqM-ZqcOxgy3vw7r8j7049fjy_V6vX55-PDqjK16KZKWmGhlW7teiHQ1E3jjOwd2la0UL6MfQvWllWuW6MAVMK1nSpjZeNU51R9Re6O9-5S_LPHPOlt3KdQntRCNrLhHW_mlji2TIo5J3R6l_wI6aA507NOvdWzTj3r1EedBer-g4yfYNY1JfDDafT-iGKZ_ukx6Ww8BoPWp2Jc2-hP4X8Bgi2TeA
CitedBy_id crossref_primary_10_3390_biomimetics9020082
crossref_primary_10_5209_dcin_77472
crossref_primary_10_1109_ACCESS_2025_3553909
crossref_primary_10_32604_cmc_2022_028981
crossref_primary_10_1007_s13278_022_00995_5
crossref_primary_10_1007_s10115_023_01902_w
crossref_primary_10_1007_s13278_025_01466_3
crossref_primary_10_7717_peerj_cs_425
crossref_primary_10_1109_ACCESS_2023_3341870
crossref_primary_10_1007_s13042_024_02431_w
crossref_primary_10_1007_s10479_024_06209_9
crossref_primary_10_32628_IJSRST2184111
crossref_primary_10_1080_0952813X_2024_2440665
crossref_primary_10_1145_3589184
crossref_primary_10_1007_s11042_021_11065_x
crossref_primary_10_1109_ACCESS_2024_3435497
crossref_primary_10_1016_j_ipm_2021_102723
crossref_primary_10_1177_02666669221118922
crossref_primary_10_1007_s42979_024_03297_z
crossref_primary_10_1007_s13278_024_01300_2
crossref_primary_10_3390_e24091242
crossref_primary_10_1007_s10479_022_05154_9
crossref_primary_10_1016_j_eswa_2021_115412
crossref_primary_10_3390_s22093373
crossref_primary_10_3390_technologies12110222
crossref_primary_10_1016_j_asoc_2025_112794
crossref_primary_10_4108_eetiot_7829
crossref_primary_10_1016_j_eswa_2020_114340
crossref_primary_10_32604_cmc_2024_053937
crossref_primary_10_1007_s41870_024_02017_3
crossref_primary_10_1016_j_ijdrr_2022_102900
crossref_primary_10_7717_peerj_cs_1666
crossref_primary_10_1007_s11277_022_09646_6
crossref_primary_10_1109_ACCESS_2025_3530688
crossref_primary_10_1109_JIOT_2024_3410015
crossref_primary_10_1186_s40359_024_02129_2
crossref_primary_10_3390_bdcc6020036
crossref_primary_10_3390_math10030488
crossref_primary_10_2339_politeknik_1307037
crossref_primary_10_1016_j_jnca_2025_104286
crossref_primary_10_1155_2021_2270276
crossref_primary_10_1109_ACCESS_2023_3278323
crossref_primary_10_1109_ACCESS_2025_3572051
crossref_primary_10_1016_j_jnca_2024_104006
crossref_primary_10_1142_S0219649222500368
crossref_primary_10_1016_j_eswa_2022_117953
crossref_primary_10_1109_ACCESS_2022_3152159
crossref_primary_10_3390_s22186970
crossref_primary_10_1016_j_techsoc_2021_101676
crossref_primary_10_4018_IJACI_309407
crossref_primary_10_1109_TCSS_2023_3270331
crossref_primary_10_1007_s13735_023_00296_3
crossref_primary_10_1038_s41598_023_34736_1
crossref_primary_10_1155_2022_1575365
crossref_primary_10_1016_j_iswa_2021_200056
crossref_primary_10_1080_0952813X_2023_2196986
crossref_primary_10_1007_s11042_023_15792_1
crossref_primary_10_1111_exsy_13008
crossref_primary_10_1016_j_compedu_2022_104529
crossref_primary_10_1371_journal_pone_0289204
crossref_primary_10_1177_21582440231217724
crossref_primary_10_1007_s00371_021_02230_2
crossref_primary_10_1109_TCSS_2022_3177359
crossref_primary_10_7717_peerj_cs_467
crossref_primary_10_1016_j_eswa_2023_119745
crossref_primary_10_1109_ACCESS_2024_3491376
crossref_primary_10_1186_s40537_024_00895_9
crossref_primary_10_1038_s41598_025_10670_2
crossref_primary_10_1109_ACCESS_2022_3206963
crossref_primary_10_1109_ACCESS_2024_3476432
crossref_primary_10_1016_j_swevo_2022_101126
crossref_primary_10_1016_j_eswa_2021_114819
Cites_doi 10.1016/S0004-3702(97)00043-X
10.1609/aaai.v33i01.33015644
10.1109/TIP.2017.2766358
10.18653/v1/D17-1317
10.1177/003754970107600201
10.1162/neco.1997.9.8.1735
10.1609/aaai.v32i1.11268
10.18653/v1/P18-1022
10.1109/MIS.2019.2899143
10.1145/3095713.3095749
10.1016/j.eswa.2010.11.069
10.1145/3219819.3219903
10.1007/978-3-319-69155-8_9
10.1145/3070644
10.18653/v1/N16-1004
10.18653/v1/W16-0802
10.1109/ICCV.2015.515
10.1016/j.trc.2012.05.007
10.1016/j.imavis.2010.05.006
10.24963/ijcai.2018/533
10.1177/0261927X09351676
10.1016/j.eswa.2009.09.008
10.24251/HICSS.2019.624
10.1016/j.neucom.2014.07.059
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Nov 30, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 30, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113584
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113584
S0957417420304085
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-4d2da64fbf922ec355fc49fed626a001e96add873f8be2ae72f68758445f78f73
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576778900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Sep 07 03:34:42 EDT 2025
Sat Nov 29 07:08:21 EST 2025
Tue Nov 18 21:07:07 EST 2025
Fri Feb 23 02:47:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Natural language processing
Fake news
Harmony search algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-4d2da64fbf922ec355fc49fed626a001e96add873f8be2ae72f68758445f78f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6665-0135
PQID 2454518157
PQPubID 2045477
ParticipantIDs proquest_journals_2454518157
crossref_primary_10_1016_j_eswa_2020_113584
crossref_citationtrail_10_1016_j_eswa_2020_113584
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113584
PublicationCentury 2000
PublicationDate 2020-11-30
PublicationDateYYYYMMDD 2020-11-30
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-30
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yang, S., Shu, K., Wang, S., Gu, R., Wu, F., & Liu, H. (2019). Unsupervised fake news detection on social media: a generative approach. Proc. the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA.
Cavnar, W. B., & Trenkle, J. M. (1994). N-Gram-based text categorization. Proc. the 3rd Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, NV, USA.
Tausczik, Pennebaker (b0175) 2010; 29
Allsides. (n.d.). Retrieved from
Kohavi, John (b0070) 1997; 97
Shi, Ma, Xi, Duan, Zhao (b0160) 2011; 38
Vosoughi, Mohsenvand, Roy (b0185) 2017; 11
Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., & Choi, Y. (2017). Truth of varying shades: analyzing language in fake news and political fact-checking. Proc. the Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark.
Reis, Correia, Murai, Veloso, Benevenuto (b0140) 2019; 34
Risdal, M. (2016). Getting Real about Fake News. Retrieved from
McIntire, G. (2017). On building a “Fake News” classification model. Retrieved from
Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., & Stein, B. (2017). A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638, 2-2017.
Aderghal, K., Benois-Pineau, J., Afdel, K., & Gwenaëlle, C. (2017). FuseMe: classification of sMRI images by fusion of deep CNNs in 2D+∊ projections. Proc. the 15th International Workshop on Content-Based Multimedia Indexing, Florence, Italy.
Olivieri, A., Shabani, S., Sokhn, M., & Cudré-Mauroux, P. (2019). Creating task-generic features for fake news detection. Proc. the 52nd Hawaii International Conference on System Sciences, Grand Wailea, Maui.
Monti, F., Frasca, F., Eynard, D., Mannion, D., & Bronstein, M. M. (2019). Fake news detection on social media using geometric deep learning. arXiv preprint arXiv: 1902.06673v1, 2-2019.
Word2vec. (n.d.). Retrieved from
Subramanian, S. (2017). Inside the Macedonian fake-news complex. Retrieved from
Liu, Y., & Wu, Y. F. B. (2018). Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. Proc. the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA.
Pérez-Rosas, V., Kleinberg, B., Lefevre, A., & Mihalcea, R. (2017). Automatic detection of fake news. arXiv preprint arXiv:1708.07104v1, 8-2017.
Fiegerman, S, (2017). Facebook, Google, Twitter to fight fake news with 'trust indicators'. Retrieved from
Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., … Gao, J. (2018). EANN: event adversarial neural networks for multi-modal fake news detection. Proc. the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK.
Ahmed, H., Traore, I., & Saad, S. (2017). Detection of online fake news using N-Gram analysis and machine learning techniques. Proc. International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments, Vancouver, Canada.
Camgoz, Hadfield, Koller, Bowden (b0025) 2016
Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B. J., Wong, K. F., & Cha, M. (2016). Detecting rumors from microblogs with recurrent neural networks. Proc. the 25th International Joint Conference on Artificial Intelligence, New York City, USA.
Qian, F., Gong, C., Sharma, K., & Liu, Y. (2018). Neural user response generator: fake news detection with collective user intelligence. Proc. the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden.
Yang, Y., Zheng, L., Zhang, J., Cui, Q., Zhang, X., Li, Z., & Yu, P. S. (2018). TI-CNN: convolutional neural networks for fake news detection. arXiv preprint arXiv: 1806.00749v1, 6-2018.
Britzky, H. (2017). Everything Trump has called “FAKE NEWS”. Retrieved from
Pradhan, Aygun, Maskey, Ramachandran, Cecil (b0120) 2018; 27
Jruvika. (2017). Fake News detection. Retrieved from
Schuster, S., & Manning, C. D., (2016). Enhanced English universal dependencies: an improved representation for natural language understanding tasks. Proc. the 10th International Conference on Language Resources and Evaluation, Portorož, Slovenia.
Zhang, J., Dong, B., & Yu, P. S. (2019). FAKEDETECTOR: effective fake news detection with deep diffusive neural network. arXiv preprint arXiv: 1805.08751v2, 8-2019.
Zoph, B., & Knight, K. (2016). Multi-source neural translation. arXiv preprint arXiv:1601.00710v1, 1-2016.
.
Hochreiter, Schmidhuber (b0055) 1997; 9
Wang, Yin, Cao, Wei, Zheng, Yang (b0195) 2015; 149
Mazzola, M. (2017). Snopes_fake_legit_news. Retrieved from
Geem, Kim, Loganathan (b0050) 2001; 76
Quora Question Pairs (2016). Retrieved from
Wang, Huang (b0060) 2010; 37
Ceylan, Ceylan (b0035) 2012; 25
Otto Group Product Classification Challenge. (2014). Retrieved from
Rubin, V. L., Conroy, N. J., Chen, Y., & Cornwell, S. (2016). Fake news or truth? using satirical cues to detect potentially misleading news. Proc. the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, California, USA.
T. Standage The true history of fake news Retrieved from
Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., & Saenko, K. (2015). Sequence to sequence – video to text. Proc. IEEE International Conference on Computer Vision, Santiago, Chile.
Fourie, Mills, Green (b0045) 2010; 28
10.1016/j.eswa.2020.113584_b0030
Geem (10.1016/j.eswa.2020.113584_b0050) 2001; 76
10.1016/j.eswa.2020.113584_b0075
10.1016/j.eswa.2020.113584_b0130
Wang (10.1016/j.eswa.2020.113584_b0195) 2015; 149
10.1016/j.eswa.2020.113584_b0095
10.1016/j.eswa.2020.113584_b0150
10.1016/j.eswa.2020.113584_b0155
10.1016/j.eswa.2020.113584_b0210
Kohavi (10.1016/j.eswa.2020.113584_b0070) 1997; 97
10.1016/j.eswa.2020.113584_b0010
10.1016/j.eswa.2020.113584_b0110
Fourie (10.1016/j.eswa.2020.113584_b0045) 2010; 28
10.1016/j.eswa.2020.113584_b0170
10.1016/j.eswa.2020.113584_b0090
10.1016/j.eswa.2020.113584_b0190
Ceylan (10.1016/j.eswa.2020.113584_b0035) 2012; 25
10.1016/j.eswa.2020.113584_b0005
10.1016/j.eswa.2020.113584_b0105
Tausczik (10.1016/j.eswa.2020.113584_b0175) 2010; 29
10.1016/j.eswa.2020.113584_b0125
Hochreiter (10.1016/j.eswa.2020.113584_b0055) 1997; 9
Camgoz (10.1016/j.eswa.2020.113584_b0025) 2016
10.1016/j.eswa.2020.113584_b0205
10.1016/j.eswa.2020.113584_b0085
10.1016/j.eswa.2020.113584_b0020
10.1016/j.eswa.2020.113584_b0040
10.1016/j.eswa.2020.113584_b0100
Vosoughi (10.1016/j.eswa.2020.113584_b0185) 2017; 11
10.1016/j.eswa.2020.113584_b0145
10.1016/j.eswa.2020.113584_b0200
10.1016/j.eswa.2020.113584_b0065
10.1016/j.eswa.2020.113584_b0165
Pradhan (10.1016/j.eswa.2020.113584_b0120) 2018; 27
Reis (10.1016/j.eswa.2020.113584_b0140) 2019; 34
10.1016/j.eswa.2020.113584_b0180
10.1016/j.eswa.2020.113584_b9010
10.1016/j.eswa.2020.113584_b0080
Shi (10.1016/j.eswa.2020.113584_b0160) 2011; 38
Wang (10.1016/j.eswa.2020.113584_b0060) 2010; 37
10.1016/j.eswa.2020.113584_b0115
10.1016/j.eswa.2020.113584_b0215
10.1016/j.eswa.2020.113584_b0135
10.1016/j.eswa.2020.113584_b0015
References_xml – reference: Otto Group Product Classification Challenge. (2014). Retrieved from
– volume: 27
  start-page: 692
  year: 2018
  end-page: 702
  ident: b0120
  article-title: Tropical cyclone intensity estimation using a deep convolutional neural network
  publication-title: IEEE Transactions on Image Processing
– reference: Zhang, J., Dong, B., & Yu, P. S. (2019). FAKEDETECTOR: effective fake news detection with deep diffusive neural network. arXiv preprint arXiv: 1805.08751v2, 8-2019.
– reference: Olivieri, A., Shabani, S., Sokhn, M., & Cudré-Mauroux, P. (2019). Creating task-generic features for fake news detection. Proc. the 52nd Hawaii International Conference on System Sciences, Grand Wailea, Maui.
– reference: Schuster, S., & Manning, C. D., (2016). Enhanced English universal dependencies: an improved representation for natural language understanding tasks. Proc. the 10th International Conference on Language Resources and Evaluation, Portorož, Slovenia.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0055
  article-title: Long short-term memory
  publication-title: Neural Computation
– reference: Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., & Stein, B. (2017). A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638, 2-2017.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: b0070
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
– reference: Pérez-Rosas, V., Kleinberg, B., Lefevre, A., & Mihalcea, R. (2017). Automatic detection of fake news. arXiv preprint arXiv:1708.07104v1, 8-2017.
– reference: Aderghal, K., Benois-Pineau, J., Afdel, K., & Gwenaëlle, C. (2017). FuseMe: classification of sMRI images by fusion of deep CNNs in 2D+∊ projections. Proc. the 15th International Workshop on Content-Based Multimedia Indexing, Florence, Italy.
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: b0050
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
– reference: Allsides. (n.d.). Retrieved from
– reference: Fiegerman, S, (2017). Facebook, Google, Twitter to fight fake news with 'trust indicators'. Retrieved from
– reference: Liu, Y., & Wu, Y. F. B. (2018). Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. Proc. the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA.
– volume: 34
  start-page: 76
  year: 2019
  end-page: 81
  ident: b0140
  article-title: Supervised learning for fake news detection
  publication-title: IEEE Intelligent Systems
– volume: 11
  year: 2017
  ident: b0185
  article-title: Rumor gauge: predicting the veracity of rumors on twitter
  publication-title: ACM Transactions on Knowledge Discovery from Data
– reference: McIntire, G. (2017). On building a “Fake News” classification model. Retrieved from
– reference: Monti, F., Frasca, F., Eynard, D., Mannion, D., & Bronstein, M. M. (2019). Fake news detection on social media using geometric deep learning. arXiv preprint arXiv: 1902.06673v1, 2-2019.
– volume: 25
  start-page: 152
  year: 2012
  end-page: 167
  ident: b0035
  article-title: A hybrid harmony search and TRANSYT hill climbing algorithm for signalized stochastic equilibrium transportation networks
  publication-title: Transportation Research Part C: Emerging Technologies
– reference: Mazzola, M. (2017). Snopes_fake_legit_news. Retrieved from
– reference: Zoph, B., & Knight, K. (2016). Multi-source neural translation. arXiv preprint arXiv:1601.00710v1, 1-2016.
– reference: Yang, S., Shu, K., Wang, S., Gu, R., Wu, F., & Liu, H. (2019). Unsupervised fake news detection on social media: a generative approach. Proc. the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA.
– volume: 37
  start-page: 2826
  year: 2010
  end-page: 2837
  ident: b0060
  article-title: Self-adaptive harmony search algorithm for optimization
  publication-title: Expert Systems with Applications
– reference: Quora Question Pairs (2016). Retrieved from
– reference: .
– volume: 149
  start-page: 708
  year: 2015
  end-page: 717
  ident: b0195
  article-title: Hierarchical retinal blood vessel segmentation based on feature and ensemble learning
  publication-title: Neurocomputing
– volume: 28
  start-page: 1702
  year: 2010
  end-page: 1716
  ident: b0045
  article-title: Harmony filter: A robust visual tracking system using the improved harmony search algorithm
  publication-title: Image and Vision Computing
– reference: Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., & Choi, Y. (2017). Truth of varying shades: analyzing language in fake news and political fact-checking. Proc. the Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark.
– reference: Ahmed, H., Traore, I., & Saad, S. (2017). Detection of online fake news using N-Gram analysis and machine learning techniques. Proc. International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments, Vancouver, Canada.
– reference: Cavnar, W. B., & Trenkle, J. M. (1994). N-Gram-based text categorization. Proc. the 3rd Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, NV, USA.
– reference: Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., … Gao, J. (2018). EANN: event adversarial neural networks for multi-modal fake news detection. Proc. the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK.
– reference: Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B. J., Wong, K. F., & Cha, M. (2016). Detecting rumors from microblogs with recurrent neural networks. Proc. the 25th International Joint Conference on Artificial Intelligence, New York City, USA.
– reference: Qian, F., Gong, C., Sharma, K., & Liu, Y. (2018). Neural user response generator: fake news detection with collective user intelligence. Proc. the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden.
– reference: Subramanian, S. (2017). Inside the Macedonian fake-news complex. Retrieved from
– reference: Word2vec. (n.d.). Retrieved from
– reference: T. Standage The true history of fake news Retrieved from
– reference: Britzky, H. (2017). Everything Trump has called “FAKE NEWS”. Retrieved from
– reference: Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., & Saenko, K. (2015). Sequence to sequence – video to text. Proc. IEEE International Conference on Computer Vision, Santiago, Chile.
– reference: Yang, Y., Zheng, L., Zhang, J., Cui, Q., Zhang, X., Li, Z., & Yu, P. S. (2018). TI-CNN: convolutional neural networks for fake news detection. arXiv preprint arXiv: 1806.00749v1, 6-2018.
– year: 2016
  ident: b0025
  article-title: Using convolutional 3D neural networks for user-independent continuous gesture recognition
  publication-title: Proc. the 23rd International Conference on Pattern Recognition, Cancun, Mexico
– reference: Jruvika. (2017). Fake News detection. Retrieved from
– reference: Rubin, V. L., Conroy, N. J., Chen, Y., & Cornwell, S. (2016). Fake news or truth? using satirical cues to detect potentially misleading news. Proc. the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, California, USA.
– reference: Risdal, M. (2016). Getting Real about Fake News. Retrieved from
– volume: 29
  start-page: 24
  year: 2010
  end-page: 54
  ident: b0175
  article-title: The psychological meaning of words: LIWC and computerized text analysis methods
  publication-title: Journal of Language and Social Psychology
– volume: 38
  start-page: 6300
  year: 2011
  end-page: 6306
  ident: b0160
  article-title: Rough set and ensemble learning based semi-supervised algorithm for text classification
  publication-title: Expert Systems with Applications
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  ident: 10.1016/j.eswa.2020.113584_b0070
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– ident: 10.1016/j.eswa.2020.113584_b0210
  doi: 10.1609/aaai.v33i01.33015644
– volume: 27
  start-page: 692
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2020.113584_b0120
  article-title: Tropical cyclone intensity estimation using a deep convolutional neural network
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2017.2766358
– ident: 10.1016/j.eswa.2020.113584_b0085
– ident: 10.1016/j.eswa.2020.113584_b0135
  doi: 10.18653/v1/D17-1317
– ident: 10.1016/j.eswa.2020.113584_b0205
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.eswa.2020.113584_b0050
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– ident: 10.1016/j.eswa.2020.113584_b0020
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.eswa.2020.113584_b0055
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.eswa.2020.113584_b0155
– ident: 10.1016/j.eswa.2020.113584_b0130
– ident: 10.1016/j.eswa.2020.113584_b0075
  doi: 10.1609/aaai.v32i1.11268
– ident: 10.1016/j.eswa.2020.113584_b0115
  doi: 10.18653/v1/P18-1022
– ident: 10.1016/j.eswa.2020.113584_b0090
– volume: 34
  start-page: 76
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2020.113584_b0140
  article-title: Supervised learning for fake news detection
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2019.2899143
– ident: 10.1016/j.eswa.2020.113584_b0165
– ident: 10.1016/j.eswa.2020.113584_b0005
  doi: 10.1145/3095713.3095749
– ident: 10.1016/j.eswa.2020.113584_b0200
– volume: 38
  start-page: 6300
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2020.113584_b0160
  article-title: Rough set and ensemble learning based semi-supervised algorithm for text classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.11.069
– ident: 10.1016/j.eswa.2020.113584_b0190
  doi: 10.1145/3219819.3219903
– ident: 10.1016/j.eswa.2020.113584_b0010
  doi: 10.1007/978-3-319-69155-8_9
– ident: 10.1016/j.eswa.2020.113584_b0065
– volume: 11
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2020.113584_b0185
  article-title: Rumor gauge: predicting the veracity of rumors on twitter
  publication-title: ACM Transactions on Knowledge Discovery from Data
  doi: 10.1145/3070644
– year: 2016
  ident: 10.1016/j.eswa.2020.113584_b0025
  article-title: Using convolutional 3D neural networks for user-independent continuous gesture recognition
– ident: 10.1016/j.eswa.2020.113584_b0215
  doi: 10.18653/v1/N16-1004
– ident: 10.1016/j.eswa.2020.113584_b0080
– ident: 10.1016/j.eswa.2020.113584_b0150
  doi: 10.18653/v1/W16-0802
– ident: 10.1016/j.eswa.2020.113584_b0170
– ident: 10.1016/j.eswa.2020.113584_b0040
– ident: 10.1016/j.eswa.2020.113584_b0180
  doi: 10.1109/ICCV.2015.515
– volume: 25
  start-page: 152
  year: 2012
  ident: 10.1016/j.eswa.2020.113584_b0035
  article-title: A hybrid harmony search and TRANSYT hill climbing algorithm for signalized stochastic equilibrium transportation networks
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2012.05.007
– volume: 28
  start-page: 1702
  issue: 12
  year: 2010
  ident: 10.1016/j.eswa.2020.113584_b0045
  article-title: Harmony filter: A robust visual tracking system using the improved harmony search algorithm
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2010.05.006
– ident: 10.1016/j.eswa.2020.113584_b0125
  doi: 10.24963/ijcai.2018/533
– volume: 29
  start-page: 24
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2020.113584_b0175
  article-title: The psychological meaning of words: LIWC and computerized text analysis methods
  publication-title: Journal of Language and Social Psychology
  doi: 10.1177/0261927X09351676
– volume: 37
  start-page: 2826
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2020.113584_b0060
  article-title: Self-adaptive harmony search algorithm for optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.09.008
– ident: 10.1016/j.eswa.2020.113584_b9010
– ident: 10.1016/j.eswa.2020.113584_b0105
– ident: 10.1016/j.eswa.2020.113584_b0110
– ident: 10.1016/j.eswa.2020.113584_b0095
– ident: 10.1016/j.eswa.2020.113584_b0100
  doi: 10.24251/HICSS.2019.624
– volume: 149
  start-page: 708
  issue: B
  year: 2015
  ident: 10.1016/j.eswa.2020.113584_b0195
  article-title: Hierarchical retinal blood vessel segmentation based on feature and ensemble learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.059
– ident: 10.1016/j.eswa.2020.113584_b0145
– ident: 10.1016/j.eswa.2020.113584_b0015
– ident: 10.1016/j.eswa.2020.113584_b0030
SSID ssj0017007
Score 2.610686
Snippet •The appropriate features of news are analyzed for training models.•The ensemble learning model for fake news detection is proposed in the paper.•The weights...
In general, the features of fake news are almost the same as those of real news, so it is not easy to identify them. In this paper, we propose a fake news...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113584
SubjectTerms Accuracy
Adaptive algorithms
Deep learning
Domains
Ensemble learning
Fake news
Harmony search algorithm
Machine learning
Natural language processing
News
Search algorithms
Title Fake news detection using an ensemble learning model based on Self-Adaptive Harmony Search algorithms
URI https://dx.doi.org/10.1016/j.eswa.2020.113584
https://www.proquest.com/docview/2454518157
Volume 159
WOSCitedRecordID wos000576778900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKlgMXKC9RKMgHblHQxrFj57hCXS09VD200nKKnMSGXZbsKslCfz7jV7Zd1IoeuERR5FhW5st4ZjwzH0IfK6KYSCsG4FWmJEezONdlFhOtTC8UpjNdWrIJfn4u5vP8wufPd5ZOgDeNuL7ON_9V1PAMhG1KZx8g7mFSeAD3IHS4gtjh-k-Cn8ofyhKFR7XqlWMC33auFjECp1X9NMVSqxASsVQ4kdnM6sjqjpWOJ7Xc2JSimWxh3aBeXGxErr6t20X_3Xc4Xw5pfKrtfU_oUC1341x8hxwfm_66aOLpdpdY4DTfxTqerf0-6sMQ4HP69oc34ok8pomj3BlUq-_27ZRjkqTM8cH9pbddCGH5SXW_TTMoYrlm_ODbTbL3Nq8hpTBkqy0LM0dh5ijcHI_QIeEsFyN0OPlyOj8bDpn42FXTh5X7miqX_re_krvslr0d3Joll0foqfcn8MTh4Dk6UM0L9CxwdWCvul8iZWCBDSzwAAtsYYFlgwMscIAFtrDAFhYYRt6CBfawwA4WeAeLV-hqenr5eRZ7io24SonoY1qTWmZUlzonRFVgfOqK5lrV4OdK-EQqz2ADFDzVolREKk50Bh6uoJRpLjRPX6NRs27UG4TTVGpGc6nGoqSgAfJxRXmZ1KTMNEsqcYyS8AGLyvefNzQoq-Ju0R2jaHhn47qv3DuaBbkU3n50dmEBMLv3vZMgxML_yF1BKPgWYP4y_vZBi3iHnux-jxM06tuteo8eV7_6Rdd-8BD8Aw-gnPc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fake+news+detection+using+an+ensemble+learning+model+based+on+Self-Adaptive+Harmony+Search+algorithms&rft.jtitle=Expert+systems+with+applications&rft.au=Huang%2C+Yin-Fu&rft.au=Chen%2C+Po-Hong&rft.date=2020-11-30&rft.issn=0957-4174&rft.volume=159&rft.spage=113584&rft_id=info:doi/10.1016%2Fj.eswa.2020.113584&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2020_113584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon