Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations
•Transformation of ordinary differential equation to optimization problem.•Hybrid algorithm based on cuckoo search & advanced particle swarm optimization.•Testing of stability of the algorithm by convergence graph & statistical analysis.•Finding superiority of the algorithm by non-parametric...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 172; s. 114646 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Ltd
15.06.2021
Elsevier BV |
| Predmet: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Transformation of ordinary differential equation to optimization problem.•Hybrid algorithm based on cuckoo search & advanced particle swarm optimization.•Testing of stability of the algorithm by convergence graph & statistical analysis.•Finding superiority of the algorithm by non-parametrical statistical test.
This article solves first and second order differential equations with initial and/or boundary conditions by transforming these equations into unconstrained/bound constrained optimization problems. In order to solve these problems, a hybrid algorithm based on advanced cuckoo search (CS) algorithm and adaptive Gaussian quantum behaved particle swarm optimization (AGQPSO) is proposed. The CS algorithm is modified first by changing the step size in the simplified version. After that half of the total population is upgraded by this modified CS algorithm and another half is upgraded by AGQPSO algorithm. Then deletion strategy of CS algorithm is applied on the whole updated population. Next, to test the performance of the proposed hybrid algorithm, a number of benchmarks bound constrained optimization problems with different dimensions are considered and solved. Then this algorithm is applied fruitfully in first and second order initial value problems and boundary value problems by expressing the said problems in the form of bound constrained optimization problems. |
|---|---|
| AbstractList | This article solves first and second order differential equations with initial and/or boundary conditions by transforming these equations into unconstrained/bound constrained optimization problems. In order to solve these problems, a hybrid algorithm based on advanced cuckoo search (CS) algorithm and adaptive Gaussian quantum behaved particle swarm optimization (AGQPSO) is proposed. The CS algorithm is modified first by changing the step size in the simplified version. After that half of the total population is upgraded by this modified CS algorithm and another half is upgraded by AGQPSO algorithm. Then deletion strategy of CS algorithm is applied on the whole updated population. Next, to test the performance of the proposed hybrid algorithm, a number of benchmarks bound constrained optimization problems with different dimensions are considered and solved. Then this algorithm is applied fruitfully in first and second order initial value problems and boundary value problems by expressing the said problems in the form of bound constrained optimization problems. •Transformation of ordinary differential equation to optimization problem.•Hybrid algorithm based on cuckoo search & advanced particle swarm optimization.•Testing of stability of the algorithm by convergence graph & statistical analysis.•Finding superiority of the algorithm by non-parametrical statistical test. This article solves first and second order differential equations with initial and/or boundary conditions by transforming these equations into unconstrained/bound constrained optimization problems. In order to solve these problems, a hybrid algorithm based on advanced cuckoo search (CS) algorithm and adaptive Gaussian quantum behaved particle swarm optimization (AGQPSO) is proposed. The CS algorithm is modified first by changing the step size in the simplified version. After that half of the total population is upgraded by this modified CS algorithm and another half is upgraded by AGQPSO algorithm. Then deletion strategy of CS algorithm is applied on the whole updated population. Next, to test the performance of the proposed hybrid algorithm, a number of benchmarks bound constrained optimization problems with different dimensions are considered and solved. Then this algorithm is applied fruitfully in first and second order initial value problems and boundary value problems by expressing the said problems in the form of bound constrained optimization problems. |
| ArticleNumber | 114646 |
| Author | Kumar, Nirmal Shaikh, Ali Akbar Bhunia, Asoke Kumar Mahato, Sanat Kumar |
| Author_xml | – sequence: 1 givenname: Nirmal surname: Kumar fullname: Kumar, Nirmal email: kumarnirmal843@gmail.com organization: Department of Mathematics, The University of Burdwan, Purba Barddhaman 713104, WB, India – sequence: 2 givenname: Ali Akbar surname: Shaikh fullname: Shaikh, Ali Akbar email: aliashaikh@math.buruniv.ac.in organization: Department of Mathematics, The University of Burdwan, Purba Barddhaman 713104, WB, India – sequence: 3 givenname: Sanat Kumar surname: Mahato fullname: Mahato, Sanat Kumar email: sanatkmahato@gmail.com organization: Department of Mathematics, The University of Burdwan, Purba Barddhaman 713104, WB, India – sequence: 4 givenname: Asoke Kumar surname: Bhunia fullname: Bhunia, Asoke Kumar email: akbhunia@math.buruniv.ac.in organization: Department of Mathematics, The University of Burdwan, Purba Barddhaman 713104, WB, India |
| BookMark | eNp9kcFu1DAQhi1UJLaFF-BkiXO2thPHicSlqqBUqsQFztbEdrqzZO3UdlKVt-IN8e5y4tDTzOH_Zv6Z_5Jc-OAdIR8523LG2-v91qVn2Aom-Jbzpm3aN2TDO1VXrerrC7JhvVRVw1XzjlymtGeMK8bUhvy5mecJDWQMPtEwUu-e6e5liGgpTI8hYt4d6ADJWRo8BbuCN6U3i_kVAk0OotlR8EVtYc64OnoHS0oInj4t4PNSaLeDtTAzxIxmcrRYjQcaivyAv0-rKXqawrSif6QhWvQQX6jFcXTR-YwwUVemnUy-J29HmJL78K9ekZ9fv_y4_VY9fL-7v715qEwtulw1lonGjlJ01gonaylaEEPNOSgmhGM14xaU7eXQWdbIRshBQa36Hnpuy3fqK_LpPHeO4WlxKet9WKIvK7WQXCrZNrIuqu6sMjGkFN2oDeaT0RwBJ82ZPgak9_oYkD4GpM8BFVT8h84RD-Xw16HPZ8iV01d0USeD7hgJRmeytgFfw_8C-newMA |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106008 crossref_primary_10_1002_int_22650 crossref_primary_10_1038_s41598_023_37326_3 crossref_primary_10_1080_13675567_2022_2114438 crossref_primary_10_1007_s41660_022_00258_y crossref_primary_10_1007_s00500_021_05942_8 crossref_primary_10_1016_j_knosys_2022_109484 crossref_primary_10_1016_j_envint_2022_107724 crossref_primary_10_1007_s11063_023_11313_1 crossref_primary_10_1007_s10489_024_05537_4 crossref_primary_10_1016_j_apenergy_2025_125339 crossref_primary_10_1016_j_asoc_2022_109394 crossref_primary_10_1109_TFUZZ_2022_3227464 crossref_primary_10_1007_s11600_023_01194_2 crossref_primary_10_1016_j_ins_2022_07_067 crossref_primary_10_1007_s00500_022_07199_1 crossref_primary_10_3390_biomimetics8040355 crossref_primary_10_1016_j_eswa_2023_122325 crossref_primary_10_1016_j_eswa_2023_122200 crossref_primary_10_1007_s10586_025_05287_z crossref_primary_10_1016_j_swevo_2025_101872 crossref_primary_10_1007_s11063_022_10758_0 crossref_primary_10_1016_j_ceramint_2022_04_109 crossref_primary_10_1109_ACCESS_2022_3226813 crossref_primary_10_1007_s00500_021_05894_z crossref_primary_10_1016_j_ecoenv_2025_118764 crossref_primary_10_1007_s13198_023_02197_4 crossref_primary_10_1007_s00366_021_01497_2 crossref_primary_10_1007_s13198_021_01314_5 crossref_primary_10_1007_s13042_023_02081_4 crossref_primary_10_1007_s10586_024_04783_y crossref_primary_10_1007_s11831_024_10183_7 crossref_primary_10_1016_j_eswa_2022_118676 crossref_primary_10_1016_j_eswa_2022_117428 crossref_primary_10_1142_S0219876224500646 crossref_primary_10_3233_IDT_idt230275 crossref_primary_10_1088_1742_6596_2160_1_012044 crossref_primary_10_1177_00405175211070611 crossref_primary_10_1177_1748006X221102992 crossref_primary_10_1002_int_22538 crossref_primary_10_1007_s10489_022_03429_z crossref_primary_10_1016_j_jclepro_2021_130063 crossref_primary_10_3390_w16020364 |
| Cites_doi | 10.1016/j.asoc.2015.10.034 10.1016/j.ins.2012.11.017 10.1109/NABIC.2009.5393690 10.1002/0471667196.ess1837 10.1109/WICT.2012.6409199 10.1016/j.engappai.2019.01.001 10.1016/j.swevo.2011.02.002 10.4236/ojop.2015.43009 10.1109/CEC.2017.7969456 10.1016/j.eswa.2009.06.044 10.1016/j.advengsoft.2015.11.004 10.1023/A:1008202821328 10.1007/s10745-006-9083-4 10.1109/CEC.2013.6557555 10.1007/978-3-540-39930-8_3 10.1016/j.engappai.2019.103249 10.1109/4235.585893 10.1007/s41403-018-0051-2 10.1016/j.ins.2013.12.044 10.1109/CEC.2017.7969524 10.1016/j.advengsoft.2013.12.007 10.1007/s10489-020-01727-y 10.1016/j.ins.2009.03.004 10.1007/11538059_44 10.1109/MHS.1995.494215 10.1504/IJCSM.2020.112670 10.1002/cplx.21634 10.1007/s10732-008-9080-4 10.1080/00207160.2018.1463438 10.1007/978-3-642-32894-7_27 10.33889/IJMEMS.2017.2.3-016 10.1016/j.amc.2011.09.021 10.1088/1751-8113/40/41/003 10.1016/j.jcp.2007.06.008 10.1007/s00500-017-2547-1 10.1007/s00521-019-04696-7 10.1109/CEC.2017.7969336 10.1145/3340848 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Elsevier BV Jun 15, 2021 |
| Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Jun 15, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2021.114646 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2021_114646 S0957417421000877 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-4d024df528dd2e53526a2b311a7022e0301da7d95b8d045425b7a3799a91d0173 |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633045400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Mon Jul 14 10:27:42 EDT 2025 Sat Nov 29 07:08:04 EST 2025 Tue Nov 18 21:04:28 EST 2025 Fri Feb 23 02:46:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | AGQPSO Cuckoo search algorithm Hybrid algorithm Differential equations |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-4d024df528dd2e53526a2b311a7022e0301da7d95b8d045425b7a3799a91d0173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2515756453 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2515756453 crossref_citationtrail_10_1016_j_eswa_2021_114646 crossref_primary_10_1016_j_eswa_2021_114646 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114646 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-15 |
| PublicationDateYYYYMMDD | 2021-06-15 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | (pp. 39–43). IEEE. 2009 World congress on nature & biologically inspired computing (NaBIC) Faramarzi, Heidarinejad, Mirjalili, Gandomi (b0075) 2020; 113377 Wolpert, Macready (b0210) 1997; 1 Abualigah (b0010) 2020 Shi, Y., & Eberhart, R. (1998, May). A modified particle swarm optimizer. In Kreyszig, E. Advanced Engineering Mathematics, Wiley Publishers, 2001. (pp. 69–73). IEEE. Qais, Hasanien, Alghuwainem (b0160) 2020; 50 Sun, Fang, Palade, Wu, Xu (b0190) 2011; 218 Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 240–249). Berlin, Heidelberg: Springer. Mirjalili, Mirjalili, Lewis (b0130) 2014; 69 Sun, J., Feng, B., & Xu, W. (2004, June). Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753) (Vol. 1, pp. 325-331). IEEE. Kumar, Mahato, Bhunia (b0115) 2019; 1–15 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360) Abedinia, Amjady, Ghasemi (b0005) 2016; 21 Yang, X. S. (2012, September). Flower pollination algorithm for global optimization. In Atkinson, K.E., An introduction to numerical analysis, Wiley Publishers, 2004. Kamboj, Bhadoria, Gupta (b0100) 2018; 3 (pp. 210-214). IEEE. Xue, Xue, Zhang (b0225) 2019; 13 Garćıa, S., Molina, D., Lozano, M., Herrera, F. (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics 15(6):617. Junaid, Raja, Qureshi (b0095) 2009; 55 . Xu, W., & Sun, J. (2005, August). Adaptive parameter selection of quantum-behaved particle swarm optimization on global level. In International Conference on Intelligent Computing (pp. 420–––428). Berlin, Heidelberg: Springer. Soneji, H., & Sanghvi, R. C. (2012, October). Towards the improvement of Cuckoo search algorithm. In 2012 World Congress on Information and Communication Technologies (pp. 878–883). IEEE. (pp. 372–379). IEEE. Li, Zhao, Weng, Han (b0125) 2016; 92 dos Santos Coelho (b0055) 2010; 37 Storn, Price (b0185) 1997; 11 Tam, Ong, Ismail, Ang, Khoo (b0200) 2018; 96 Onwubolu, G. C., & Babu, B. V. (2013). New optimization techniques in engineering (Vol. 141). Springer. Rashedi, Nezamabadi-Pour, Saryazdi (b0165) 2009; 179 Xue, Jiang, Zhao, Ma (b0220) 2018; 22 Duary, A., Rahman, M. S., Shaikh, A. A., Niaki, S. T. A., & Bhunia, A. K. (2020). A new hybrid algorithm to solve bound-constrained nonlinear optimization problems. Neural Computing and Applications, 1-26. Moscato, P., Cotta, C., & Mendes, A. (2004). Memetic algorithms. In New optimization Techniques in Engineering (pp. 53–85). Berlin, Heidelberg: Springer. Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017, June). Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In 2017 IEEE Congress on Evolutionary Computation (CEC) Bhunia, A. K., Duary, A. & Sahoo, L. (2017) A genetic algorithm based hybrid approach for reliability-redundancy optimization problem of a series system with multiple-choice, International Journal of Mathematical, Engineering and Management Sciences, 2(3), 185–212. Kumar, A., Misra, R. K., & Singh, D. (2017, June). Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 1835–1842). IEEE. Muthiah-Nakarajan, Noel (b0140) 2016; 38 Pavlyukevich (b0155) 2007; 226 Fatimah, Senapon, Adebowale (b0080) 2015; 4 Kumar, Rahman, Duary, Mahato, Bhunia (b0120) 2020; 12 Hayyolalam, Kazem (b0090) 2020; 87 Shadravan, Naji, Bardsiri (b0170) 2019; 80 International conference on unconventional computing and natural computation Brown, Liebovitch, Glendon (b0035) 2007; 35 Caraffini, Neri, Iacca, Mol (b0045) 2013; 227 Duary, Kumar, Akhtar, Shaikh, Bhunia (b0060) 2019 Caraffini, Neri, Picinali (b0040) 2014; 265 Tanabe, R., & Fukunaga, A. (2013, June). Success-history based parameter adaptation for differential evolution. In 2013 IEEE congress on evolutionary computation (pp. 71-78). IEEE. Derrac, García, Molina, Herrera (b0050) 2011; 1 Pavlyukevich (b0150) 2007; 40 Brest, J., Maučec, M. S., & Bošković, B. (2017, June). Single objective real-parameter optimization: Algorithm jSO. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 1311–1318). IEEE. Junaid (10.1016/j.eswa.2021.114646_b0095) 2009; 55 10.1016/j.eswa.2021.114646_b0205 10.1016/j.eswa.2021.114646_b0105 10.1016/j.eswa.2021.114646_b0025 10.1016/j.eswa.2021.114646_b0145 10.1016/j.eswa.2021.114646_b0065 Muthiah-Nakarajan (10.1016/j.eswa.2021.114646_b0140) 2016; 38 10.1016/j.eswa.2021.114646_b0020 Storn (10.1016/j.eswa.2021.114646_b0185) 1997; 11 Brown (10.1016/j.eswa.2021.114646_b0035) 2007; 35 10.1016/j.eswa.2021.114646_b0030 10.1016/j.eswa.2021.114646_b0195 10.1016/j.eswa.2021.114646_b0070 Pavlyukevich (10.1016/j.eswa.2021.114646_b0150) 2007; 40 Abualigah (10.1016/j.eswa.2021.114646_b0010) 2020 Qais (10.1016/j.eswa.2021.114646_b0160) 2020; 50 Xue (10.1016/j.eswa.2021.114646_b0220) 2018; 22 Rashedi (10.1016/j.eswa.2021.114646_b0165) 2009; 179 Wolpert (10.1016/j.eswa.2021.114646_b0210) 1997; 1 Abedinia (10.1016/j.eswa.2021.114646_b0005) 2016; 21 Li (10.1016/j.eswa.2021.114646_b0125) 2016; 92 Hayyolalam (10.1016/j.eswa.2021.114646_b0090) 2020; 87 Kumar (10.1016/j.eswa.2021.114646_b0120) 2020; 12 10.1016/j.eswa.2021.114646_b0215 dos Santos Coelho (10.1016/j.eswa.2021.114646_b0055) 2010; 37 10.1016/j.eswa.2021.114646_b0135 10.1016/j.eswa.2021.114646_b0015 10.1016/j.eswa.2021.114646_b0235 Faramarzi (10.1016/j.eswa.2021.114646_b0075) 2020; 113377 10.1016/j.eswa.2021.114646_b0175 10.1016/j.eswa.2021.114646_b0230 Mirjalili (10.1016/j.eswa.2021.114646_b0130) 2014; 69 10.1016/j.eswa.2021.114646_b0110 Xue (10.1016/j.eswa.2021.114646_b0225) 2019; 13 Fatimah (10.1016/j.eswa.2021.114646_b0080) 2015; 4 Duary (10.1016/j.eswa.2021.114646_b0060) 2019 10.1016/j.eswa.2021.114646_b0085 Kumar (10.1016/j.eswa.2021.114646_b0115) 2019; 1–15 Pavlyukevich (10.1016/j.eswa.2021.114646_b0155) 2007; 226 Caraffini (10.1016/j.eswa.2021.114646_b0040) 2014; 265 Kamboj (10.1016/j.eswa.2021.114646_b0100) 2018; 3 Derrac (10.1016/j.eswa.2021.114646_b0050) 2011; 1 10.1016/j.eswa.2021.114646_b0180 Shadravan (10.1016/j.eswa.2021.114646_b0170) 2019; 80 Tam (10.1016/j.eswa.2021.114646_b0200) 2018; 96 Caraffini (10.1016/j.eswa.2021.114646_b0045) 2013; 227 Sun (10.1016/j.eswa.2021.114646_b0190) 2011; 218 |
| References_xml | – volume: 4 start-page: 69 year: 2015 ident: b0080 article-title: Solving ordinary differential equations with evolutionary algorithms publication-title: Open Journal of Optimization – volume: 50 start-page: 3926 year: 2020 end-page: 3941 ident: b0160 article-title: Transient search optimization: A new meta-heuristic optimization algorithm publication-title: Applied Intelligence – reference: Garćıa, S., Molina, D., Lozano, M., Herrera, F. (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics 15(6):617. – volume: 35 start-page: 129 year: 2007 end-page: 138 ident: b0035 article-title: Lévy flights in Dobe Ju/’hoansi foraging patterns publication-title: Human Ecology – volume: 265 start-page: 1 year: 2014 end-page: 22 ident: b0040 article-title: An analysis on separability for memetic computing automatic design publication-title: Information Sciences – reference: (pp. 372–379). IEEE. – volume: 37 start-page: 1676 year: 2010 end-page: 1683 ident: b0055 article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems publication-title: Expert Systems with Applications – volume: 96 start-page: 883 year: 2018 end-page: 919 ident: b0200 article-title: A new hybrid GA− ACO− PSO algorithm for solving various engineering design problems publication-title: International Journal of Computer Mathematics – volume: 226 start-page: 1830 year: 2007 end-page: 1844 ident: b0155 article-title: Lévy flights, non-local search and simulated annealing publication-title: Journal of Computational Physics – year: 2019 ident: b0060 article-title: Real Coded Self-Organizing Migrating Genetic Algorithm for nonlinear constrained optimization publication-title: International Journal of Operational Research – reference: International conference on unconventional computing and natural computation – reference: Onwubolu, G. C., & Babu, B. V. (2013). New optimization techniques in engineering (Vol. 141). Springer. – volume: 1–15 year: 2019 ident: b0115 article-title: A new QPSO based hybrid algorithm for constrained optimization problems via tournamenting process publication-title: Soft Computing – volume: 87 year: 2020 ident: b0090 article-title: Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems publication-title: Engineering Applications of Artificial Intelligence – start-page: 1 year: 2020 end-page: 24 ident: b0010 article-title: Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications publication-title: Neural Computing and Applications – reference: Duary, A., Rahman, M. S., Shaikh, A. A., Niaki, S. T. A., & Bhunia, A. K. (2020). A new hybrid algorithm to solve bound-constrained nonlinear optimization problems. Neural Computing and Applications, 1-26. – reference: Yang, X. S. (2012, September). Flower pollination algorithm for global optimization. In – volume: 55 start-page: 578 year: 2009 end-page: 5581 ident: b0095 article-title: Evolutionary computing approach for the solution of initial value problems in ordinary differential equations publication-title: World Academy of Science, Engineering and Technology – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0210 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – reference: Kreyszig, E. Advanced Engineering Mathematics, Wiley Publishers, 2001. – volume: 12 start-page: 385 year: 2020 end-page: 412 ident: b0120 article-title: A new QPSO based hybrid algorithm for bound-constrained optimisation problem and its application in engineering design problems publication-title: International Journal of Computing Science and Mathematics – reference: Sun, J., Feng, B., & Xu, W. (2004, June). Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753) (Vol. 1, pp. 325-331). IEEE. – reference: Atkinson, K.E., An introduction to numerical analysis, Wiley Publishers, 2004. – volume: 227 start-page: 60 year: 2013 end-page: 82 ident: b0045 article-title: Parallel memetic structures publication-title: Information Sciences – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0130 article-title: Grey wolf optimizer publication-title: Advances in engineering software – volume: 80 start-page: 20 year: 2019 end-page: 34 ident: b0170 article-title: The Sailfish Optimizer: A novel nature-inspired meta-heuristic algorithm for solving constrained engineering optimization problems publication-title: Engineering Applications of Artificial Intelligence – reference: Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017, June). Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In 2017 IEEE Congress on Evolutionary Computation (CEC) – reference: Brest, J., Maučec, M. S., & Bošković, B. (2017, June). Single objective real-parameter optimization: Algorithm jSO. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 1311–1318). IEEE. – reference: Bhunia, A. K., Duary, A. & Sahoo, L. (2017) A genetic algorithm based hybrid approach for reliability-redundancy optimization problem of a series system with multiple-choice, International Journal of Mathematical, Engineering and Management Sciences, 2(3), 185–212. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b0050 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation – reference: (pp. 69–73). IEEE. – volume: 21 start-page: 97 year: 2016 end-page: 116 ident: b0005 article-title: A new meta-heuristic algorithm based on shark smell optimization publication-title: Complexity – reference: Xu, W., & Sun, J. (2005, August). Adaptive parameter selection of quantum-behaved particle swarm optimization on global level. In International Conference on Intelligent Computing (pp. 420–––428). Berlin, Heidelberg: Springer. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0185 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – reference: Kumar, A., Misra, R. K., & Singh, D. (2017, June). Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 1835–1842). IEEE. – reference: Soneji, H., & Sanghvi, R. C. (2012, October). Towards the improvement of Cuckoo search algorithm. In 2012 World Congress on Information and Communication Technologies (pp. 878–883). IEEE. – volume: 92 start-page: 65 year: 2016 end-page: 88 ident: b0125 article-title: A novel nature-inspired algorithm for optimization: Virus colony search publication-title: Advances in Engineering Software – reference: Moscato, P., Cotta, C., & Mendes, A. (2004). Memetic algorithms. In New optimization Techniques in Engineering (pp. 53–85). Berlin, Heidelberg: Springer. – volume: 38 start-page: 771 year: 2016 end-page: 787 ident: b0140 article-title: Galactic Swarm optimization: A new global optimization meta-heuristic inspired by galactic motion publication-title: Applied Soft Computing – reference: 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360) – reference: (pp. 240–249). Berlin, Heidelberg: Springer. – reference: (pp. 210-214). IEEE. – volume: 22 start-page: 2935 year: 2018 end-page: 2952 ident: b0220 article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization publication-title: Soft Computing – reference: Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science – reference: Tanabe, R., & Fukunaga, A. (2013, June). Success-history based parameter adaptation for differential evolution. In 2013 IEEE congress on evolutionary computation (pp. 71-78). IEEE. – volume: 13 start-page: 1 year: 2019 end-page: 27 ident: b0225 article-title: Self-adaptive particle swarm optimization for large-scale feature selection in classification publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) – volume: 40 start-page: 12299 year: 2007 ident: b0150 article-title: Cooling down Lévy flights publication-title: Journal of Physics A: Mathematical and Theoretical – reference: . – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b0165 article-title: GSA: A gravitational search algorithm publication-title: Information Sciences – reference: 2009 World congress on nature & biologically inspired computing (NaBIC) – reference: Shi, Y., & Eberhart, R. (1998, May). A modified particle swarm optimizer. In – reference: (pp. 39–43). IEEE. – volume: 3 start-page: 217 year: 2018 end-page: 241 ident: b0100 article-title: A novel hybrid GWO-PS algorithm for standard benchmark optimization problems publication-title: INAE Letters – volume: 218 start-page: 3763 year: 2011 end-page: 3775 ident: b0190 article-title: Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point publication-title: Applied Mathematics and Computation – reference: Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In – volume: 113377 year: 2020 ident: b0075 article-title: Marine predators algorithm: A nature-inspired Meta-heuristic publication-title: Expert Systems with Applications – volume: 38 start-page: 771 year: 2016 ident: 10.1016/j.eswa.2021.114646_b0140 article-title: Galactic Swarm optimization: A new global optimization meta-heuristic inspired by galactic motion publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.10.034 – volume: 227 start-page: 60 year: 2013 ident: 10.1016/j.eswa.2021.114646_b0045 article-title: Parallel memetic structures publication-title: Information Sciences doi: 10.1016/j.ins.2012.11.017 – ident: 10.1016/j.eswa.2021.114646_b0235 doi: 10.1109/NABIC.2009.5393690 – ident: 10.1016/j.eswa.2021.114646_b0015 doi: 10.1002/0471667196.ess1837 – ident: 10.1016/j.eswa.2021.114646_b0180 doi: 10.1109/WICT.2012.6409199 – volume: 80 start-page: 20 year: 2019 ident: 10.1016/j.eswa.2021.114646_b0170 article-title: The Sailfish Optimizer: A novel nature-inspired meta-heuristic algorithm for solving constrained engineering optimization problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2019.01.001 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.eswa.2021.114646_b0050 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – volume: 4 start-page: 69 issue: 03 year: 2015 ident: 10.1016/j.eswa.2021.114646_b0080 article-title: Solving ordinary differential equations with evolutionary algorithms publication-title: Open Journal of Optimization doi: 10.4236/ojop.2015.43009 – ident: 10.1016/j.eswa.2021.114646_b0030 doi: 10.1109/CEC.2017.7969456 – volume: 37 start-page: 1676 issue: 2 year: 2010 ident: 10.1016/j.eswa.2021.114646_b0055 article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.06.044 – volume: 92 start-page: 65 year: 2016 ident: 10.1016/j.eswa.2021.114646_b0125 article-title: A novel nature-inspired algorithm for optimization: Virus colony search publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.11.004 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.eswa.2021.114646_b0185 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 35 start-page: 129 issue: 1 year: 2007 ident: 10.1016/j.eswa.2021.114646_b0035 article-title: Lévy flights in Dobe Ju/’hoansi foraging patterns publication-title: Human Ecology doi: 10.1007/s10745-006-9083-4 – ident: 10.1016/j.eswa.2021.114646_b0205 doi: 10.1109/CEC.2013.6557555 – ident: 10.1016/j.eswa.2021.114646_b0135 doi: 10.1007/978-3-540-39930-8_3 – volume: 1–15 year: 2019 ident: 10.1016/j.eswa.2021.114646_b0115 article-title: A new QPSO based hybrid algorithm for constrained optimization problems via tournamenting process publication-title: Soft Computing – volume: 87 year: 2020 ident: 10.1016/j.eswa.2021.114646_b0090 article-title: Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2019.103249 – ident: 10.1016/j.eswa.2021.114646_b0175 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2021.114646_b0210 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 3 start-page: 217 issue: 4 year: 2018 ident: 10.1016/j.eswa.2021.114646_b0100 article-title: A novel hybrid GWO-PS algorithm for standard benchmark optimization problems publication-title: INAE Letters doi: 10.1007/s41403-018-0051-2 – volume: 265 start-page: 1 year: 2014 ident: 10.1016/j.eswa.2021.114646_b0040 article-title: An analysis on separability for memetic computing automatic design publication-title: Information Sciences doi: 10.1016/j.ins.2013.12.044 – ident: 10.1016/j.eswa.2021.114646_b0110 doi: 10.1109/CEC.2017.7969524 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2021.114646_b0130 article-title: Grey wolf optimizer publication-title: Advances in engineering software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 50 start-page: 3926 issue: 11 year: 2020 ident: 10.1016/j.eswa.2021.114646_b0160 article-title: Transient search optimization: A new meta-heuristic optimization algorithm publication-title: Applied Intelligence doi: 10.1007/s10489-020-01727-y – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.eswa.2021.114646_b0165 article-title: GSA: A gravitational search algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2009.03.004 – ident: 10.1016/j.eswa.2021.114646_b0215 doi: 10.1007/11538059_44 – ident: 10.1016/j.eswa.2021.114646_b0070 doi: 10.1109/MHS.1995.494215 – volume: 12 start-page: 385 issue: 4 year: 2020 ident: 10.1016/j.eswa.2021.114646_b0120 article-title: A new QPSO based hybrid algorithm for bound-constrained optimisation problem and its application in engineering design problems publication-title: International Journal of Computing Science and Mathematics doi: 10.1504/IJCSM.2020.112670 – volume: 21 start-page: 97 issue: 5 year: 2016 ident: 10.1016/j.eswa.2021.114646_b0005 article-title: A new meta-heuristic algorithm based on shark smell optimization publication-title: Complexity doi: 10.1002/cplx.21634 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2021.114646_b0010 article-title: Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications publication-title: Neural Computing and Applications – ident: 10.1016/j.eswa.2021.114646_b0085 doi: 10.1007/s10732-008-9080-4 – volume: 96 start-page: 883 issue: 5 year: 2018 ident: 10.1016/j.eswa.2021.114646_b0200 article-title: A new hybrid GA− ACO− PSO algorithm for solving various engineering design problems publication-title: International Journal of Computer Mathematics doi: 10.1080/00207160.2018.1463438 – ident: 10.1016/j.eswa.2021.114646_b0230 doi: 10.1007/978-3-642-32894-7_27 – ident: 10.1016/j.eswa.2021.114646_b0025 doi: 10.33889/IJMEMS.2017.2.3-016 – volume: 218 start-page: 3763 issue: 7 year: 2011 ident: 10.1016/j.eswa.2021.114646_b0190 article-title: Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2011.09.021 – volume: 55 start-page: 578 year: 2009 ident: 10.1016/j.eswa.2021.114646_b0095 article-title: Evolutionary computing approach for the solution of initial value problems in ordinary differential equations publication-title: World Academy of Science, Engineering and Technology – year: 2019 ident: 10.1016/j.eswa.2021.114646_b0060 article-title: Real Coded Self-Organizing Migrating Genetic Algorithm for nonlinear constrained optimization publication-title: International Journal of Operational Research – volume: 40 start-page: 12299 issue: 41 year: 2007 ident: 10.1016/j.eswa.2021.114646_b0150 article-title: Cooling down Lévy flights publication-title: Journal of Physics A: Mathematical and Theoretical doi: 10.1088/1751-8113/40/41/003 – ident: 10.1016/j.eswa.2021.114646_b0145 – ident: 10.1016/j.eswa.2021.114646_b0195 – volume: 226 start-page: 1830 issue: 2 year: 2007 ident: 10.1016/j.eswa.2021.114646_b0155 article-title: Lévy flights, non-local search and simulated annealing publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2007.06.008 – volume: 22 start-page: 2935 issue: 9 year: 2018 ident: 10.1016/j.eswa.2021.114646_b0220 article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization publication-title: Soft Computing doi: 10.1007/s00500-017-2547-1 – volume: 113377 year: 2020 ident: 10.1016/j.eswa.2021.114646_b0075 article-title: Marine predators algorithm: A nature-inspired Meta-heuristic publication-title: Expert Systems with Applications – ident: 10.1016/j.eswa.2021.114646_b0105 – ident: 10.1016/j.eswa.2021.114646_b0065 doi: 10.1007/s00521-019-04696-7 – ident: 10.1016/j.eswa.2021.114646_b0020 doi: 10.1109/CEC.2017.7969336 – volume: 13 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.eswa.2021.114646_b0225 article-title: Self-adaptive particle swarm optimization for large-scale feature selection in classification publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) doi: 10.1145/3340848 |
| SSID | ssj0017007 |
| Score | 2.544563 |
| Snippet | •Transformation of ordinary differential equation to optimization problem.•Hybrid algorithm based on cuckoo search & advanced particle swarm... This article solves first and second order differential equations with initial and/or boundary conditions by transforming these equations into... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114646 |
| SubjectTerms | Adaptive algorithms AGQPSO Algorithms Boundary conditions Boundary value problems Cuckoo search algorithm Differential equations Hybrid algorithm Mathematical analysis Optimization Ordinary differential equations Particle swarm optimization Search algorithms |
| Title | Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations |
| URI | https://dx.doi.org/10.1016/j.eswa.2021.114646 https://www.proquest.com/docview/2515756453 |
| Volume | 172 |
| WOSCitedRecordID | wos000633045400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VlgMX3ohCQXPgZrmKX1nvMULlJaiQWqTerF3vljztNLHb8rP4QfwXZl-OFUQFSFysyLG9cb7PntnZ-WYIeYUWOUq4XtUthQhTfLRDIYaDcBCz8jwqc0a56VrykR4f52dn7PPOzg-vhbmc06rKr6_Z8r9CjfsQbC2d_Qu4u4viDvyMoOMWYcftHwE_6i1JmzQNdRWMv2lhVsDnX-vVpBkvAm28pF4o6HIAyrac1XXgoiCmhKvkS5NY9Ja3a6O1vGgRh3Zhtf14ztINH6yv-GoR1Hj4wuk6dRwF79OEK3B-a1W_vhtLo8P06qLtRQunXUqgWjWuvrRX3vVuaLPy5DLDjydoWboskZMxn8zGVrgzCUYzwbvc4098zE3LqOCEV7wJzBW6YMS4rWzW8Ghdz1TvSxcQiU3ilpWE2iidV-ps0qJsuJOGaWQ7Ah0q-7LPaRIOqe3Q2FkD20noF8tigxzTQ4X_6KEe1lRZTrfKeBvH4EQPpseK9eJJTuktshfTjKHd2Bu9Pzr70C1z0YHV8_sf51RdNgFxe6TfeU5bPoRxjE7vk7tuRgMjS4UHZEdVD8k93y0EnPF4RL73iQn1OSAxwRITOmKCISbUFXhigiUmWGICEhM8McETExwxwRETPDHBEBP6xIRJBY6Y4IkJfWJCR8zH5Mubo9PX70LXMCQskzhvwlSixynPsziXMlam9QOPRRJFnKKrqvTsX3IqWSZyqUtPxpmgPKGMcRZJRCN5QnarulJPCUha0iSSikk1SNOSCpzXiIwxwUUppOT7JPJgFKWrpq-buswLnzY5LTSAhQawsADuk6A7Z2lrydx4dOYxLpw3bL3cAil543kHnhCFey2tC5zF4LxsmGbJs3-87HNyZ_OwHZDdZtWqF-R2edlM1quXjtg_AaQ38FY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+new+hybrid+algorithm+based+on+advanced+cuckoo+search+and+adaptive+Gaussian+quantum+behaved+particle+swarm+optimization+in+solving+ordinary+differential+equations&rft.jtitle=Expert+systems+with+applications&rft.au=Kumar%2C+Nirmal&rft.au=Shaikh%2C+Ali+Akbar&rft.au=Mahato%2C+Sanat+Kumar&rft.au=Bhunia%2C+Asoke+Kumar&rft.date=2021-06-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=172&rft_id=info:doi/10.1016%2Fj.eswa.2021.114646&rft.externalDocID=S0957417421000877 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |