Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations

•Transformation of ordinary differential equation to optimization problem.•Hybrid algorithm based on cuckoo search & advanced particle swarm optimization.•Testing of stability of the algorithm by convergence graph & statistical analysis.•Finding superiority of the algorithm by non-parametric...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 172; s. 114646
Hlavní autori: Kumar, Nirmal, Shaikh, Ali Akbar, Mahato, Sanat Kumar, Bhunia, Asoke Kumar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.06.2021
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Transformation of ordinary differential equation to optimization problem.•Hybrid algorithm based on cuckoo search & advanced particle swarm optimization.•Testing of stability of the algorithm by convergence graph & statistical analysis.•Finding superiority of the algorithm by non-parametrical statistical test. This article solves first and second order differential equations with initial and/or boundary conditions by transforming these equations into unconstrained/bound constrained optimization problems. In order to solve these problems, a hybrid algorithm based on advanced cuckoo search (CS) algorithm and adaptive Gaussian quantum behaved particle swarm optimization (AGQPSO) is proposed. The CS algorithm is modified first by changing the step size in the simplified version. After that half of the total population is upgraded by this modified CS algorithm and another half is upgraded by AGQPSO algorithm. Then deletion strategy of CS algorithm is applied on the whole updated population. Next, to test the performance of the proposed hybrid algorithm, a number of benchmarks bound constrained optimization problems with different dimensions are considered and solved. Then this algorithm is applied fruitfully in first and second order initial value problems and boundary value problems by expressing the said problems in the form of bound constrained optimization problems.
AbstractList This article solves first and second order differential equations with initial and/or boundary conditions by transforming these equations into unconstrained/bound constrained optimization problems. In order to solve these problems, a hybrid algorithm based on advanced cuckoo search (CS) algorithm and adaptive Gaussian quantum behaved particle swarm optimization (AGQPSO) is proposed. The CS algorithm is modified first by changing the step size in the simplified version. After that half of the total population is upgraded by this modified CS algorithm and another half is upgraded by AGQPSO algorithm. Then deletion strategy of CS algorithm is applied on the whole updated population. Next, to test the performance of the proposed hybrid algorithm, a number of benchmarks bound constrained optimization problems with different dimensions are considered and solved. Then this algorithm is applied fruitfully in first and second order initial value problems and boundary value problems by expressing the said problems in the form of bound constrained optimization problems.
•Transformation of ordinary differential equation to optimization problem.•Hybrid algorithm based on cuckoo search & advanced particle swarm optimization.•Testing of stability of the algorithm by convergence graph & statistical analysis.•Finding superiority of the algorithm by non-parametrical statistical test. This article solves first and second order differential equations with initial and/or boundary conditions by transforming these equations into unconstrained/bound constrained optimization problems. In order to solve these problems, a hybrid algorithm based on advanced cuckoo search (CS) algorithm and adaptive Gaussian quantum behaved particle swarm optimization (AGQPSO) is proposed. The CS algorithm is modified first by changing the step size in the simplified version. After that half of the total population is upgraded by this modified CS algorithm and another half is upgraded by AGQPSO algorithm. Then deletion strategy of CS algorithm is applied on the whole updated population. Next, to test the performance of the proposed hybrid algorithm, a number of benchmarks bound constrained optimization problems with different dimensions are considered and solved. Then this algorithm is applied fruitfully in first and second order initial value problems and boundary value problems by expressing the said problems in the form of bound constrained optimization problems.
ArticleNumber 114646
Author Kumar, Nirmal
Shaikh, Ali Akbar
Bhunia, Asoke Kumar
Mahato, Sanat Kumar
Author_xml – sequence: 1
  givenname: Nirmal
  surname: Kumar
  fullname: Kumar, Nirmal
  email: kumarnirmal843@gmail.com
  organization: Department of Mathematics, The University of Burdwan, Purba Barddhaman 713104, WB, India
– sequence: 2
  givenname: Ali Akbar
  surname: Shaikh
  fullname: Shaikh, Ali Akbar
  email: aliashaikh@math.buruniv.ac.in
  organization: Department of Mathematics, The University of Burdwan, Purba Barddhaman 713104, WB, India
– sequence: 3
  givenname: Sanat Kumar
  surname: Mahato
  fullname: Mahato, Sanat Kumar
  email: sanatkmahato@gmail.com
  organization: Department of Mathematics, The University of Burdwan, Purba Barddhaman 713104, WB, India
– sequence: 4
  givenname: Asoke Kumar
  surname: Bhunia
  fullname: Bhunia, Asoke Kumar
  email: akbhunia@math.buruniv.ac.in
  organization: Department of Mathematics, The University of Burdwan, Purba Barddhaman 713104, WB, India
BookMark eNp9kcFu1DAQhi1UJLaFF-BkiXO2thPHicSlqqBUqsQFztbEdrqzZO3UdlKVt-IN8e5y4tDTzOH_Zv6Z_5Jc-OAdIR8523LG2-v91qVn2Aom-Jbzpm3aN2TDO1VXrerrC7JhvVRVw1XzjlymtGeMK8bUhvy5mecJDWQMPtEwUu-e6e5liGgpTI8hYt4d6ADJWRo8BbuCN6U3i_kVAk0OotlR8EVtYc64OnoHS0oInj4t4PNSaLeDtTAzxIxmcrRYjQcaivyAv0-rKXqawrSif6QhWvQQX6jFcXTR-YwwUVemnUy-J29HmJL78K9ekZ9fv_y4_VY9fL-7v715qEwtulw1lonGjlJ01gonaylaEEPNOSgmhGM14xaU7eXQWdbIRshBQa36Hnpuy3fqK_LpPHeO4WlxKet9WKIvK7WQXCrZNrIuqu6sMjGkFN2oDeaT0RwBJ82ZPgak9_oYkD4GpM8BFVT8h84RD-Xw16HPZ8iV01d0USeD7hgJRmeytgFfw_8C-newMA
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106008
crossref_primary_10_1002_int_22650
crossref_primary_10_1038_s41598_023_37326_3
crossref_primary_10_1080_13675567_2022_2114438
crossref_primary_10_1007_s41660_022_00258_y
crossref_primary_10_1007_s00500_021_05942_8
crossref_primary_10_1016_j_knosys_2022_109484
crossref_primary_10_1016_j_envint_2022_107724
crossref_primary_10_1007_s11063_023_11313_1
crossref_primary_10_1007_s10489_024_05537_4
crossref_primary_10_1016_j_apenergy_2025_125339
crossref_primary_10_1016_j_asoc_2022_109394
crossref_primary_10_1109_TFUZZ_2022_3227464
crossref_primary_10_1007_s11600_023_01194_2
crossref_primary_10_1016_j_ins_2022_07_067
crossref_primary_10_1007_s00500_022_07199_1
crossref_primary_10_3390_biomimetics8040355
crossref_primary_10_1016_j_eswa_2023_122325
crossref_primary_10_1016_j_eswa_2023_122200
crossref_primary_10_1007_s10586_025_05287_z
crossref_primary_10_1016_j_swevo_2025_101872
crossref_primary_10_1007_s11063_022_10758_0
crossref_primary_10_1016_j_ceramint_2022_04_109
crossref_primary_10_1109_ACCESS_2022_3226813
crossref_primary_10_1007_s00500_021_05894_z
crossref_primary_10_1016_j_ecoenv_2025_118764
crossref_primary_10_1007_s13198_023_02197_4
crossref_primary_10_1007_s00366_021_01497_2
crossref_primary_10_1007_s13198_021_01314_5
crossref_primary_10_1007_s13042_023_02081_4
crossref_primary_10_1007_s10586_024_04783_y
crossref_primary_10_1007_s11831_024_10183_7
crossref_primary_10_1016_j_eswa_2022_118676
crossref_primary_10_1016_j_eswa_2022_117428
crossref_primary_10_1142_S0219876224500646
crossref_primary_10_3233_IDT_idt230275
crossref_primary_10_1088_1742_6596_2160_1_012044
crossref_primary_10_1177_00405175211070611
crossref_primary_10_1177_1748006X221102992
crossref_primary_10_1002_int_22538
crossref_primary_10_1007_s10489_022_03429_z
crossref_primary_10_1016_j_jclepro_2021_130063
crossref_primary_10_3390_w16020364
Cites_doi 10.1016/j.asoc.2015.10.034
10.1016/j.ins.2012.11.017
10.1109/NABIC.2009.5393690
10.1002/0471667196.ess1837
10.1109/WICT.2012.6409199
10.1016/j.engappai.2019.01.001
10.1016/j.swevo.2011.02.002
10.4236/ojop.2015.43009
10.1109/CEC.2017.7969456
10.1016/j.eswa.2009.06.044
10.1016/j.advengsoft.2015.11.004
10.1023/A:1008202821328
10.1007/s10745-006-9083-4
10.1109/CEC.2013.6557555
10.1007/978-3-540-39930-8_3
10.1016/j.engappai.2019.103249
10.1109/4235.585893
10.1007/s41403-018-0051-2
10.1016/j.ins.2013.12.044
10.1109/CEC.2017.7969524
10.1016/j.advengsoft.2013.12.007
10.1007/s10489-020-01727-y
10.1016/j.ins.2009.03.004
10.1007/11538059_44
10.1109/MHS.1995.494215
10.1504/IJCSM.2020.112670
10.1002/cplx.21634
10.1007/s10732-008-9080-4
10.1080/00207160.2018.1463438
10.1007/978-3-642-32894-7_27
10.33889/IJMEMS.2017.2.3-016
10.1016/j.amc.2011.09.021
10.1088/1751-8113/40/41/003
10.1016/j.jcp.2007.06.008
10.1007/s00500-017-2547-1
10.1007/s00521-019-04696-7
10.1109/CEC.2017.7969336
10.1145/3340848
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Jun 15, 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Jun 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.114646
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_114646
S0957417421000877
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-4d024df528dd2e53526a2b311a7022e0301da7d95b8d045425b7a3799a91d0173
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633045400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Mon Jul 14 10:27:42 EDT 2025
Sat Nov 29 07:08:04 EST 2025
Tue Nov 18 21:04:28 EST 2025
Fri Feb 23 02:46:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords AGQPSO
Cuckoo search algorithm
Hybrid algorithm
Differential equations
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-4d024df528dd2e53526a2b311a7022e0301da7d95b8d045425b7a3799a91d0173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2515756453
PQPubID 2045477
ParticipantIDs proquest_journals_2515756453
crossref_citationtrail_10_1016_j_eswa_2021_114646
crossref_primary_10_1016_j_eswa_2021_114646
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114646
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References (pp. 39–43). IEEE.
2009 World congress on nature & biologically inspired computing (NaBIC)
Faramarzi, Heidarinejad, Mirjalili, Gandomi (b0075) 2020; 113377
Wolpert, Macready (b0210) 1997; 1
Abualigah (b0010) 2020
Shi, Y., & Eberhart, R. (1998, May). A modified particle swarm optimizer. In
Kreyszig, E. Advanced Engineering Mathematics, Wiley Publishers, 2001.
(pp. 69–73). IEEE.
Qais, Hasanien, Alghuwainem (b0160) 2020; 50
Sun, Fang, Palade, Wu, Xu (b0190) 2011; 218
Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
(pp. 240–249). Berlin, Heidelberg: Springer.
Mirjalili, Mirjalili, Lewis (b0130) 2014; 69
Sun, J., Feng, B., & Xu, W. (2004, June). Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753) (Vol. 1, pp. 325-331). IEEE.
Kumar, Mahato, Bhunia (b0115) 2019; 1–15
1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360)
Abedinia, Amjady, Ghasemi (b0005) 2016; 21
Yang, X. S. (2012, September). Flower pollination algorithm for global optimization. In
Atkinson, K.E., An introduction to numerical analysis, Wiley Publishers, 2004.
Kamboj, Bhadoria, Gupta (b0100) 2018; 3
(pp. 210-214). IEEE.
Xue, Xue, Zhang (b0225) 2019; 13
Garćıa, S., Molina, D., Lozano, M., Herrera, F. (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics 15(6):617.
Junaid, Raja, Qureshi (b0095) 2009; 55
.
Xu, W., & Sun, J. (2005, August). Adaptive parameter selection of quantum-behaved particle swarm optimization on global level. In International Conference on Intelligent Computing (pp. 420–––428). Berlin, Heidelberg: Springer.
Soneji, H., & Sanghvi, R. C. (2012, October). Towards the improvement of Cuckoo search algorithm. In 2012 World Congress on Information and Communication Technologies (pp. 878–883). IEEE.
(pp. 372–379). IEEE.
Li, Zhao, Weng, Han (b0125) 2016; 92
dos Santos Coelho (b0055) 2010; 37
Storn, Price (b0185) 1997; 11
Tam, Ong, Ismail, Ang, Khoo (b0200) 2018; 96
Onwubolu, G. C., & Babu, B. V. (2013). New optimization techniques in engineering (Vol. 141). Springer.
Rashedi, Nezamabadi-Pour, Saryazdi (b0165) 2009; 179
Xue, Jiang, Zhao, Ma (b0220) 2018; 22
Duary, A., Rahman, M. S., Shaikh, A. A., Niaki, S. T. A., & Bhunia, A. K. (2020). A new hybrid algorithm to solve bound-constrained nonlinear optimization problems. Neural Computing and Applications, 1-26.
Moscato, P., Cotta, C., & Mendes, A. (2004). Memetic algorithms. In New optimization Techniques in Engineering (pp. 53–85). Berlin, Heidelberg: Springer.
Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In
Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017, June). Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In 2017 IEEE Congress on Evolutionary Computation (CEC)
Bhunia, A. K., Duary, A. & Sahoo, L. (2017) A genetic algorithm based hybrid approach for reliability-redundancy optimization problem of a series system with multiple-choice, International Journal of Mathematical, Engineering and Management Sciences, 2(3), 185–212.
Kumar, A., Misra, R. K., & Singh, D. (2017, June). Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 1835–1842). IEEE.
Muthiah-Nakarajan, Noel (b0140) 2016; 38
Pavlyukevich (b0155) 2007; 226
Fatimah, Senapon, Adebowale (b0080) 2015; 4
Kumar, Rahman, Duary, Mahato, Bhunia (b0120) 2020; 12
Hayyolalam, Kazem (b0090) 2020; 87
Shadravan, Naji, Bardsiri (b0170) 2019; 80
International conference on unconventional computing and natural computation
Brown, Liebovitch, Glendon (b0035) 2007; 35
Caraffini, Neri, Iacca, Mol (b0045) 2013; 227
Duary, Kumar, Akhtar, Shaikh, Bhunia (b0060) 2019
Caraffini, Neri, Picinali (b0040) 2014; 265
Tanabe, R., & Fukunaga, A. (2013, June). Success-history based parameter adaptation for differential evolution. In 2013 IEEE congress on evolutionary computation (pp. 71-78). IEEE.
Derrac, García, Molina, Herrera (b0050) 2011; 1
Pavlyukevich (b0150) 2007; 40
Brest, J., Maučec, M. S., & Bošković, B. (2017, June). Single objective real-parameter optimization: Algorithm jSO. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 1311–1318). IEEE.
Junaid (10.1016/j.eswa.2021.114646_b0095) 2009; 55
10.1016/j.eswa.2021.114646_b0205
10.1016/j.eswa.2021.114646_b0105
10.1016/j.eswa.2021.114646_b0025
10.1016/j.eswa.2021.114646_b0145
10.1016/j.eswa.2021.114646_b0065
Muthiah-Nakarajan (10.1016/j.eswa.2021.114646_b0140) 2016; 38
10.1016/j.eswa.2021.114646_b0020
Storn (10.1016/j.eswa.2021.114646_b0185) 1997; 11
Brown (10.1016/j.eswa.2021.114646_b0035) 2007; 35
10.1016/j.eswa.2021.114646_b0030
10.1016/j.eswa.2021.114646_b0195
10.1016/j.eswa.2021.114646_b0070
Pavlyukevich (10.1016/j.eswa.2021.114646_b0150) 2007; 40
Abualigah (10.1016/j.eswa.2021.114646_b0010) 2020
Qais (10.1016/j.eswa.2021.114646_b0160) 2020; 50
Xue (10.1016/j.eswa.2021.114646_b0220) 2018; 22
Rashedi (10.1016/j.eswa.2021.114646_b0165) 2009; 179
Wolpert (10.1016/j.eswa.2021.114646_b0210) 1997; 1
Abedinia (10.1016/j.eswa.2021.114646_b0005) 2016; 21
Li (10.1016/j.eswa.2021.114646_b0125) 2016; 92
Hayyolalam (10.1016/j.eswa.2021.114646_b0090) 2020; 87
Kumar (10.1016/j.eswa.2021.114646_b0120) 2020; 12
10.1016/j.eswa.2021.114646_b0215
dos Santos Coelho (10.1016/j.eswa.2021.114646_b0055) 2010; 37
10.1016/j.eswa.2021.114646_b0135
10.1016/j.eswa.2021.114646_b0015
10.1016/j.eswa.2021.114646_b0235
Faramarzi (10.1016/j.eswa.2021.114646_b0075) 2020; 113377
10.1016/j.eswa.2021.114646_b0175
10.1016/j.eswa.2021.114646_b0230
Mirjalili (10.1016/j.eswa.2021.114646_b0130) 2014; 69
10.1016/j.eswa.2021.114646_b0110
Xue (10.1016/j.eswa.2021.114646_b0225) 2019; 13
Fatimah (10.1016/j.eswa.2021.114646_b0080) 2015; 4
Duary (10.1016/j.eswa.2021.114646_b0060) 2019
10.1016/j.eswa.2021.114646_b0085
Kumar (10.1016/j.eswa.2021.114646_b0115) 2019; 1–15
Pavlyukevich (10.1016/j.eswa.2021.114646_b0155) 2007; 226
Caraffini (10.1016/j.eswa.2021.114646_b0040) 2014; 265
Kamboj (10.1016/j.eswa.2021.114646_b0100) 2018; 3
Derrac (10.1016/j.eswa.2021.114646_b0050) 2011; 1
10.1016/j.eswa.2021.114646_b0180
Shadravan (10.1016/j.eswa.2021.114646_b0170) 2019; 80
Tam (10.1016/j.eswa.2021.114646_b0200) 2018; 96
Caraffini (10.1016/j.eswa.2021.114646_b0045) 2013; 227
Sun (10.1016/j.eswa.2021.114646_b0190) 2011; 218
References_xml – volume: 4
  start-page: 69
  year: 2015
  ident: b0080
  article-title: Solving ordinary differential equations with evolutionary algorithms
  publication-title: Open Journal of Optimization
– volume: 50
  start-page: 3926
  year: 2020
  end-page: 3941
  ident: b0160
  article-title: Transient search optimization: A new meta-heuristic optimization algorithm
  publication-title: Applied Intelligence
– reference: Garćıa, S., Molina, D., Lozano, M., Herrera, F. (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics 15(6):617.
– volume: 35
  start-page: 129
  year: 2007
  end-page: 138
  ident: b0035
  article-title: Lévy flights in Dobe Ju/’hoansi foraging patterns
  publication-title: Human Ecology
– volume: 265
  start-page: 1
  year: 2014
  end-page: 22
  ident: b0040
  article-title: An analysis on separability for memetic computing automatic design
  publication-title: Information Sciences
– reference: (pp. 372–379). IEEE.
– volume: 37
  start-page: 1676
  year: 2010
  end-page: 1683
  ident: b0055
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Systems with Applications
– volume: 96
  start-page: 883
  year: 2018
  end-page: 919
  ident: b0200
  article-title: A new hybrid GA− ACO− PSO algorithm for solving various engineering design problems
  publication-title: International Journal of Computer Mathematics
– volume: 226
  start-page: 1830
  year: 2007
  end-page: 1844
  ident: b0155
  article-title: Lévy flights, non-local search and simulated annealing
  publication-title: Journal of Computational Physics
– year: 2019
  ident: b0060
  article-title: Real Coded Self-Organizing Migrating Genetic Algorithm for nonlinear constrained optimization
  publication-title: International Journal of Operational Research
– reference: International conference on unconventional computing and natural computation
– reference: Onwubolu, G. C., & Babu, B. V. (2013). New optimization techniques in engineering (Vol. 141). Springer.
– volume: 1–15
  year: 2019
  ident: b0115
  article-title: A new QPSO based hybrid algorithm for constrained optimization problems via tournamenting process
  publication-title: Soft Computing
– volume: 87
  year: 2020
  ident: b0090
  article-title: Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
– start-page: 1
  year: 2020
  end-page: 24
  ident: b0010
  article-title: Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications
  publication-title: Neural Computing and Applications
– reference: Duary, A., Rahman, M. S., Shaikh, A. A., Niaki, S. T. A., & Bhunia, A. K. (2020). A new hybrid algorithm to solve bound-constrained nonlinear optimization problems. Neural Computing and Applications, 1-26.
– reference: Yang, X. S. (2012, September). Flower pollination algorithm for global optimization. In
– volume: 55
  start-page: 578
  year: 2009
  end-page: 5581
  ident: b0095
  article-title: Evolutionary computing approach for the solution of initial value problems in ordinary differential equations
  publication-title: World Academy of Science, Engineering and Technology
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0210
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Kreyszig, E. Advanced Engineering Mathematics, Wiley Publishers, 2001.
– volume: 12
  start-page: 385
  year: 2020
  end-page: 412
  ident: b0120
  article-title: A new QPSO based hybrid algorithm for bound-constrained optimisation problem and its application in engineering design problems
  publication-title: International Journal of Computing Science and Mathematics
– reference: Sun, J., Feng, B., & Xu, W. (2004, June). Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753) (Vol. 1, pp. 325-331). IEEE.
– reference: Atkinson, K.E., An introduction to numerical analysis, Wiley Publishers, 2004.
– volume: 227
  start-page: 60
  year: 2013
  end-page: 82
  ident: b0045
  article-title: Parallel memetic structures
  publication-title: Information Sciences
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0130
  article-title: Grey wolf optimizer
  publication-title: Advances in engineering software
– volume: 80
  start-page: 20
  year: 2019
  end-page: 34
  ident: b0170
  article-title: The Sailfish Optimizer: A novel nature-inspired meta-heuristic algorithm for solving constrained engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017, June). Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In 2017 IEEE Congress on Evolutionary Computation (CEC)
– reference: Brest, J., Maučec, M. S., & Bošković, B. (2017, June). Single objective real-parameter optimization: Algorithm jSO. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 1311–1318). IEEE.
– reference: Bhunia, A. K., Duary, A. & Sahoo, L. (2017) A genetic algorithm based hybrid approach for reliability-redundancy optimization problem of a series system with multiple-choice, International Journal of Mathematical, Engineering and Management Sciences, 2(3), 185–212.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0050
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
– reference: (pp. 69–73). IEEE.
– volume: 21
  start-page: 97
  year: 2016
  end-page: 116
  ident: b0005
  article-title: A new meta-heuristic algorithm based on shark smell optimization
  publication-title: Complexity
– reference: Xu, W., & Sun, J. (2005, August). Adaptive parameter selection of quantum-behaved particle swarm optimization on global level. In International Conference on Intelligent Computing (pp. 420–––428). Berlin, Heidelberg: Springer.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0185
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– reference: Kumar, A., Misra, R. K., & Singh, D. (2017, June). Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 1835–1842). IEEE.
– reference: Soneji, H., & Sanghvi, R. C. (2012, October). Towards the improvement of Cuckoo search algorithm. In 2012 World Congress on Information and Communication Technologies (pp. 878–883). IEEE.
– volume: 92
  start-page: 65
  year: 2016
  end-page: 88
  ident: b0125
  article-title: A novel nature-inspired algorithm for optimization: Virus colony search
  publication-title: Advances in Engineering Software
– reference: Moscato, P., Cotta, C., & Mendes, A. (2004). Memetic algorithms. In New optimization Techniques in Engineering (pp. 53–85). Berlin, Heidelberg: Springer.
– volume: 38
  start-page: 771
  year: 2016
  end-page: 787
  ident: b0140
  article-title: Galactic Swarm optimization: A new global optimization meta-heuristic inspired by galactic motion
  publication-title: Applied Soft Computing
– reference: 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360)
– reference: (pp. 240–249). Berlin, Heidelberg: Springer.
– reference: (pp. 210-214). IEEE.
– volume: 22
  start-page: 2935
  year: 2018
  end-page: 2952
  ident: b0220
  article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization
  publication-title: Soft Computing
– reference: Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
– reference: Tanabe, R., & Fukunaga, A. (2013, June). Success-history based parameter adaptation for differential evolution. In 2013 IEEE congress on evolutionary computation (pp. 71-78). IEEE.
– volume: 13
  start-page: 1
  year: 2019
  end-page: 27
  ident: b0225
  article-title: Self-adaptive particle swarm optimization for large-scale feature selection in classification
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– volume: 40
  start-page: 12299
  year: 2007
  ident: b0150
  article-title: Cooling down Lévy flights
  publication-title: Journal of Physics A: Mathematical and Theoretical
– reference: .
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0165
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
– reference: 2009 World congress on nature & biologically inspired computing (NaBIC)
– reference: Shi, Y., & Eberhart, R. (1998, May). A modified particle swarm optimizer. In
– reference: (pp. 39–43). IEEE.
– volume: 3
  start-page: 217
  year: 2018
  end-page: 241
  ident: b0100
  article-title: A novel hybrid GWO-PS algorithm for standard benchmark optimization problems
  publication-title: INAE Letters
– volume: 218
  start-page: 3763
  year: 2011
  end-page: 3775
  ident: b0190
  article-title: Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point
  publication-title: Applied Mathematics and Computation
– reference: Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In
– volume: 113377
  year: 2020
  ident: b0075
  article-title: Marine predators algorithm: A nature-inspired Meta-heuristic
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 771
  year: 2016
  ident: 10.1016/j.eswa.2021.114646_b0140
  article-title: Galactic Swarm optimization: A new global optimization meta-heuristic inspired by galactic motion
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.10.034
– volume: 227
  start-page: 60
  year: 2013
  ident: 10.1016/j.eswa.2021.114646_b0045
  article-title: Parallel memetic structures
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2012.11.017
– ident: 10.1016/j.eswa.2021.114646_b0235
  doi: 10.1109/NABIC.2009.5393690
– ident: 10.1016/j.eswa.2021.114646_b0015
  doi: 10.1002/0471667196.ess1837
– ident: 10.1016/j.eswa.2021.114646_b0180
  doi: 10.1109/WICT.2012.6409199
– volume: 80
  start-page: 20
  year: 2019
  ident: 10.1016/j.eswa.2021.114646_b0170
  article-title: The Sailfish Optimizer: A novel nature-inspired meta-heuristic algorithm for solving constrained engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.01.001
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2021.114646_b0050
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– volume: 4
  start-page: 69
  issue: 03
  year: 2015
  ident: 10.1016/j.eswa.2021.114646_b0080
  article-title: Solving ordinary differential equations with evolutionary algorithms
  publication-title: Open Journal of Optimization
  doi: 10.4236/ojop.2015.43009
– ident: 10.1016/j.eswa.2021.114646_b0030
  doi: 10.1109/CEC.2017.7969456
– volume: 37
  start-page: 1676
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2021.114646_b0055
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.06.044
– volume: 92
  start-page: 65
  year: 2016
  ident: 10.1016/j.eswa.2021.114646_b0125
  article-title: A novel nature-inspired algorithm for optimization: Virus colony search
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.11.004
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2021.114646_b0185
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 35
  start-page: 129
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2021.114646_b0035
  article-title: Lévy flights in Dobe Ju/’hoansi foraging patterns
  publication-title: Human Ecology
  doi: 10.1007/s10745-006-9083-4
– ident: 10.1016/j.eswa.2021.114646_b0205
  doi: 10.1109/CEC.2013.6557555
– ident: 10.1016/j.eswa.2021.114646_b0135
  doi: 10.1007/978-3-540-39930-8_3
– volume: 1–15
  year: 2019
  ident: 10.1016/j.eswa.2021.114646_b0115
  article-title: A new QPSO based hybrid algorithm for constrained optimization problems via tournamenting process
  publication-title: Soft Computing
– volume: 87
  year: 2020
  ident: 10.1016/j.eswa.2021.114646_b0090
  article-title: Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.103249
– ident: 10.1016/j.eswa.2021.114646_b0175
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2021.114646_b0210
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 3
  start-page: 217
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2021.114646_b0100
  article-title: A novel hybrid GWO-PS algorithm for standard benchmark optimization problems
  publication-title: INAE Letters
  doi: 10.1007/s41403-018-0051-2
– volume: 265
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2021.114646_b0040
  article-title: An analysis on separability for memetic computing automatic design
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.12.044
– ident: 10.1016/j.eswa.2021.114646_b0110
  doi: 10.1109/CEC.2017.7969524
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2021.114646_b0130
  article-title: Grey wolf optimizer
  publication-title: Advances in engineering software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 50
  start-page: 3926
  issue: 11
  year: 2020
  ident: 10.1016/j.eswa.2021.114646_b0160
  article-title: Transient search optimization: A new meta-heuristic optimization algorithm
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-020-01727-y
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2021.114646_b0165
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– ident: 10.1016/j.eswa.2021.114646_b0215
  doi: 10.1007/11538059_44
– ident: 10.1016/j.eswa.2021.114646_b0070
  doi: 10.1109/MHS.1995.494215
– volume: 12
  start-page: 385
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2021.114646_b0120
  article-title: A new QPSO based hybrid algorithm for bound-constrained optimisation problem and its application in engineering design problems
  publication-title: International Journal of Computing Science and Mathematics
  doi: 10.1504/IJCSM.2020.112670
– volume: 21
  start-page: 97
  issue: 5
  year: 2016
  ident: 10.1016/j.eswa.2021.114646_b0005
  article-title: A new meta-heuristic algorithm based on shark smell optimization
  publication-title: Complexity
  doi: 10.1002/cplx.21634
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114646_b0010
  article-title: Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications
  publication-title: Neural Computing and Applications
– ident: 10.1016/j.eswa.2021.114646_b0085
  doi: 10.1007/s10732-008-9080-4
– volume: 96
  start-page: 883
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2021.114646_b0200
  article-title: A new hybrid GA− ACO− PSO algorithm for solving various engineering design problems
  publication-title: International Journal of Computer Mathematics
  doi: 10.1080/00207160.2018.1463438
– ident: 10.1016/j.eswa.2021.114646_b0230
  doi: 10.1007/978-3-642-32894-7_27
– ident: 10.1016/j.eswa.2021.114646_b0025
  doi: 10.33889/IJMEMS.2017.2.3-016
– volume: 218
  start-page: 3763
  issue: 7
  year: 2011
  ident: 10.1016/j.eswa.2021.114646_b0190
  article-title: Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2011.09.021
– volume: 55
  start-page: 578
  year: 2009
  ident: 10.1016/j.eswa.2021.114646_b0095
  article-title: Evolutionary computing approach for the solution of initial value problems in ordinary differential equations
  publication-title: World Academy of Science, Engineering and Technology
– year: 2019
  ident: 10.1016/j.eswa.2021.114646_b0060
  article-title: Real Coded Self-Organizing Migrating Genetic Algorithm for nonlinear constrained optimization
  publication-title: International Journal of Operational Research
– volume: 40
  start-page: 12299
  issue: 41
  year: 2007
  ident: 10.1016/j.eswa.2021.114646_b0150
  article-title: Cooling down Lévy flights
  publication-title: Journal of Physics A: Mathematical and Theoretical
  doi: 10.1088/1751-8113/40/41/003
– ident: 10.1016/j.eswa.2021.114646_b0145
– ident: 10.1016/j.eswa.2021.114646_b0195
– volume: 226
  start-page: 1830
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2021.114646_b0155
  article-title: Lévy flights, non-local search and simulated annealing
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2007.06.008
– volume: 22
  start-page: 2935
  issue: 9
  year: 2018
  ident: 10.1016/j.eswa.2021.114646_b0220
  article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2547-1
– volume: 113377
  year: 2020
  ident: 10.1016/j.eswa.2021.114646_b0075
  article-title: Marine predators algorithm: A nature-inspired Meta-heuristic
  publication-title: Expert Systems with Applications
– ident: 10.1016/j.eswa.2021.114646_b0105
– ident: 10.1016/j.eswa.2021.114646_b0065
  doi: 10.1007/s00521-019-04696-7
– ident: 10.1016/j.eswa.2021.114646_b0020
  doi: 10.1109/CEC.2017.7969336
– volume: 13
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2021.114646_b0225
  article-title: Self-adaptive particle swarm optimization for large-scale feature selection in classification
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/3340848
SSID ssj0017007
Score 2.544563
Snippet •Transformation of ordinary differential equation to optimization problem.•Hybrid algorithm based on cuckoo search & advanced particle swarm...
This article solves first and second order differential equations with initial and/or boundary conditions by transforming these equations into...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114646
SubjectTerms Adaptive algorithms
AGQPSO
Algorithms
Boundary conditions
Boundary value problems
Cuckoo search algorithm
Differential equations
Hybrid algorithm
Mathematical analysis
Optimization
Ordinary differential equations
Particle swarm optimization
Search algorithms
Title Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations
URI https://dx.doi.org/10.1016/j.eswa.2021.114646
https://www.proquest.com/docview/2515756453
Volume 172
WOSCitedRecordID wos000633045400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VlgMX3ohCQXPgZrmKX1nvMULlJaiQWqTerF3vljztNLHb8rP4QfwXZl-OFUQFSFysyLG9cb7PntnZ-WYIeYUWOUq4XtUthQhTfLRDIYaDcBCz8jwqc0a56VrykR4f52dn7PPOzg-vhbmc06rKr6_Z8r9CjfsQbC2d_Qu4u4viDvyMoOMWYcftHwE_6i1JmzQNdRWMv2lhVsDnX-vVpBkvAm28pF4o6HIAyrac1XXgoiCmhKvkS5NY9Ja3a6O1vGgRh3Zhtf14ztINH6yv-GoR1Hj4wuk6dRwF79OEK3B-a1W_vhtLo8P06qLtRQunXUqgWjWuvrRX3vVuaLPy5DLDjydoWboskZMxn8zGVrgzCUYzwbvc4098zE3LqOCEV7wJzBW6YMS4rWzW8Ghdz1TvSxcQiU3ilpWE2iidV-ps0qJsuJOGaWQ7Ah0q-7LPaRIOqe3Q2FkD20noF8tigxzTQ4X_6KEe1lRZTrfKeBvH4EQPpseK9eJJTuktshfTjKHd2Bu9Pzr70C1z0YHV8_sf51RdNgFxe6TfeU5bPoRxjE7vk7tuRgMjS4UHZEdVD8k93y0EnPF4RL73iQn1OSAxwRITOmKCISbUFXhigiUmWGICEhM8McETExwxwRETPDHBEBP6xIRJBY6Y4IkJfWJCR8zH5Mubo9PX70LXMCQskzhvwlSixynPsziXMlam9QOPRRJFnKKrqvTsX3IqWSZyqUtPxpmgPKGMcRZJRCN5QnarulJPCUha0iSSikk1SNOSCpzXiIwxwUUppOT7JPJgFKWrpq-buswLnzY5LTSAhQawsADuk6A7Z2lrydx4dOYxLpw3bL3cAil543kHnhCFey2tC5zF4LxsmGbJs3-87HNyZ_OwHZDdZtWqF-R2edlM1quXjtg_AaQ38FY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+new+hybrid+algorithm+based+on+advanced+cuckoo+search+and+adaptive+Gaussian+quantum+behaved+particle+swarm+optimization+in+solving+ordinary+differential+equations&rft.jtitle=Expert+systems+with+applications&rft.au=Kumar%2C+Nirmal&rft.au=Shaikh%2C+Ali+Akbar&rft.au=Mahato%2C+Sanat+Kumar&rft.au=Bhunia%2C+Asoke+Kumar&rft.date=2021-06-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=172&rft_id=info:doi/10.1016%2Fj.eswa.2021.114646&rft.externalDocID=S0957417421000877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon