Parallel Distributed Hybrid Fuzzy GBML Models With Rule Set Migration and Training Data Rotation
We propose a parallel distributed model of a hybrid fuzzy genetics-based machine learning (GBML) algorithm to drastically decrease its computation time. Our hybrid algorithm has a Pittsburgh-style GBML framework where a rule set is coded as an individual. A Michigan-style rule-generation mechanism i...
Uložené v:
| Vydané v: | IEEE transactions on fuzzy systems Ročník 21; číslo 2; s. 355 - 368 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.04.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We propose a parallel distributed model of a hybrid fuzzy genetics-based machine learning (GBML) algorithm to drastically decrease its computation time. Our hybrid algorithm has a Pittsburgh-style GBML framework where a rule set is coded as an individual. A Michigan-style rule-generation mechanism is used as a kind of local search. Our parallel distributed model is an island model where a population of individuals is divided into multiple islands. Training data are also divided into multiple subsets. The main feature of our model is that a different training data subset is assigned to each island. The assigned training data subsets are periodically rotated over the islands. The best rule set in each island also migrates periodically. We demonstrate through computational experiments that our model decreases the computation time of the hybrid fuzzy GBML algorithm by an order or two of magnitude using seven parallel processors without severely degrading the generalization ability of obtained fuzzy rule-based classifiers. We also examine the effects of the training data rotation and the rule set migration on the search ability of our model. |
|---|---|
| AbstractList | We propose a parallel distributed model of a hybrid fuzzy genetics-based machine learning (GBML) algorithm to drastically decrease its computation time. Our hybrid algorithm has a Pittsburgh-style GBML framework where a rule set is coded as an individual. A Michigan-style rule-generation mechanism is used as a kind of local search. Our parallel distributed model is an island model where a population of individuals is divided into multiple islands. Training data are also divided into multiple subsets. The main feature of our model is that a different training data subset is assigned to each island. The assigned training data subsets are periodically rotated over the islands. The best rule set in each island also migrates periodically. We demonstrate through computational experiments that our model decreases the computation time of the hybrid fuzzy GBML algorithm by an order or two of magnitude using seven parallel processors without severely degrading the generalization ability of obtained fuzzy rule-based classifiers. We also examine the effects of the training data rotation and the rule set migration on the search ability of our model. |
| Author | Mihara, S. Nojima, Y. Ishibuchi, H. |
| Author_xml | – sequence: 1 givenname: H. surname: Ishibuchi fullname: Ishibuchi, H. email: hsaoi@cs.osakafu-u.ac.jp organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan – sequence: 2 givenname: S. surname: Mihara fullname: Mihara, S. email: mihara@ci.cs.osakafu-u.ac.jp organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan – sequence: 3 givenname: Y. surname: Nojima fullname: Nojima, Y. email: nojima@cs.osakafu-u.ac.jp organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan |
| BookMark | eNp9kE1LxDAQhoMo-PkH9BLw4qVrJl9tj-q6Kuyi6IrgpabpqJHYapIe1l9vdcWDB08zMM87MzybZLXtWiRkF9gIgJWH88nt_f2IM-AjzkEJAStkA0oJGWNCrg490yLTOdPrZDPGF8ZAKig2yMOVCcZ79HTsYgqu7hM29HxRB9fQSf_xsaBnx7MpnXUN-kjvXHqm171HeoOJztxTMMl1LTVtQ-fBuNa1T3RskqHXXfoebZO1R-Mj7vzULXI7OZ2fnGfTy7OLk6NpZgUvUiYLRKs1MBSFVbUWnBe1kKXIwdjGaGVkLpWFWqKpQRgsEUVdytpyo5ltxBY5WO59C917jzFVry5a9N602PWxAqEVcM0VG9D9P-hL14d2-G6guBKKaZYPFF9SNnQxBnys3oJ7NWFRAau-pFff0qsv6dWP9CFU_AlZt_SQBjv-_-jeMuoQ8feW5kXOQIhPEryQ8g |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1016_j_ejor_2016_06_065 crossref_primary_10_1109_TFUZZ_2016_2566814 crossref_primary_10_1016_j_knosys_2013_05_012 crossref_primary_10_1109_TFUZZ_2014_2327993 crossref_primary_10_1016_j_ijar_2013_06_005 crossref_primary_10_1109_ACCESS_2019_2937657 crossref_primary_10_1007_s13042_021_01460_z crossref_primary_10_1007_s11634_016_0260_z crossref_primary_10_1109_TFUZZ_2017_2729507 crossref_primary_10_1007_s00521_020_05113_0 crossref_primary_10_3390_electronics12132853 crossref_primary_10_1016_j_knosys_2018_02_003 crossref_primary_10_1016_j_asoc_2022_109410 crossref_primary_10_2478_jaiscr_2023_0020 crossref_primary_10_1109_TFUZZ_2013_2280141 crossref_primary_10_1109_TFUZZ_2025_3563636 crossref_primary_10_1109_TCYB_2020_3034792 crossref_primary_10_1016_j_apm_2019_07_001 crossref_primary_10_1088_1757_899X_173_1_012007 crossref_primary_10_1016_j_enconman_2018_10_068 crossref_primary_10_1109_TEVC_2021_3099289 crossref_primary_10_1016_j_fss_2014_01_015 crossref_primary_10_1109_TFUZZ_2015_2426212 crossref_primary_10_1088_1757_899X_173_1_012020 crossref_primary_10_1016_j_artmed_2020_101986 crossref_primary_10_1109_ACCESS_2018_2868171 crossref_primary_10_1109_ACCESS_2024_3458808 crossref_primary_10_1109_TETCI_2017_2761915 crossref_primary_10_1109_TFUZZ_2019_2907497 |
| Cites_doi | 10.1016/0004-3702(89)90050-7 10.1007/s00500-009-0460-y 10.1023/B:HEUR.0000026900.92269.ec 10.1109/TEVC.2009.2039140 10.1016/S0165-0114(03)00114-3 10.1007/s00500-011-0695-2 10.1023/A:1014056429969 10.1109/CEC.2010.5586530 10.1109/TSMCC.2008.919172 10.1109/TEVC.2005.846356 10.1016/j.ins.2010.02.022 10.1007/s00500-008-0323-y 10.1016/S0888-613X(00)88942-2 10.1007/978-3-642-17298-4_32 10.1109/91.413232 10.1142/S0218488501001071 10.1145/1830483.1830672 10.1109/ICDM.2001.989525 10.1016/j.eswa.2011.05.018 10.1109/TFUZZ.2004.841738 10.1016/j.asoc.2011.12.010 10.1109/ICMLA.2011.147 10.1109/TEVC.2005.857074 10.1016/S0165-0114(98)00223-1 10.1007/s12293-008-0005-4 10.1016/j.asoc.2005.02.006 10.1016/j.ins.2010.06.018 10.1007/s00500-010-0681-0 10.1109/4235.735433 10.1109/TFUZZ.2010.2060200 10.1007/978-3-662-04923-5 10.1016/j.ins.2011.05.022 10.1016/j.datak.2006.01.008 10.1016/j.parco.2010.07.004 10.1007/s00500-010-0588-9 10.1109/TFUZZ.2011.2147794 10.1109/TSMCB.2004.842257 10.1145/1569901.1570089 10.1007/s00500-004-0422-3 10.1016/j.patrec.2004.09.043 10.1109/CEC.2010.5585960 10.1016/S0305-0548(03)00116-3 10.1162/evco.2009.17.3.307 10.1016/j.asoc.2011.10.010 10.1016/0165-0114(92)90032-Y 10.1016/j.ijar.2011.01.011 10.1109/TEVC.2002.800880 10.1016/j.ins.2009.12.020 10.1109/GEFS.2010.5454163 10.1109/3477.790443 10.1007/s00500-008-0365-1 10.1016/j.ijar.2006.01.004 10.1007/s00500-008-0392-y 10.1007/3-540-32839-4 10.1007/978-3-642-22084-5 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2013 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2013 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7SP F28 FR3 |
| DOI | 10.1109/TFUZZ.2012.2215331 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals - NZ IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0034 |
| EndPage | 368 |
| ExternalDocumentID | 2941403061 10_1109_TFUZZ_2012_2215331 6287013 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7SP F28 FR3 |
| ID | FETCH-LOGICAL-c328t-48eec6610e38c5b63228b349371acda65a4745c1b4eab13ae9ee3b94bc2a60cd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317001400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Sun Sep 28 11:14:53 EDT 2025 Sun Nov 09 06:35:35 EST 2025 Sat Nov 29 03:12:33 EST 2025 Tue Nov 18 21:28:58 EST 2025 Tue Aug 26 16:47:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-48eec6610e38c5b63228b349371acda65a4745c1b4eab13ae9ee3b94bc2a60cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/6287013 |
| PQID | 1325350607 |
| PQPubID | 85428 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TFUZZ_2012_2215331 ieee_primary_6287013 proquest_journals_1325350607 proquest_miscellaneous_1365126250 crossref_citationtrail_10_1109_TFUZZ_2012_2215331 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-04-01 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2013 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref59 ref15 ref58 ref53 ref52 ref55 ref11 ref54 ref10 luque (ref21) 2011 ref17 ref16 ref19 ref18 ref51 ref50 (ref12) 2006 ref46 ref45 ref48 ref47 ref42 ref44 ref43 ref49 fathi (ref57) 2011; 38 ref8 freitas (ref7) 2002 ref9 ref4 ref3 ref6 ref5 ref40 ishibuchi (ref41) 2004 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref39 ref38 bacardit (ref31) 2004 goldberg (ref1) 1989 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 ishibuchi (ref14) 2007 ref60 |
| References_xml | – ident: ref6 doi: 10.1016/0004-3702(89)90050-7 – ident: ref16 doi: 10.1007/s00500-009-0460-y – ident: ref19 doi: 10.1023/B:HEUR.0000026900.92269.ec – ident: ref11 doi: 10.1109/TEVC.2009.2039140 – ident: ref36 doi: 10.1016/S0165-0114(03)00114-3 – ident: ref26 doi: 10.1007/s00500-011-0695-2 – ident: ref27 doi: 10.1023/A:1014056429969 – ident: ref23 doi: 10.1109/CEC.2010.5586530 – ident: ref15 doi: 10.1109/TSMCC.2008.919172 – ident: ref4 doi: 10.1109/TEVC.2005.846356 – ident: ref60 doi: 10.1016/j.ins.2010.02.022 – ident: ref8 doi: 10.1007/s00500-008-0323-y – ident: ref42 doi: 10.1016/S0888-613X(00)88942-2 – ident: ref38 doi: 10.1007/978-3-642-17298-4_32 – year: 1989 ident: ref1 publication-title: Genetic Algorithms in Search Optimization and Machine Learning – ident: ref35 doi: 10.1109/91.413232 – ident: ref46 doi: 10.1142/S0218488501001071 – ident: ref32 doi: 10.1145/1830483.1830672 – ident: ref47 doi: 10.1109/ICDM.2001.989525 – year: 2004 ident: ref41 publication-title: Classification and Modeling With Linguistic Information Granules Advanced Approaches to Linguistic Data Mining – volume: 38 start-page: 14650 year: 2011 ident: ref57 article-title: A fuzzy classification system based on ant colony optimization for diabetes disease diagnosis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.05.018 – ident: ref45 doi: 10.1109/TFUZZ.2004.841738 – ident: ref59 doi: 10.1016/j.asoc.2011.12.010 – ident: ref39 doi: 10.1109/ICMLA.2011.147 – ident: ref5 doi: 10.1109/TEVC.2005.857074 – start-page: 1021 year: 2004 ident: ref31 article-title: Speeding-up Pittsburgh learning classifier systems: Modeling time and accuracy publication-title: Proc 8th Int Conf Parallel Probl Solving Nat – ident: ref43 doi: 10.1016/S0165-0114(98)00223-1 – ident: ref52 doi: 10.1007/s12293-008-0005-4 – ident: ref28 doi: 10.1016/j.asoc.2005.02.006 – ident: ref49 doi: 10.1016/j.ins.2010.06.018 – ident: ref54 doi: 10.1007/s00500-010-0681-0 – ident: ref2 doi: 10.1109/4235.735433 – ident: ref17 doi: 10.1109/TFUZZ.2010.2060200 – year: 2006 ident: ref12 publication-title: Multi-Objective Machine Learning – start-page: 913 year: 2007 ident: ref14 article-title: Multiobjective genetic fuzzy systems: Review and future research directions publication-title: Proc IEEE Int Conf Fuzzy Syst – year: 2002 ident: ref7 publication-title: Data Mining and Knowledge Discovery with Evolutionary Algorithms doi: 10.1007/978-3-662-04923-5 – ident: ref55 doi: 10.1016/j.ins.2011.05.022 – ident: ref29 doi: 10.1016/j.datak.2006.01.008 – ident: ref25 doi: 10.1016/j.parco.2010.07.004 – ident: ref56 doi: 10.1007/s00500-010-0588-9 – ident: ref51 doi: 10.1109/TFUZZ.2011.2147794 – ident: ref37 doi: 10.1109/TSMCB.2004.842257 – ident: ref22 doi: 10.1145/1569901.1570089 – ident: ref53 doi: 10.1007/s00500-004-0422-3 – ident: ref30 doi: 10.1016/j.patrec.2004.09.043 – ident: ref24 doi: 10.1109/CEC.2010.5585960 – ident: ref3 doi: 10.1016/S0305-0548(03)00116-3 – ident: ref10 doi: 10.1162/evco.2009.17.3.307 – ident: ref58 doi: 10.1016/j.asoc.2011.10.010 – ident: ref40 doi: 10.1016/0165-0114(92)90032-Y – ident: ref50 doi: 10.1016/j.ijar.2011.01.011 – ident: ref18 doi: 10.1109/TEVC.2002.800880 – ident: ref48 doi: 10.1016/j.ins.2009.12.020 – ident: ref34 doi: 10.1109/GEFS.2010.5454163 – ident: ref44 doi: 10.1109/3477.790443 – ident: ref33 doi: 10.1007/s00500-008-0365-1 – ident: ref13 doi: 10.1016/j.ijar.2006.01.004 – ident: ref9 doi: 10.1007/s00500-008-0392-y – ident: ref20 doi: 10.1007/3-540-32839-4 – year: 2011 ident: ref21 publication-title: Parallel Genetic Algorithms Theory and Real World Applications doi: 10.1007/978-3-642-22084-5 |
| SSID | ssj0014518 |
| Score | 2.3112397 |
| Snippet | We propose a parallel distributed model of a hybrid fuzzy genetics-based machine learning (GBML) algorithm to drastically decrease its computation time. Our... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 355 |
| SubjectTerms | Algorithms Classification algorithms Computation Computational modeling Feature extraction Fuzzy Fuzzy logic Fuzzy rule-based classifiers Fuzzy set theory Genetics genetics-based machine learning Islands Mathematical models parallel distributed algorithms Sociology Statistics Studies Training Training data training data rotation training data stratification |
| Title | Parallel Distributed Hybrid Fuzzy GBML Models With Rule Set Migration and Training Data Rotation |
| URI | https://ieeexplore.ieee.org/document/6287013 https://www.proquest.com/docview/1325350607 https://www.proquest.com/docview/1365126250 |
| Volume | 21 |
| WOSCitedRecordID | wos000317001400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB6s-GAftJ4tvdbKCr7VaJLdbJJHf50-qIg9qfiSTjaTKhy5ciYF_evd2eRCi6XgWyC7IfDNZGYzM98HsF3auCBRoidZw93G29LDQEUeoi6QylBp3w0Kn8UXF8nNTXq5ADv9LAwRueYz2uVLV8svpqbhX2V7mqtyLFH7Jo51O6vVVwxUFLRjb1p6Ovb1fEDGT_fGo-vbW-7iCnfDkPOb4K8g5FRVXnyKXXwZrb7uzd7BSpdHiv0W-DVYoGoAq3ONBtG57ADe_kE4OIBlzi1bauZ1-HGJM1ZSmYgjZs9l4SsqxOkjz3CJUfP09ChODs7PBMulTR7E9_v6Tlw1ExLfqBbn9z9b2xFYFWLcCU2II6xRXE3b-v57uB4djw9PvU5wwTMyTGpPJUTGBmyfZGKiXFtnT3KpmDIPTYE6QhWryAS5IswDiZQSyTxVuQlR-6aQH2Cxmlb0EYQupfaLwtgEIVdlEuUBYZKQNYAUKZLpEII5Apnp2MhZFGOSuVOJn2YOtYxRyzrUhvC13_Or5eL47-p1xqlf2UE0hI050Fnnrg-ZPZJHkqkW4yFs9beto3H1BCuaNrxG2-TIHhf9T_9-8mdYDp1WBrf1bMBiPWvoCyyZ3xbX2aaz1mdODebb |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5KFawPVq-Kp1VX8E3TbrI_LnlU63ni3VHqFUtf4mQz0cKRk2sitH-9O0kuKIrgWyC7IfDNZGYzM98H8KLwcUGhwkCxhruPt0WAoTYBos2Rikhb2QwKT0fzeXx2lhxvwat-FoaImuYzOuDLppafr1zNv8oOLVflWKL2htE6ku20Vl8z0CZsB9-sCuxI2s2IjEwOF-PT83Pu44oOoogznPC3MNToqvzxMW4izHj3_97tLtzpMknxuoX-HmxROYDdjUqD6Jx2ALd_oRwcwA5nly058x58OcY1a6ksxRHz57L0FeVicsVTXGJcX19fifdvZlPBgmnLS_H5ovomTuoliU9UidnF19Z6BJa5WHRSE-IIKxQnq7bCfx9Ox-8WbydBJ7kQOBXFVaBjIudDtiQVO5NZ7-5xpjST5qHL0RrUI21cmGnCLFRICZHKEp25CK10uXoA2-WqpIcgbKGszHPnU4RMF7HJQsI4Jm8CCZJRyRDCDQKp6_jIWRZjmTbnEpmkDWopo5Z2qA3hZb_ne8vG8c_Ve4xTv7KDaAj7G6DTzmEvU38oN4rJFkdDeN7f9q7G9RMsaVXzGuvTI39glI_-_uRncGuymE3T6Yf5x8ewEzXKGdzksw_b1bqmJ3DT_fAYr582lvsTdFXqIg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Distributed+Hybrid+Fuzzy+GBML+Models+With+Rule+Set+Migration+and+Training+Data+Rotation&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Ishibuchi%2C+Hisao&rft.au=Mihara%2C+Shingo&rft.au=Nojima%2C+Yusuke&rft.date=2013-04-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=21&rft.issue=2&rft.spage=355&rft.epage=368&rft_id=info:doi/10.1109%2FTFUZZ.2012.2215331&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |