Unsupervised Pre-Training for Detection Transformers

DEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture. However, trained with scratch transformers, DETR needs large-scale training data and an extreme long training schedule even on COCO dataset. In...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 45; číslo 11; s. 1 - 11
Hlavní autori: Dai, Zhigang, Cai, Bolun, Lin, Yugeng, Chen, Junying
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract DEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture. However, trained with scratch transformers, DETR needs large-scale training data and an extreme long training schedule even on COCO dataset. Inspired by the great success of pre-training transformers in natural language processing, we propose a novel pretext task named random query patch detection in Unsupervised Pre-training DETR (UP-DETR). Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the input image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade off classification and localization preferences in the pretext task, we find that freezing the CNN backbone is the prerequisite for the success of pre-training transformers. (2) To perform multi-query localization, we develop UP-DETR with multi-query patch detection with attention mask. Besides, UP-DETR also provides a unified perspective for fine-tuning object detection and one-shot detection tasks. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher average precision on object detection, one-shot detection and panoptic segmentation. Code and pre-training models: https://github.com/dddzg/up-detr .
AbstractList DEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture. However, trained with scratch transformers, DETR needs large-scale training data and an extreme long training schedule even on COCO dataset. Inspired by the great success of pre-training transformers in natural language processing, we propose a novel pretext task named random query patch detection in Unsupervised Pre-training DETR (UP-DETR). Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the input image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade off classification and localization preferences in the pretext task, we find that freezing the CNN backbone is the prerequisite for the success of pre-training transformers. (2) To perform multi-query localization, we develop UP-DETR with multi-query patch detection with attention mask. Besides, UP-DETR also provides a unified perspective for fine-tuning object detection and one-shot detection tasks. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher average precision on object detection, one-shot detection and panoptic segmentation. Code and pre-training models: https://github.com/dddzg/up-detr .
DEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture. However, trained with scratch transformers, DETR needs large-scale training data and an extreme long training schedule even on COCO dataset. Inspired by the great success of pre-training transformers in natural language processing, we propose a novel pretext task named random query patch detection in Unsupervised Pre-training DETR (UP-DETR). Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the input image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade off classification and localization preferences in the pretext task, we find that freezing the CNN backbone is the prerequisite for the success of pre-training transformers. (2) To perform multi-query localization, we develop UP-DETR with multi-query patch detection with attention mask. Besides, UP-DETR also provides a unified perspective for fine-tuning object detection and one-shot detection tasks. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher average precision on object detection, one-shot detection and panoptic segmentation. Code and pre-training models: https://github.com/dddzg/up-detr.DEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture. However, trained with scratch transformers, DETR needs large-scale training data and an extreme long training schedule even on COCO dataset. Inspired by the great success of pre-training transformers in natural language processing, we propose a novel pretext task named random query patch detection in Unsupervised Pre-training DETR (UP-DETR). Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the input image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade off classification and localization preferences in the pretext task, we find that freezing the CNN backbone is the prerequisite for the success of pre-training transformers. (2) To perform multi-query localization, we develop UP-DETR with multi-query patch detection with attention mask. Besides, UP-DETR also provides a unified perspective for fine-tuning object detection and one-shot detection tasks. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher average precision on object detection, one-shot detection and panoptic segmentation. Code and pre-training models: https://github.com/dddzg/up-detr.
Author Chen, Junying
Cai, Bolun
Dai, Zhigang
Lin, Yugeng
Author_xml – sequence: 1
  givenname: Zhigang
  surname: Dai
  fullname: Dai, Zhigang
  organization: School of Software Engineering, South China University of Technology, China
– sequence: 2
  givenname: Bolun
  surname: Cai
  fullname: Cai, Bolun
  organization: Tencent Wechat AI, Guangzhou, China
– sequence: 3
  givenname: Yugeng
  surname: Lin
  fullname: Lin, Yugeng
  organization: Tencent Wechat AI, Guangzhou, China
– sequence: 4
  givenname: Junying
  orcidid: 0000-0002-5614-9731
  surname: Chen
  fullname: Chen, Junying
  organization: School of Software Engineering, South China University of Technology, China
BookMark eNp9kE9PAjEQxRuDiYB-Ab2QePGy2E673e6R4D8SjBzg3HTL1CyBLra7Jn57ixAPHjzN5OX9JvPegPR845GQa0bHjNHyfrmYvM7GQAHGHJjMmTgj_bTQrIQSeqRPmYRMKVAXZBDjhlImcsr7RKx87PYYPuuI69EiYLYMpva1fx-5JowesEXb1o0fJdnHJO0wxEty7sw24tVpDsnq6XE5fcnmb8-z6WSeWQ6qzQTPkTpWOmWNM7biRW5kIQU3VtmCSVvkFeMV5dSWQjmBrpJJwZLKdeFYxYfk7nh3H5qPDmOrd3W0uN0aj00XNRSQzuUC8mS9_WPdNF3w6TsNqgAhGAiZXOrosqGJMaDTtm7NIV-bUm81o_pQp_6pUx_q1Kc6Ewp_0H2odyZ8_Q_dHKEaEX-BsgQJlPFvHEiByg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_7717_peerj_cs_2107
crossref_primary_10_1016_j_media_2025_103466
crossref_primary_10_1007_s11263_024_02336_9
crossref_primary_10_1007_s10489_023_04600_w
crossref_primary_10_1109_TIM_2024_3369157
crossref_primary_10_1016_j_cosrev_2024_100648
crossref_primary_10_3389_fnbot_2024_1484088
crossref_primary_10_1109_TPAMI_2024_3409826
crossref_primary_10_1038_s41598_024_80675_w
crossref_primary_10_1109_JOE_2025_3529121
Cites_doi 10.1109/CVPR42600.2020.01158
10.1109/CVPR52688.2022.01420
10.1109/CVPR.2017.106
10.1109/CVPR.2019.00637
10.1109/CVPR42600.2020.00975
10.1109/CVPR42600.2020.00978
10.1109/ICCV48922.2021.00986
10.1109/CVPR.2016.90
10.1109/CVPR.2019.00754
10.1109/ICCV.2017.324
10.1109/CVPR.2016.255
10.1109/CVPR42600.2020.01020
10.1109/CVPR52688.2022.01553
10.1109/CVPR.2017.472
10.1109/CVPR.2009.5206848
10.1109/CVPR.2006.100
10.1109/ICCV48922.2021.00060
10.1109/CVPR.2018.00644
10.1109/ICCV.2019.00051
10.1007/978-3-030-58452-8_13
10.1109/CVPR.2018.00393
10.1109/CVPR.2019.00902
10.1007/s11263-009-0275-4
10.1109/ICCV.2019.00972
10.1109/ICCV.2019.00502
10.1109/CVPR.2018.00935
10.1109/CVPR.2019.00963
10.1109/ICCV.2017.322
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2022.3216514
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 11
ExternalDocumentID 10_1109_TPAMI_2022_3216514
9926201
Genre orig-research
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AASAJ
AAWTH
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
~02
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ABAZT
ID FETCH-LOGICAL-c328t-435e0f19f8cafacb375a67643ac8c716c75b13b030c948f4efb65b1e906d7f1b3
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001258161200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 22:17:03 EDT 2025
Sun Nov 30 04:51:58 EST 2025
Sat Nov 29 02:58:21 EST 2025
Tue Nov 18 21:58:06 EST 2025
Tue Nov 25 14:44:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-435e0f19f8cafacb375a67643ac8c716c75b13b030c948f4efb65b1e906d7f1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5614-9731
PQID 2872441246
PQPubID 85458
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2022_3216514
crossref_primary_10_1109_TPAMI_2022_3216514
ieee_primary_9926201
proquest_miscellaneous_2727645425
proquest_journals_2872441246
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref53
ref52
ref10
bertinetto (ref47) 2016
ref19
loshchilov (ref40) 2018
liu (ref21) 2016
li (ref51) 2020
caron (ref17) 2018
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ren (ref4) 2015
asano (ref18) 2019
chen (ref11) 2020
ref3
ref6
yang (ref29) 2019
zhang (ref49) 2019
carion (ref1) 2020
grill (ref15) 2020
lin (ref5) 2014
ref34
ref37
ref36
chen (ref14) 2020
ref31
ref30
hsieh (ref50) 2019
ref32
radford (ref8) 2019; 1
radford (ref7) 0
ref39
han (ref35) 2021
vaswani (ref2) 2017
zhou (ref23) 2019
ref26
cao (ref16) 0
ref25
ref20
devlin (ref9) 2018
ref22
dosovitskiy (ref33) 2021
caron (ref12) 2020
law (ref24) 2018
ref28
ref27
dong (ref38) 2019
References_xml – start-page: 21271
  year: 2020
  ident: ref15
  article-title: Bootstrap your own latent-a new approach to self-supervised learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref28
  doi: 10.1109/CVPR42600.2020.01158
– start-page: 9912
  year: 2020
  ident: ref12
  article-title: Unsupervised learning of visual features by contrasting cluster assignments
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref41
  doi: 10.1109/CVPR52688.2022.01420
– start-page: 5998
  year: 2017
  ident: ref2
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref43
  doi: 10.1109/CVPR.2017.106
– year: 2019
  ident: ref49
  article-title: Comparison network for one-shot conditional object detection
– ident: ref30
  doi: 10.1109/CVPR.2019.00637
– ident: ref10
  doi: 10.1109/CVPR42600.2020.00975
– year: 2019
  ident: ref50
  article-title: One-shot object detection with co-attention and co-excitation
– year: 2020
  ident: ref11
  article-title: Improved baselines with momentum contrastive learning
– start-page: 850
  year: 2016
  ident: ref47
  article-title: Fully-convolutional siamese networks for object tracking
  publication-title: Proc Eur Conf Comput Vis
– ident: ref3
  doi: 10.1109/CVPR42600.2020.00978
– ident: ref36
  doi: 10.1109/ICCV48922.2021.00986
– start-page: 132
  year: 2018
  ident: ref17
  article-title: Deep clustering for unsupervised learning of visual features
  publication-title: Proc Eur Conf Comput Vis
– ident: ref13
  doi: 10.1109/CVPR.2016.90
– ident: ref45
  doi: 10.1109/CVPR.2019.00754
– ident: ref20
  doi: 10.1109/ICCV.2017.324
– start-page: 1
  year: 2018
  ident: ref40
  article-title: Decoupled weight decay regularization
  publication-title: Proc Int Conf Learn Representations
– ident: ref25
  doi: 10.1109/CVPR.2016.255
– ident: ref27
  doi: 10.1109/CVPR42600.2020.01020
– volume: 1
  year: 2019
  ident: ref8
  article-title: Language models are unsupervised multitask learners
  publication-title: OpenAIRE blog
– ident: ref37
  doi: 10.1109/CVPR52688.2022.01553
– year: 0
  ident: ref7
  article-title: Improving language understanding by generative pre-training
– ident: ref42
  doi: 10.1109/CVPR.2017.472
– year: 2020
  ident: ref14
  article-title: A simple framework for contrastive learning of visual representations
– start-page: 13 063
  year: 2019
  ident: ref38
  article-title: Unified language model pre-training for natural language understanding and generation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref39
  doi: 10.1109/CVPR.2009.5206848
– ident: ref32
  doi: 10.1109/CVPR.2006.100
– start-page: 91
  year: 2015
  ident: ref4
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 740
  year: 2014
  ident: ref5
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vis
– ident: ref34
  doi: 10.1109/ICCV48922.2021.00060
– ident: ref19
  doi: 10.1109/CVPR.2018.00644
– ident: ref26
  doi: 10.1109/ICCV.2019.00051
– year: 2020
  ident: ref1
  article-title: End-to-end object detection with transformers
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref31
  doi: 10.1109/CVPR.2018.00393
– year: 2019
  ident: ref23
  article-title: Objects as points
– start-page: 5753
  year: 2019
  ident: ref29
  article-title: XLNet: Generalized autoregressive pretraining for language understanding
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref53
  doi: 10.1109/CVPR.2019.00902
– year: 2018
  ident: ref9
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
– ident: ref6
  doi: 10.1007/s11263-009-0275-4
– ident: ref22
  doi: 10.1109/ICCV.2019.00972
– start-page: 1
  year: 2021
  ident: ref33
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: Proc Int Conf Learn Representations
– ident: ref46
  doi: 10.1109/ICCV.2019.00502
– start-page: 15908
  year: 2021
  ident: ref35
  article-title: Transformer in transformer
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref48
  doi: 10.1109/CVPR.2018.00935
– start-page: 734
  year: 2018
  ident: ref24
  article-title: CornerNet: Detecting objects as paired keypoints
  publication-title: Proc Eur Conf Comput Vis
– start-page: 1
  year: 2019
  ident: ref18
  article-title: Self-labelling via simultaneous clustering and representation learning
  publication-title: Proc Int Conf Learn Representations
– start-page: 21
  year: 2016
  ident: ref21
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis
– start-page: 15614
  year: 0
  ident: ref16
  article-title: Parametric instance classification for unsupervised visual feature learning
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2020
  ident: ref51
  article-title: One-shot object detection without fine-tuning
– ident: ref52
  doi: 10.1109/CVPR.2019.00963
– ident: ref44
  doi: 10.1109/ICCV.2017.322
SSID ssj0014503
Score 2.5500627
Snippet DEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Coders
Decoding
Encoders-Decoders
Feature extraction
Freezing
Image segmentation
Localization
Location awareness
Natural language processing
Object detection
Object recognition
one-shot detection
Queries
self-supervised learning
Task analysis
Training
transformer
Transformers
unsupervised pre-training
Title Unsupervised Pre-Training for Detection Transformers
URI https://ieeexplore.ieee.org/document/9926201
https://www.proquest.com/docview/2872441246
https://www.proquest.com/docview/2727645425
Volume 45
WOSCitedRecordID wos001258161200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-qOBNq02TNs1RfKAHZQ8r7K2kyQQE6S778Pc7ybZFUQRvpZ2WMslkvslk5gM4t4ZQuKhkzLQysXDIYo1SxEapyjnygFbbQDYhX16K4VD1l-Cyq4VBxHD4DK_8Zcjl25GZ-62ya-Wb2_lirWUp80WtVpcxEFlgQSYEQxZOYURbIJOo60H_5vmJQsE0veIpyzMmvjmhwKryYykO_uVh839_tgUbDY6MbhYDvw1LWO_AZsvREDUmuwPrXxoO7oJ4rafzsV8epmij_gTjQUMRERF4je5wFk5m1dGgxbOEDvfg9eF-cPsYN7wJseFpMYsJAWHimHKF0U6bistM55KghzaFofjIyKxivCLzNkoUTqCrcrqDKsmtdKzi-7BSj2o8gIg5yRXjmRHKCmdzipe5tRnXjiMqnvSAtYosTdNU3HNbvJchuEhUGZRfeuWXjfJ7cNG9M1601PhTeteru5NsNN2D43a8ysbqpiVFf4RWCLHkPTjrHpO9-CSIrnE0JxkCbL6LWZod_v7lI1jzlPKLesNjWJlN5ngCq-Zj9jadnNLUGxanYep9AgHr1LQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-UwEB5EhV0f1PWCx2sF39Zq06SXPIoXFPVwHir4VtJkAgtLj5yLv99JTlpcdhH2rbTTUiad5Ps6mfkAzowmFC6aImZK6lhYZLHCQsRaysZaWgGNMl5sohgOy9dXOVqC874WBhH95jO8cIc-l2_Geu5-lV1K19zOFWutOOWsUK3V5wxE5nWQCcNQjBOR6EpkEnlZja6eH4gMpukFT1meMfHHMuR1Vf6ajP0Kc7fxf--2CesBSUZXi6H_AUvYbsFGp9IQhaDdgrVPLQe3Qby00_mbmyCmaKLRBOMqiEREBF-jG5z5vVltVHWIlvDhDrzc3VbX93FQTog1T8tZTBgIE8ukLbWySje8yFReEPhQutTEkHSRNYw3FOBaitIKtE1OZ1AmuSksa_guLLfjFvcgYrbgkvFMC2mENTkxZm5MxpXliJInA2CdI2sd2oo7dYvftacXiay982vn_Do4fwA_-3veFk01vrTedu7uLYOnB3DYjVcd4m5aE_8jvEKYJR_AaX-ZIsalQVSL4znZEGRzfczSbP_fTz6Bb_fV81P99DB8PIDvTmB-UX14CMuzyRyPYFW_z35NJ8f-A_wAPODXFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Pre-Training+for+Detection+Transformers&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Dai%2C+Zhigang&rft.au=Cai%2C+Bolun&rft.au=Lin%2C+Yugeng&rft.au=Chen%2C+Junying&rft.date=2023-11-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTPAMI.2022.3216514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2022_3216514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon