Data association based on optimization in graphical models with application to sensor networks
We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor networks. Graphical models provide a powerful framework for representing the statistical dependencies among a collection of random variables,...
Uloženo v:
| Vydáno v: | Mathematical and computer modelling Ročník 43; číslo 9; s. 1114 - 1135 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2006
|
| Témata: | |
| ISSN: | 0895-7177, 1872-9479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor networks. Graphical models provide a powerful framework for representing the statistical dependencies among a collection of random variables, and are widely used in many applications (e.g., computer vision, error-correcting codes). We consider two different types of data association problems, corresponding to whether or not it is known a priori which targets are within the surveillance range of each sensor. We first demonstrate how to transform these two problems to inference problems on graphical models. With this transformation, both problems can be solved efficiently by local message-passing algorithms for graphical models, which solve optimization problems in a distributed manner by exchange of information among neighboring nodes on the graph. Moreover, a suitably reweighted version of the max–product algorithm yields provably optimal data associations. These approaches scale well with the number of sensors in the network, and moreover are well suited to being realized in a distributed fashion. So as to address trade-offs between performance and communication costs, we propose a communication-sensitive form of message-passing that is capable of achieving near-optimal performance using far less communication. We demonstrate the effectiveness of our approach with experiments on simulated data. |
|---|---|
| AbstractList | We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor networks. Graphical models provide a powerful framework for representing the statistical dependencies among a collection of random variables, and are widely used in many applications (e.g., computer vision, error-correcting codes). We consider two different types of data association problems, corresponding to whether or not it is known a priori which targets are within the surveillance range of each sensor. We first demonstrate how to transform these two problems to inference problems on graphical models. With this transformation, both problems can be solved efficiently by local message-passing algorithms for graphical models, which solve optimization problems in a distributed manner by exchange of information among neighboring nodes on the graph. Moreover, a suitably reweighted version of the max-product algorithm yields provably optimal data associations. These approaches scale well with the number of sensors in the network, and moreover are well suited to being realized in a distributed fashion. So as to address trade-offs between performance and communication costs, we propose a communication-sensitive form of message-passing that is capable of achieving near-optimal performance using far less communication. We demonstrate the effectiveness of our approach with experiments on simulated data. Subject-index terms: Data association; Multiple target tracking; Sensor networks; Graphical models; Belief propagation We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor networks. Graphical models provide a powerful framework for representing the statistical dependencies among a collection of random variables, and are widely used in many applications (e.g., computer vision, error-correcting codes). We consider two different types of data association problems, corresponding to whether or not it is known a priori which targets are within the surveillance range of each sensor. We first demonstrate how to transform these two problems to inference problems on graphical models. With this transformation, both problems can be solved efficiently by local message-passing algorithms for graphical models, which solve optimization problems in a distributed manner by exchange of information among neighboring nodes on the graph. Moreover, a suitably reweighted version of the max–product algorithm yields provably optimal data associations. These approaches scale well with the number of sensors in the network, and moreover are well suited to being realized in a distributed fashion. So as to address trade-offs between performance and communication costs, we propose a communication-sensitive form of message-passing that is capable of achieving near-optimal performance using far less communication. We demonstrate the effectiveness of our approach with experiments on simulated data. |
| Author | Çetin, Müjdat Wainwright, Martin J. Willsky, Alan S. Chen, Lei |
| Author_xml | – sequence: 1 givenname: Lei surname: Chen fullname: Chen, Lei email: lchen@mit.edu organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, United States – sequence: 2 givenname: Martin J. surname: Wainwright fullname: Wainwright, Martin J. email: wainwrig@eecs.berkeley.edu organization: Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, United States – sequence: 3 givenname: Müjdat surname: Çetin fullname: Çetin, Müjdat email: mcetin@sabanciuniv.edu organization: Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey – sequence: 4 givenname: Alan S. surname: Willsky fullname: Willsky, Alan S. email: willsky@mit.edu organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, United States |
| BookMark | eNp9kD1PwzAQhi1UJNrCD2DzxJZgO01tiwmVTwmJBVYsx7lQlyQOtksFvx63ZWLodKdX73PSPRM06l0PCJ1TklNC55ervDNdzggpc8pyQtgRGlPBWSZnXI7QmAhZZpxyfoImIaxIKkoixujtRkeNdQjOWB2t63GlA9Q4LW6ItrM_-9T2-N3rYWmNbnHnamgD3ti4xHoY2hTuStHhAH1wHvcQN85_hFN03Og2wNnfnKLXu9uXxUP29Hz_uLh-ykzBRMxmDKAx0hBGGs5koYuKNwBcM1KVnDcMxLwqqSyEmJua1yluBNGUl1UhjSDFFF3s7w7efa4hRNXZYKBtdQ9uHRSTjJVlUaQi3ReNdyF4aNTgbaf9t6JEbU2qlUom1dakokwlk4nh_xhj4-7j6LVtD5JXezLpgi8LXgVjoTdQWw8mqtrZA_QvkI2Rrg |
| CitedBy_id | crossref_primary_10_1145_2530000 crossref_primary_10_1016_j_parco_2013_08_012 crossref_primary_10_1109_TSP_2014_2311962 crossref_primary_10_1049_iet_rsn_2018_5273 crossref_primary_10_1155_2013_613246 crossref_primary_10_1109_TAES_2023_3323629 crossref_primary_10_1109_TAES_2019_2942706 crossref_primary_10_1109_TSP_2015_2493981 crossref_primary_10_1109_TSP_2017_2688966 crossref_primary_10_1109_TWC_2020_3012910 crossref_primary_10_1109_TITS_2018_2794405 crossref_primary_10_1109_TAES_2014_120568 crossref_primary_10_1155_2017_8061561 crossref_primary_10_1145_3394659 crossref_primary_10_1109_JSEN_2021_3089206 crossref_primary_10_3390_jimaging10070171 crossref_primary_10_1109_TAES_2024_3482287 crossref_primary_10_1002_sta4_623 crossref_primary_10_1155_2013_704504 crossref_primary_10_1016_j_sigpro_2022_108633 crossref_primary_10_1016_j_sigpro_2024_109520 crossref_primary_10_1109_JPROC_2018_2789427 crossref_primary_10_1109_JSAC_2005_843548 crossref_primary_10_1109_TSP_2018_2802460 crossref_primary_10_1088_1742_6596_2352_1_012002 crossref_primary_10_1109_MSP_2006_1657816 crossref_primary_10_1109_TCYB_2014_2365541 crossref_primary_10_1109_TSIPN_2018_2825599 crossref_primary_10_1109_JOE_2011_2180057 |
| Cites_doi | 10.1109/JPROC.2003.814918 10.1109/18.825794 10.1109/TAC.1979.1102177 10.1109/JPROC.1997.554211 10.1162/089976600300015880 10.1023/B:STCO.0000021412.33763.d5 10.1109/18.910572 10.1109/5.18626 10.1109/49.661103 10.1109/TIT.2003.810642 10.1109/9.280746 10.1109/18.910585 |
| ContentType | Journal Article |
| Copyright | 2005 Elsevier Ltd |
| Copyright_xml | – notice: 2005 Elsevier Ltd |
| DBID | 6I. AAFTH AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.mcm.2005.12.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1872-9479 |
| EndPage | 1135 |
| ExternalDocumentID | 10_1016_j_mcm_2005_12_002 S0895717705005406 |
| GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 29M 4.4 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABFNM ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q HAMUX HVGLF HZ~ IHE IXB J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SSB SSD SST SSW SSZ T5K T9H TN5 VOH WUQ XPP XSW YNT YQT ZMT 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-42eefc9c020f7293a3b7fee7a20b577f2e86b5193886cd7d20bf80a175b39c803 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000237816000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0895-7177 |
| IngestDate | Sun Sep 28 04:32:39 EDT 2025 Sat Nov 29 06:30:22 EST 2025 Tue Nov 18 21:33:09 EST 2025 Fri Feb 23 02:25:06 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Multiple target tracking Sensor networks Graphical models Data association Belief propagation |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-42eefc9c020f7293a3b7fee7a20b577f2e86b5193886cd7d20bf80a175b39c803 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.mcm.2005.12.002 |
| PQID | 29225533 |
| PQPubID | 23500 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_29225533 crossref_primary_10_1016_j_mcm_2005_12_002 crossref_citationtrail_10_1016_j_mcm_2005_12_002 elsevier_sciencedirect_doi_10_1016_j_mcm_2005_12_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-05-01 |
| PublicationDateYYYYMMDD | 2006-05-01 |
| PublicationDate_xml | – month: 05 year: 2006 text: 2006-05-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Mathematical and computer modelling |
| PublicationYear | 2006 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chong, Mori, Chang (b6) 1990; vol. 1 Rabiner, Juang (b11) 1989; 77 Brémaud (b21) 1991 Wainwright, Jaakkola, Willsky (b17) 2004; 14 (b8) 1999 Pearl (b13) 1988 Reid (b5) 1979; AC-24 Kurien (b20) 1990; vol. 1 Liggins, Chong, Kadar, Alford, Vannicola, Thomopoulos (b7) 1997; 85 Chou, Willsky, Benveniste (b14) 1994; 39 Kschichang, Frey, Loeliger (b24) 2001; 47 Ghahramani (b27) 1998 Aji, McEliece (b23) 2000; 46 McEliece, Mckay, Cheng (b12) 1998; 16 Freeman, Weiss (b16) 2001; 47 Cowell, Dawid, Lauritzen, Spiegelhalter (b9) 1999 M.J. Wainwright, T.S. Jaakkola, A.S. Willsky, MAP estimation via agreement on (hyper)trees: message-passing and linear programming approaches, in: Proc. Allerton Conference on Communication, Control and Computing, Monticello, IL, October 2002 Weiss (b15) 2000; 12 Yedidia, Freeman, Weiss (b22) 2001; vol. 13 Blackman (b4) 1986 Bar-Shalom, Fortmann (b3) 1988 Chong, Kumar (b1) 2003; 91 Gallager (b25) 1963 Wainwright, Jaakkola, Willsky (b18) 2003; 49 Cover, Thomas (b26) 1991 Freeman, Pasztor, Carmichael (b10) 2000; 40 (b2) 2003 Chong (10.1016/j.mcm.2005.12.002_b1) 2003; 91 (10.1016/j.mcm.2005.12.002_b8) 1999 Kschichang (10.1016/j.mcm.2005.12.002_b24) 2001; 47 Cowell (10.1016/j.mcm.2005.12.002_b9) 1999 Kurien (10.1016/j.mcm.2005.12.002_b20) 1990; vol. 1 Aji (10.1016/j.mcm.2005.12.002_b23) 2000; 46 Bar-Shalom (10.1016/j.mcm.2005.12.002_b3) 1988 Yedidia (10.1016/j.mcm.2005.12.002_b22) 2001; vol. 13 (10.1016/j.mcm.2005.12.002_b2) 2003 Cover (10.1016/j.mcm.2005.12.002_b26) 1991 Reid (10.1016/j.mcm.2005.12.002_b5) 1979; AC-24 Gallager (10.1016/j.mcm.2005.12.002_b25) 1963 Blackman (10.1016/j.mcm.2005.12.002_b4) 1986 Chou (10.1016/j.mcm.2005.12.002_b14) 1994; 39 Wainwright (10.1016/j.mcm.2005.12.002_b18) 2003; 49 Freeman (10.1016/j.mcm.2005.12.002_b10) 2000; 40 Pearl (10.1016/j.mcm.2005.12.002_b13) 1988 Weiss (10.1016/j.mcm.2005.12.002_b15) 2000; 12 Chong (10.1016/j.mcm.2005.12.002_b6) 1990; vol. 1 Rabiner (10.1016/j.mcm.2005.12.002_b11) 1989; 77 Wainwright (10.1016/j.mcm.2005.12.002_b17) 2004; 14 Freeman (10.1016/j.mcm.2005.12.002_b16) 2001; 47 Brémaud (10.1016/j.mcm.2005.12.002_b21) 1991 10.1016/j.mcm.2005.12.002_b19 McEliece (10.1016/j.mcm.2005.12.002_b12) 1998; 16 Ghahramani (10.1016/j.mcm.2005.12.002_b27) 1998 Liggins (10.1016/j.mcm.2005.12.002_b7) 1997; 85 |
| References_xml | – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: b11 article-title: A tutorial on hidden Markov models publication-title: Proc. IEEE – volume: 91 start-page: 1247 year: 2003 end-page: 1256 ident: b1 article-title: Sensor networks: evolution, opportunities, and challenges publication-title: Proc. IEEE – volume: 16 start-page: 140 year: 1998 end-page: 152 ident: b12 article-title: Turbo decoding as an instance of Pearl’s belief propagation algorithm publication-title: IEEE J. Sel. Commun. – year: 1991 ident: b26 article-title: Elements of Information Theory – year: 1988 ident: b3 article-title: Tracking and Data Association – volume: 39 start-page: 464 year: 1994 end-page: 478 ident: b14 article-title: Multiscale recursive estimation, data fusion, and regularization publication-title: IEEE Trans. Automat. Control – year: 1991 ident: b21 article-title: Markov Chains, Gibbs Fields, Monte Carlo Simulations, and Queues – volume: 14 start-page: 143 year: 2004 end-page: 166 ident: b17 article-title: Tree consistency and bounds on the max–product algorithm and its generalizations publication-title: Stat. Comput. – volume: 85 start-page: 95 year: 1997 end-page: 107 ident: b7 article-title: Distributed fusion architectures and algorithms for target tracking publication-title: Proc. IEEE – volume: 46 start-page: 325 year: 2000 end-page: 343 ident: b23 article-title: The generalized distributive law publication-title: IEEE Trans. Inform. Theory – reference: M.J. Wainwright, T.S. Jaakkola, A.S. Willsky, MAP estimation via agreement on (hyper)trees: message-passing and linear programming approaches, in: Proc. Allerton Conference on Communication, Control and Computing, Monticello, IL, October 2002 – year: 2003 ident: b2 publication-title: Information Processing in Sensor Networks – start-page: 168 year: 1998 end-page: 197 ident: b27 article-title: Learning dynamic Bayesian networks publication-title: Adaptive Processing of Sequences and Data Structures – volume: 49 start-page: 1120 year: 2003 end-page: 1146 ident: b18 article-title: Tree-based reparameterization framework for analysis of sum–product and related algorithms publication-title: IEEE Trans. Inform. Theory – volume: 40 start-page: 24 year: 2000 end-page: 57 ident: b10 article-title: Learning low-level vision publication-title: Int. J. Comput. Vis. – year: 1988 ident: b13 article-title: Probabilistic Reasoning in Intelligent Systems – volume: AC-24 start-page: 843 year: 1979 end-page: 854 ident: b5 article-title: An algorithm for tracking multiple targets publication-title: IEEE Trans. Automat. Control – year: 1999 ident: b9 article-title: Probabilistic Networks and Expert Systems – volume: vol. 13 start-page: 689 year: 2001 end-page: 695 ident: b22 article-title: Generalized belief propagation publication-title: Advances in Neural Information Processing Systems – year: 1999 ident: b8 publication-title: Learning in Graphical Models – year: 1963 ident: b25 article-title: Low-Density Parity Check Codes – volume: 12 start-page: 1 year: 2000 end-page: 41 ident: b15 article-title: Correctness of local probability propagation in graphical models with loops publication-title: Neural Comput. – volume: 47 start-page: 736 year: 2001 end-page: 744 ident: b16 article-title: On the optimality of solutions of the max–product belief propagation algorithm in arbitrary graphs publication-title: IEEE Trans. Inform. Theory – volume: vol. 1 start-page: 247 year: 1990 end-page: 295 ident: b6 article-title: Distributed multitarget multisensor tracking publication-title: Multitarget–Multisensor Tracking: Advanced Applications – volume: vol. 1 start-page: 43 year: 1990 end-page: 83 ident: b20 article-title: Issues in the design of practical multitarget tracking algorithms publication-title: Multitarget–Multisensor Tracking: Advanced Applications – year: 1986 ident: b4 article-title: Multiple-Target Tracking with Radar Applications – volume: 47 start-page: 498 year: 2001 end-page: 519 ident: b24 article-title: Factor graphs and the sum–product algorithm publication-title: IEEE Trans. Inform. Theory – volume: vol. 13 start-page: 689 year: 2001 ident: 10.1016/j.mcm.2005.12.002_b22 article-title: Generalized belief propagation – volume: 91 start-page: 1247 issue: August year: 2003 ident: 10.1016/j.mcm.2005.12.002_b1 article-title: Sensor networks: evolution, opportunities, and challenges publication-title: Proc. IEEE doi: 10.1109/JPROC.2003.814918 – volume: 46 start-page: 325 issue: March year: 2000 ident: 10.1016/j.mcm.2005.12.002_b23 article-title: The generalized distributive law publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.825794 – year: 1988 ident: 10.1016/j.mcm.2005.12.002_b3 – volume: AC-24 start-page: 843 year: 1979 ident: 10.1016/j.mcm.2005.12.002_b5 article-title: An algorithm for tracking multiple targets publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1979.1102177 – volume: 40 start-page: 24 issue: October year: 2000 ident: 10.1016/j.mcm.2005.12.002_b10 article-title: Learning low-level vision publication-title: Int. J. Comput. Vis. – volume: 85 start-page: 95 year: 1997 ident: 10.1016/j.mcm.2005.12.002_b7 article-title: Distributed fusion architectures and algorithms for target tracking publication-title: Proc. IEEE doi: 10.1109/JPROC.1997.554211 – year: 1999 ident: 10.1016/j.mcm.2005.12.002_b8 – volume: 12 start-page: 1 year: 2000 ident: 10.1016/j.mcm.2005.12.002_b15 article-title: Correctness of local probability propagation in graphical models with loops publication-title: Neural Comput. doi: 10.1162/089976600300015880 – year: 1963 ident: 10.1016/j.mcm.2005.12.002_b25 – year: 2003 ident: 10.1016/j.mcm.2005.12.002_b2 – volume: 14 start-page: 143 issue: April year: 2004 ident: 10.1016/j.mcm.2005.12.002_b17 article-title: Tree consistency and bounds on the max–product algorithm and its generalizations publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000021412.33763.d5 – year: 1991 ident: 10.1016/j.mcm.2005.12.002_b26 – volume: 47 start-page: 498 issue: February year: 2001 ident: 10.1016/j.mcm.2005.12.002_b24 article-title: Factor graphs and the sum–product algorithm publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.910572 – volume: vol. 1 start-page: 247 year: 1990 ident: 10.1016/j.mcm.2005.12.002_b6 article-title: Distributed multitarget multisensor tracking – volume: 77 start-page: 257 year: 1989 ident: 10.1016/j.mcm.2005.12.002_b11 article-title: A tutorial on hidden Markov models publication-title: Proc. IEEE doi: 10.1109/5.18626 – year: 1999 ident: 10.1016/j.mcm.2005.12.002_b9 – year: 1991 ident: 10.1016/j.mcm.2005.12.002_b21 – year: 1986 ident: 10.1016/j.mcm.2005.12.002_b4 – start-page: 168 year: 1998 ident: 10.1016/j.mcm.2005.12.002_b27 article-title: Learning dynamic Bayesian networks – volume: 16 start-page: 140 issue: February year: 1998 ident: 10.1016/j.mcm.2005.12.002_b12 article-title: Turbo decoding as an instance of Pearl’s belief propagation algorithm publication-title: IEEE J. Sel. Commun. doi: 10.1109/49.661103 – ident: 10.1016/j.mcm.2005.12.002_b19 – volume: 49 start-page: 1120 issue: May year: 2003 ident: 10.1016/j.mcm.2005.12.002_b18 article-title: Tree-based reparameterization framework for analysis of sum–product and related algorithms publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2003.810642 – volume: 39 start-page: 464 issue: March year: 1994 ident: 10.1016/j.mcm.2005.12.002_b14 article-title: Multiscale recursive estimation, data fusion, and regularization publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.280746 – year: 1988 ident: 10.1016/j.mcm.2005.12.002_b13 – volume: 47 start-page: 736 year: 2001 ident: 10.1016/j.mcm.2005.12.002_b16 article-title: On the optimality of solutions of the max–product belief propagation algorithm in arbitrary graphs publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.910585 – volume: vol. 1 start-page: 43 year: 1990 ident: 10.1016/j.mcm.2005.12.002_b20 article-title: Issues in the design of practical multitarget tracking algorithms |
| SSID | ssj0005908 |
| Score | 2.0483937 |
| Snippet | We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1114 |
| Title | Data association based on optimization in graphical models with application to sensor networks |
| URI | https://dx.doi.org/10.1016/j.mcm.2005.12.002 https://www.proquest.com/docview/29225533 |
| Volume | 43 |
| WOSCitedRecordID | wos000237816000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9479 dateEnd: 20131231 omitProxy: false ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELZKlwd4QJza5fQDT1SpEuew_ViWRbBiV0gsUp-IHMeRWrXpqskev2x_H-MriYpYARIvUY7mqOfTzDfj8QxCb0VEqiKtpE4bTMFBoWEA5IgHZagAHSIpUilMswl6esrmc_51NLrxa2EuV7Su2fU1P_-vooZzIGy9dPYvxN09FE7APggdtiB22P6R4D-IVkxEP-oTbahKPSmwAfWwdusudZzDFKs2QjL9cPxCt35KWxPTBvzczXZS23TxZkhmT7qSr67ggHQtIuzzVt4qmuwBq96-qEUfwl_UV11swJYzmBxP_WU9g8-ocjUOTvTh-8NlKbo0HR0pcpHf2UprqeluBCMdRjC6pTV9HpPRfjwNwNe01lhZ7cwoCXhiu8949W2rPDmY8oEuBi2eDOx6FNm6KL_YDBu-WE7Xcm1jbDo8HJLeQHZpi9_0R-lvClNDdbM7aI_QlLMx2pt9Ppof98lF3PRC7P6En083mYU7L_odI9rhBobwnD1ED5yngmcWYY_QSNWP0f1B_Uo46hHQPEE_NPLwAHnYIA_DzhB5eFHjDnnYIg9r5OEB8nC7wRZ52CPvKfr-8ejs8FPg2ncEMiasDRKiVCW5BIekAhcuFnFBK6WoIGGRUloRxbJCOxCMZbKkJZyuWCiAzxYxlyyMn6FxvanVPsJZWZZVnGaUVCop4WIVccVEEcWs4EB5D1DohzCXrra9brGyyn0S4zKHUdc9V9M8IjmM-gF6191ybgu73PbjxMsld8zUMs4cQHTbbW-8DHPQ2noqTtRqc9HkhIMdBU_r-b89-AW6R4Bc27Sql2jcbi_UK3RXXraLZvvagfEn1Bu_Vg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+association+based+on+optimization+in+graphical+models+with+application+to+sensor+networks&rft.jtitle=Mathematical+and+computer+modelling&rft.au=Chen%2C+Lei&rft.au=Wainwright%2C+Martin+J.&rft.au=%C3%87etin%2C+M%C3%BCjdat&rft.au=Willsky%2C+Alan+S.&rft.date=2006-05-01&rft.pub=Elsevier+Ltd&rft.issn=0895-7177&rft.eissn=1872-9479&rft.volume=43&rft.issue=9&rft.spage=1114&rft.epage=1135&rft_id=info:doi/10.1016%2Fj.mcm.2005.12.002&rft.externalDocID=S0895717705005406 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon |