Data association based on optimization in graphical models with application to sensor networks

We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor networks. Graphical models provide a powerful framework for representing the statistical dependencies among a collection of random variables,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical and computer modelling Ročník 43; číslo 9; s. 1114 - 1135
Hlavní autoři: Chen, Lei, Wainwright, Martin J., Çetin, Müjdat, Willsky, Alan S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2006
Témata:
ISSN:0895-7177, 1872-9479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor networks. Graphical models provide a powerful framework for representing the statistical dependencies among a collection of random variables, and are widely used in many applications (e.g., computer vision, error-correcting codes). We consider two different types of data association problems, corresponding to whether or not it is known a priori which targets are within the surveillance range of each sensor. We first demonstrate how to transform these two problems to inference problems on graphical models. With this transformation, both problems can be solved efficiently by local message-passing algorithms for graphical models, which solve optimization problems in a distributed manner by exchange of information among neighboring nodes on the graph. Moreover, a suitably reweighted version of the max–product algorithm yields provably optimal data associations. These approaches scale well with the number of sensors in the network, and moreover are well suited to being realized in a distributed fashion. So as to address trade-offs between performance and communication costs, we propose a communication-sensitive form of message-passing that is capable of achieving near-optimal performance using far less communication. We demonstrate the effectiveness of our approach with experiments on simulated data.
AbstractList We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor networks. Graphical models provide a powerful framework for representing the statistical dependencies among a collection of random variables, and are widely used in many applications (e.g., computer vision, error-correcting codes). We consider two different types of data association problems, corresponding to whether or not it is known a priori which targets are within the surveillance range of each sensor. We first demonstrate how to transform these two problems to inference problems on graphical models. With this transformation, both problems can be solved efficiently by local message-passing algorithms for graphical models, which solve optimization problems in a distributed manner by exchange of information among neighboring nodes on the graph. Moreover, a suitably reweighted version of the max-product algorithm yields provably optimal data associations. These approaches scale well with the number of sensors in the network, and moreover are well suited to being realized in a distributed fashion. So as to address trade-offs between performance and communication costs, we propose a communication-sensitive form of message-passing that is capable of achieving near-optimal performance using far less communication. We demonstrate the effectiveness of our approach with experiments on simulated data. Subject-index terms: Data association; Multiple target tracking; Sensor networks; Graphical models; Belief propagation
We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor networks. Graphical models provide a powerful framework for representing the statistical dependencies among a collection of random variables, and are widely used in many applications (e.g., computer vision, error-correcting codes). We consider two different types of data association problems, corresponding to whether or not it is known a priori which targets are within the surveillance range of each sensor. We first demonstrate how to transform these two problems to inference problems on graphical models. With this transformation, both problems can be solved efficiently by local message-passing algorithms for graphical models, which solve optimization problems in a distributed manner by exchange of information among neighboring nodes on the graph. Moreover, a suitably reweighted version of the max–product algorithm yields provably optimal data associations. These approaches scale well with the number of sensors in the network, and moreover are well suited to being realized in a distributed fashion. So as to address trade-offs between performance and communication costs, we propose a communication-sensitive form of message-passing that is capable of achieving near-optimal performance using far less communication. We demonstrate the effectiveness of our approach with experiments on simulated data.
Author Çetin, Müjdat
Wainwright, Martin J.
Willsky, Alan S.
Chen, Lei
Author_xml – sequence: 1
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  email: lchen@mit.edu
  organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, United States
– sequence: 2
  givenname: Martin J.
  surname: Wainwright
  fullname: Wainwright, Martin J.
  email: wainwrig@eecs.berkeley.edu
  organization: Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, United States
– sequence: 3
  givenname: Müjdat
  surname: Çetin
  fullname: Çetin, Müjdat
  email: mcetin@sabanciuniv.edu
  organization: Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
– sequence: 4
  givenname: Alan S.
  surname: Willsky
  fullname: Willsky, Alan S.
  email: willsky@mit.edu
  organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, United States
BookMark eNp9kD1PwzAQhi1UJNrCD2DzxJZgO01tiwmVTwmJBVYsx7lQlyQOtksFvx63ZWLodKdX73PSPRM06l0PCJ1TklNC55ervDNdzggpc8pyQtgRGlPBWSZnXI7QmAhZZpxyfoImIaxIKkoixujtRkeNdQjOWB2t63GlA9Q4LW6ItrM_-9T2-N3rYWmNbnHnamgD3ti4xHoY2hTuStHhAH1wHvcQN85_hFN03Og2wNnfnKLXu9uXxUP29Hz_uLh-ykzBRMxmDKAx0hBGGs5koYuKNwBcM1KVnDcMxLwqqSyEmJua1yluBNGUl1UhjSDFFF3s7w7efa4hRNXZYKBtdQ9uHRSTjJVlUaQi3ReNdyF4aNTgbaf9t6JEbU2qlUom1dakokwlk4nh_xhj4-7j6LVtD5JXezLpgi8LXgVjoTdQWw8mqtrZA_QvkI2Rrg
CitedBy_id crossref_primary_10_1145_2530000
crossref_primary_10_1016_j_parco_2013_08_012
crossref_primary_10_1109_TSP_2014_2311962
crossref_primary_10_1049_iet_rsn_2018_5273
crossref_primary_10_1155_2013_613246
crossref_primary_10_1109_TAES_2023_3323629
crossref_primary_10_1109_TAES_2019_2942706
crossref_primary_10_1109_TSP_2015_2493981
crossref_primary_10_1109_TSP_2017_2688966
crossref_primary_10_1109_TWC_2020_3012910
crossref_primary_10_1109_TITS_2018_2794405
crossref_primary_10_1109_TAES_2014_120568
crossref_primary_10_1155_2017_8061561
crossref_primary_10_1145_3394659
crossref_primary_10_1109_JSEN_2021_3089206
crossref_primary_10_3390_jimaging10070171
crossref_primary_10_1109_TAES_2024_3482287
crossref_primary_10_1002_sta4_623
crossref_primary_10_1155_2013_704504
crossref_primary_10_1016_j_sigpro_2022_108633
crossref_primary_10_1016_j_sigpro_2024_109520
crossref_primary_10_1109_JPROC_2018_2789427
crossref_primary_10_1109_JSAC_2005_843548
crossref_primary_10_1109_TSP_2018_2802460
crossref_primary_10_1088_1742_6596_2352_1_012002
crossref_primary_10_1109_MSP_2006_1657816
crossref_primary_10_1109_TCYB_2014_2365541
crossref_primary_10_1109_TSIPN_2018_2825599
crossref_primary_10_1109_JOE_2011_2180057
Cites_doi 10.1109/JPROC.2003.814918
10.1109/18.825794
10.1109/TAC.1979.1102177
10.1109/JPROC.1997.554211
10.1162/089976600300015880
10.1023/B:STCO.0000021412.33763.d5
10.1109/18.910572
10.1109/5.18626
10.1109/49.661103
10.1109/TIT.2003.810642
10.1109/9.280746
10.1109/18.910585
ContentType Journal Article
Copyright 2005 Elsevier Ltd
Copyright_xml – notice: 2005 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.mcm.2005.12.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1872-9479
EndPage 1135
ExternalDocumentID 10_1016_j_mcm_2005_12_002
S0895717705005406
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
29M
4.4
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABFNM
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SSB
SSD
SST
SSW
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
XSW
YNT
YQT
ZMT
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-42eefc9c020f7293a3b7fee7a20b577f2e86b5193886cd7d20bf80a175b39c803
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000237816000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-7177
IngestDate Sun Sep 28 04:32:39 EDT 2025
Sat Nov 29 06:30:22 EST 2025
Tue Nov 18 21:33:09 EST 2025
Fri Feb 23 02:25:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Multiple target tracking
Sensor networks
Graphical models
Data association
Belief propagation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-42eefc9c020f7293a3b7fee7a20b577f2e86b5193886cd7d20bf80a175b39c803
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.mcm.2005.12.002
PQID 29225533
PQPubID 23500
PageCount 22
ParticipantIDs proquest_miscellaneous_29225533
crossref_primary_10_1016_j_mcm_2005_12_002
crossref_citationtrail_10_1016_j_mcm_2005_12_002
elsevier_sciencedirect_doi_10_1016_j_mcm_2005_12_002
PublicationCentury 2000
PublicationDate 2006-05-01
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-01
  day: 01
PublicationDecade 2000
PublicationTitle Mathematical and computer modelling
PublicationYear 2006
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chong, Mori, Chang (b6) 1990; vol. 1
Rabiner, Juang (b11) 1989; 77
Brémaud (b21) 1991
Wainwright, Jaakkola, Willsky (b17) 2004; 14
(b8) 1999
Pearl (b13) 1988
Reid (b5) 1979; AC-24
Kurien (b20) 1990; vol. 1
Liggins, Chong, Kadar, Alford, Vannicola, Thomopoulos (b7) 1997; 85
Chou, Willsky, Benveniste (b14) 1994; 39
Kschichang, Frey, Loeliger (b24) 2001; 47
Ghahramani (b27) 1998
Aji, McEliece (b23) 2000; 46
McEliece, Mckay, Cheng (b12) 1998; 16
Freeman, Weiss (b16) 2001; 47
Cowell, Dawid, Lauritzen, Spiegelhalter (b9) 1999
M.J. Wainwright, T.S. Jaakkola, A.S. Willsky, MAP estimation via agreement on (hyper)trees: message-passing and linear programming approaches, in: Proc. Allerton Conference on Communication, Control and Computing, Monticello, IL, October 2002
Weiss (b15) 2000; 12
Yedidia, Freeman, Weiss (b22) 2001; vol. 13
Blackman (b4) 1986
Bar-Shalom, Fortmann (b3) 1988
Chong, Kumar (b1) 2003; 91
Gallager (b25) 1963
Wainwright, Jaakkola, Willsky (b18) 2003; 49
Cover, Thomas (b26) 1991
Freeman, Pasztor, Carmichael (b10) 2000; 40
(b2) 2003
Chong (10.1016/j.mcm.2005.12.002_b1) 2003; 91
(10.1016/j.mcm.2005.12.002_b8) 1999
Kschichang (10.1016/j.mcm.2005.12.002_b24) 2001; 47
Cowell (10.1016/j.mcm.2005.12.002_b9) 1999
Kurien (10.1016/j.mcm.2005.12.002_b20) 1990; vol. 1
Aji (10.1016/j.mcm.2005.12.002_b23) 2000; 46
Bar-Shalom (10.1016/j.mcm.2005.12.002_b3) 1988
Yedidia (10.1016/j.mcm.2005.12.002_b22) 2001; vol. 13
(10.1016/j.mcm.2005.12.002_b2) 2003
Cover (10.1016/j.mcm.2005.12.002_b26) 1991
Reid (10.1016/j.mcm.2005.12.002_b5) 1979; AC-24
Gallager (10.1016/j.mcm.2005.12.002_b25) 1963
Blackman (10.1016/j.mcm.2005.12.002_b4) 1986
Chou (10.1016/j.mcm.2005.12.002_b14) 1994; 39
Wainwright (10.1016/j.mcm.2005.12.002_b18) 2003; 49
Freeman (10.1016/j.mcm.2005.12.002_b10) 2000; 40
Pearl (10.1016/j.mcm.2005.12.002_b13) 1988
Weiss (10.1016/j.mcm.2005.12.002_b15) 2000; 12
Chong (10.1016/j.mcm.2005.12.002_b6) 1990; vol. 1
Rabiner (10.1016/j.mcm.2005.12.002_b11) 1989; 77
Wainwright (10.1016/j.mcm.2005.12.002_b17) 2004; 14
Freeman (10.1016/j.mcm.2005.12.002_b16) 2001; 47
Brémaud (10.1016/j.mcm.2005.12.002_b21) 1991
10.1016/j.mcm.2005.12.002_b19
McEliece (10.1016/j.mcm.2005.12.002_b12) 1998; 16
Ghahramani (10.1016/j.mcm.2005.12.002_b27) 1998
Liggins (10.1016/j.mcm.2005.12.002_b7) 1997; 85
References_xml – volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: b11
  article-title: A tutorial on hidden Markov models
  publication-title: Proc. IEEE
– volume: 91
  start-page: 1247
  year: 2003
  end-page: 1256
  ident: b1
  article-title: Sensor networks: evolution, opportunities, and challenges
  publication-title: Proc. IEEE
– volume: 16
  start-page: 140
  year: 1998
  end-page: 152
  ident: b12
  article-title: Turbo decoding as an instance of Pearl’s belief propagation algorithm
  publication-title: IEEE J. Sel. Commun.
– year: 1991
  ident: b26
  article-title: Elements of Information Theory
– year: 1988
  ident: b3
  article-title: Tracking and Data Association
– volume: 39
  start-page: 464
  year: 1994
  end-page: 478
  ident: b14
  article-title: Multiscale recursive estimation, data fusion, and regularization
  publication-title: IEEE Trans. Automat. Control
– year: 1991
  ident: b21
  article-title: Markov Chains, Gibbs Fields, Monte Carlo Simulations, and Queues
– volume: 14
  start-page: 143
  year: 2004
  end-page: 166
  ident: b17
  article-title: Tree consistency and bounds on the max–product algorithm and its generalizations
  publication-title: Stat. Comput.
– volume: 85
  start-page: 95
  year: 1997
  end-page: 107
  ident: b7
  article-title: Distributed fusion architectures and algorithms for target tracking
  publication-title: Proc. IEEE
– volume: 46
  start-page: 325
  year: 2000
  end-page: 343
  ident: b23
  article-title: The generalized distributive law
  publication-title: IEEE Trans. Inform. Theory
– reference: M.J. Wainwright, T.S. Jaakkola, A.S. Willsky, MAP estimation via agreement on (hyper)trees: message-passing and linear programming approaches, in: Proc. Allerton Conference on Communication, Control and Computing, Monticello, IL, October 2002
– year: 2003
  ident: b2
  publication-title: Information Processing in Sensor Networks
– start-page: 168
  year: 1998
  end-page: 197
  ident: b27
  article-title: Learning dynamic Bayesian networks
  publication-title: Adaptive Processing of Sequences and Data Structures
– volume: 49
  start-page: 1120
  year: 2003
  end-page: 1146
  ident: b18
  article-title: Tree-based reparameterization framework for analysis of sum–product and related algorithms
  publication-title: IEEE Trans. Inform. Theory
– volume: 40
  start-page: 24
  year: 2000
  end-page: 57
  ident: b10
  article-title: Learning low-level vision
  publication-title: Int. J. Comput. Vis.
– year: 1988
  ident: b13
  article-title: Probabilistic Reasoning in Intelligent Systems
– volume: AC-24
  start-page: 843
  year: 1979
  end-page: 854
  ident: b5
  article-title: An algorithm for tracking multiple targets
  publication-title: IEEE Trans. Automat. Control
– year: 1999
  ident: b9
  article-title: Probabilistic Networks and Expert Systems
– volume: vol. 13
  start-page: 689
  year: 2001
  end-page: 695
  ident: b22
  article-title: Generalized belief propagation
  publication-title: Advances in Neural Information Processing Systems
– year: 1999
  ident: b8
  publication-title: Learning in Graphical Models
– year: 1963
  ident: b25
  article-title: Low-Density Parity Check Codes
– volume: 12
  start-page: 1
  year: 2000
  end-page: 41
  ident: b15
  article-title: Correctness of local probability propagation in graphical models with loops
  publication-title: Neural Comput.
– volume: 47
  start-page: 736
  year: 2001
  end-page: 744
  ident: b16
  article-title: On the optimality of solutions of the max–product belief propagation algorithm in arbitrary graphs
  publication-title: IEEE Trans. Inform. Theory
– volume: vol. 1
  start-page: 247
  year: 1990
  end-page: 295
  ident: b6
  article-title: Distributed multitarget multisensor tracking
  publication-title: Multitarget–Multisensor Tracking: Advanced Applications
– volume: vol. 1
  start-page: 43
  year: 1990
  end-page: 83
  ident: b20
  article-title: Issues in the design of practical multitarget tracking algorithms
  publication-title: Multitarget–Multisensor Tracking: Advanced Applications
– year: 1986
  ident: b4
  article-title: Multiple-Target Tracking with Radar Applications
– volume: 47
  start-page: 498
  year: 2001
  end-page: 519
  ident: b24
  article-title: Factor graphs and the sum–product algorithm
  publication-title: IEEE Trans. Inform. Theory
– volume: vol. 13
  start-page: 689
  year: 2001
  ident: 10.1016/j.mcm.2005.12.002_b22
  article-title: Generalized belief propagation
– volume: 91
  start-page: 1247
  issue: August
  year: 2003
  ident: 10.1016/j.mcm.2005.12.002_b1
  article-title: Sensor networks: evolution, opportunities, and challenges
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2003.814918
– volume: 46
  start-page: 325
  issue: March
  year: 2000
  ident: 10.1016/j.mcm.2005.12.002_b23
  article-title: The generalized distributive law
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.825794
– year: 1988
  ident: 10.1016/j.mcm.2005.12.002_b3
– volume: AC-24
  start-page: 843
  year: 1979
  ident: 10.1016/j.mcm.2005.12.002_b5
  article-title: An algorithm for tracking multiple targets
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1979.1102177
– volume: 40
  start-page: 24
  issue: October
  year: 2000
  ident: 10.1016/j.mcm.2005.12.002_b10
  article-title: Learning low-level vision
  publication-title: Int. J. Comput. Vis.
– volume: 85
  start-page: 95
  year: 1997
  ident: 10.1016/j.mcm.2005.12.002_b7
  article-title: Distributed fusion architectures and algorithms for target tracking
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.1997.554211
– year: 1999
  ident: 10.1016/j.mcm.2005.12.002_b8
– volume: 12
  start-page: 1
  year: 2000
  ident: 10.1016/j.mcm.2005.12.002_b15
  article-title: Correctness of local probability propagation in graphical models with loops
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015880
– year: 1963
  ident: 10.1016/j.mcm.2005.12.002_b25
– year: 2003
  ident: 10.1016/j.mcm.2005.12.002_b2
– volume: 14
  start-page: 143
  issue: April
  year: 2004
  ident: 10.1016/j.mcm.2005.12.002_b17
  article-title: Tree consistency and bounds on the max–product algorithm and its generalizations
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000021412.33763.d5
– year: 1991
  ident: 10.1016/j.mcm.2005.12.002_b26
– volume: 47
  start-page: 498
  issue: February
  year: 2001
  ident: 10.1016/j.mcm.2005.12.002_b24
  article-title: Factor graphs and the sum–product algorithm
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.910572
– volume: vol. 1
  start-page: 247
  year: 1990
  ident: 10.1016/j.mcm.2005.12.002_b6
  article-title: Distributed multitarget multisensor tracking
– volume: 77
  start-page: 257
  year: 1989
  ident: 10.1016/j.mcm.2005.12.002_b11
  article-title: A tutorial on hidden Markov models
  publication-title: Proc. IEEE
  doi: 10.1109/5.18626
– year: 1999
  ident: 10.1016/j.mcm.2005.12.002_b9
– year: 1991
  ident: 10.1016/j.mcm.2005.12.002_b21
– year: 1986
  ident: 10.1016/j.mcm.2005.12.002_b4
– start-page: 168
  year: 1998
  ident: 10.1016/j.mcm.2005.12.002_b27
  article-title: Learning dynamic Bayesian networks
– volume: 16
  start-page: 140
  issue: February
  year: 1998
  ident: 10.1016/j.mcm.2005.12.002_b12
  article-title: Turbo decoding as an instance of Pearl’s belief propagation algorithm
  publication-title: IEEE J. Sel. Commun.
  doi: 10.1109/49.661103
– ident: 10.1016/j.mcm.2005.12.002_b19
– volume: 49
  start-page: 1120
  issue: May
  year: 2003
  ident: 10.1016/j.mcm.2005.12.002_b18
  article-title: Tree-based reparameterization framework for analysis of sum–product and related algorithms
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2003.810642
– volume: 39
  start-page: 464
  issue: March
  year: 1994
  ident: 10.1016/j.mcm.2005.12.002_b14
  article-title: Multiscale recursive estimation, data fusion, and regularization
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.280746
– year: 1988
  ident: 10.1016/j.mcm.2005.12.002_b13
– volume: 47
  start-page: 736
  year: 2001
  ident: 10.1016/j.mcm.2005.12.002_b16
  article-title: On the optimality of solutions of the max–product belief propagation algorithm in arbitrary graphs
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.910585
– volume: vol. 1
  start-page: 43
  year: 1990
  ident: 10.1016/j.mcm.2005.12.002_b20
  article-title: Issues in the design of practical multitarget tracking algorithms
SSID ssj0005908
Score 2.0483937
Snippet We propose techniques based on graphical models for efficiently solving data association problems arising in multiple target tracking with distributed sensor...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1114
Title Data association based on optimization in graphical models with application to sensor networks
URI https://dx.doi.org/10.1016/j.mcm.2005.12.002
https://www.proquest.com/docview/29225533
Volume 43
WOSCitedRecordID wos000237816000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9479
  dateEnd: 20131231
  omitProxy: false
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELZKlwd4QJza5fQDT1SpEuew_ViWRbBiV0gsUp-IHMeRWrXpqskev2x_H-MriYpYARIvUY7mqOfTzDfj8QxCb0VEqiKtpE4bTMFBoWEA5IgHZagAHSIpUilMswl6esrmc_51NLrxa2EuV7Su2fU1P_-vooZzIGy9dPYvxN09FE7APggdtiB22P6R4D-IVkxEP-oTbahKPSmwAfWwdusudZzDFKs2QjL9cPxCt35KWxPTBvzczXZS23TxZkhmT7qSr67ggHQtIuzzVt4qmuwBq96-qEUfwl_UV11swJYzmBxP_WU9g8-ocjUOTvTh-8NlKbo0HR0pcpHf2UprqeluBCMdRjC6pTV9HpPRfjwNwNe01lhZ7cwoCXhiu8949W2rPDmY8oEuBi2eDOx6FNm6KL_YDBu-WE7Xcm1jbDo8HJLeQHZpi9_0R-lvClNDdbM7aI_QlLMx2pt9Ppof98lF3PRC7P6En083mYU7L_odI9rhBobwnD1ED5yngmcWYY_QSNWP0f1B_Uo46hHQPEE_NPLwAHnYIA_DzhB5eFHjDnnYIg9r5OEB8nC7wRZ52CPvKfr-8ejs8FPg2ncEMiasDRKiVCW5BIekAhcuFnFBK6WoIGGRUloRxbJCOxCMZbKkJZyuWCiAzxYxlyyMn6FxvanVPsJZWZZVnGaUVCop4WIVccVEEcWs4EB5D1DohzCXrra9brGyyn0S4zKHUdc9V9M8IjmM-gF6191ybgu73PbjxMsld8zUMs4cQHTbbW-8DHPQ2noqTtRqc9HkhIMdBU_r-b89-AW6R4Bc27Sql2jcbi_UK3RXXraLZvvagfEn1Bu_Vg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+association+based+on+optimization+in+graphical+models+with+application+to+sensor+networks&rft.jtitle=Mathematical+and+computer+modelling&rft.au=Chen%2C+Lei&rft.au=Wainwright%2C+Martin+J.&rft.au=%C3%87etin%2C+M%C3%BCjdat&rft.au=Willsky%2C+Alan+S.&rft.date=2006-05-01&rft.pub=Elsevier+Ltd&rft.issn=0895-7177&rft.eissn=1872-9479&rft.volume=43&rft.issue=9&rft.spage=1114&rft.epage=1135&rft_id=info:doi/10.1016%2Fj.mcm.2005.12.002&rft.externalDocID=S0895717705005406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon