Enhancing the insertion of NOP instructions to obfuscate malware via deep reinforcement learning
•It explores the vulnerability of classifiers against the dead code insertion technique.•It poposes a reinforcement learning framework to bypass malware classifers.•A Q-network selects the optimal positions to which insert the NOP instructions.•Using a time-distributed layer to determine the optimal...
Saved in:
| Published in: | Computers & security Vol. 113; p. 102543 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier Ltd
01.02.2022
Elsevier Sequoia S.A |
| Subjects: | |
| ISSN: | 0167-4048, 1872-6208 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!