A comparison of machine learning algorithms for estimation of higher heating values of biomass and fossil fuels from ultimate analysis

•HHV of fuels are estimated from ultimate analysis on a dry, ash-free basis.•Performance of several machine learning algorithms are evaluated.•Van Krevelen diagram of several classes of fuels was plotted with a large dataset.•The proposed RFR and DTR models yielded the best results for HHV estimatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) Jg. 320; S. 123971
Hauptverfasser: Yaka, Havva, Insel, Mert Akin, Yucel, Ozgun, Sadikoglu, Hasan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 15.07.2022
Elsevier BV
Schlagworte:
ISSN:0016-2361, 1873-7153
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •HHV of fuels are estimated from ultimate analysis on a dry, ash-free basis.•Performance of several machine learning algorithms are evaluated.•Van Krevelen diagram of several classes of fuels was plotted with a large dataset.•The proposed RFR and DTR models yielded the best results for HHV estimation. Higher heating value (HHV) is one of the most important parameters to consider while obtaining energy efficiently from fuels. It provides means to estimate the quality of the fuel. However, measuring the HHV of fuels requires advanced devices, is expensive and time consuming. Thus, sufficient estimation of the HHV is crucial for development of fuel technologies and numerous studies have been performed about this subject. In this study, several machine learning algorithms (DTR, SVR, GPR, RFR, Multi-Linear Regressions, and Polynomial Regression) were utilized to construct models for estimation of the HHV from the largest open dataset of ultimate analysis of fuels on a dry, ash-free basis. The mathematical analysis is conducted for numerous different solid, liquid, and gaseous fuels such as biomass, biochar, municipal solid waste, kerosene, gasoline, fuel oil, algae, natural gas etc. 10-fold cross validation method was used to assess the validity of the constructed models in an unbiased manner. The R2, adjusted R2, RMSE, N-RMSE, and AAE values of each model were computed for performance evaluations. Finally, the results were compared with the literature, and advantages and disadvantages of each method were discussed in terms of both computational complexity and prediction accuracy. The RFR and DTR models performed exceptionally well in estimation of HHV of all classes of fuels with R2 values of 0.9814 and 0.9664, respectively. In addition, the statistical values of the ultimate analysis for each constructed class of fuel are investigated for each class of fuel and an extensive Krevelen diagram was produced from the largest dataset to date, which illustrated the relationships between the atomic O/C ratio and the atomic H/C ratio of the fuels.
AbstractList •HHV of fuels are estimated from ultimate analysis on a dry, ash-free basis.•Performance of several machine learning algorithms are evaluated.•Van Krevelen diagram of several classes of fuels was plotted with a large dataset.•The proposed RFR and DTR models yielded the best results for HHV estimation. Higher heating value (HHV) is one of the most important parameters to consider while obtaining energy efficiently from fuels. It provides means to estimate the quality of the fuel. However, measuring the HHV of fuels requires advanced devices, is expensive and time consuming. Thus, sufficient estimation of the HHV is crucial for development of fuel technologies and numerous studies have been performed about this subject. In this study, several machine learning algorithms (DTR, SVR, GPR, RFR, Multi-Linear Regressions, and Polynomial Regression) were utilized to construct models for estimation of the HHV from the largest open dataset of ultimate analysis of fuels on a dry, ash-free basis. The mathematical analysis is conducted for numerous different solid, liquid, and gaseous fuels such as biomass, biochar, municipal solid waste, kerosene, gasoline, fuel oil, algae, natural gas etc. 10-fold cross validation method was used to assess the validity of the constructed models in an unbiased manner. The R2, adjusted R2, RMSE, N-RMSE, and AAE values of each model were computed for performance evaluations. Finally, the results were compared with the literature, and advantages and disadvantages of each method were discussed in terms of both computational complexity and prediction accuracy. The RFR and DTR models performed exceptionally well in estimation of HHV of all classes of fuels with R2 values of 0.9814 and 0.9664, respectively. In addition, the statistical values of the ultimate analysis for each constructed class of fuel are investigated for each class of fuel and an extensive Krevelen diagram was produced from the largest dataset to date, which illustrated the relationships between the atomic O/C ratio and the atomic H/C ratio of the fuels.
Higher heating value (HHV) is one of the most important parameters to consider while obtaining energy efficiently from fuels. It provides means to estimate the quality of the fuel. However, measuring the HHV of fuels requires advanced devices, is expensive and time consuming. Thus, sufficient estimation of the HHV is crucial for development of fuel technologies and numerous studies have been performed about this subject. In this study, several machine learning algorithms (DTR, SVR, GPR, RFR, Multi-Linear Regressions, and Polynomial Regression) were utilized to construct models for estimation of the HHV from the largest open dataset of ultimate analysis of fuels on a dry, ash-free basis. The mathematical analysis is conducted for numerous different solid, liquid, and gaseous fuels such as biomass, biochar, municipal solid waste, kerosene, gasoline, fuel oil, algae, natural gas etc. 10-fold cross validation method was used to assess the validity of the constructed models in an unbiased manner. The R2, adjusted R2, RMSE, N-RMSE, and AAE values of each model were computed for performance evaluations. Finally, the results were compared with the literature, and advantages and disadvantages of each method were discussed in terms of both computational complexity and prediction accuracy. The RFR and DTR models performed exceptionally well in estimation of HHV of all classes of fuels with R2 values of 0.9814 and 0.9664, respectively. In addition, the statistical values of the ultimate analysis for each constructed class of fuel are investigated for each class of fuel and an extensive Krevelen diagram was produced from the largest dataset to date, which illustrated the relationships between the atomic O/C ratio and the atomic H/C ratio of the fuels.
ArticleNumber 123971
Author Yaka, Havva
Insel, Mert Akin
Sadikoglu, Hasan
Yucel, Ozgun
Author_xml – sequence: 1
  givenname: Havva
  surname: Yaka
  fullname: Yaka, Havva
  organization: Yildiz Technical University, Department of Chemical Engineering, 34210 Esenler/İstanbul, Turkey
– sequence: 2
  givenname: Mert Akin
  surname: Insel
  fullname: Insel, Mert Akin
  organization: Yildiz Technical University, Department of Chemical Engineering, 34210 Esenler/İstanbul, Turkey
– sequence: 3
  givenname: Ozgun
  surname: Yucel
  fullname: Yucel, Ozgun
  email: yozgun@gtu.edu.tr
  organization: Gebze Technical University, Department of Chemical Engineering, 41400 Gebze/Kocaeli, Turkey
– sequence: 4
  givenname: Hasan
  surname: Sadikoglu
  fullname: Sadikoglu, Hasan
  organization: Yildiz Technical University, Department of Chemical Engineering, 34210 Esenler/İstanbul, Turkey
BookMark eNp9kM1OwzAQhC0EEi3wApwscU7wT-o4Epeq4k-qxAXOlutsGldOXOwUqS_Ac-M0nDhwWmn3m9HszNF573tA6JaSnBIq7nd5cwCXM8JYThmvSnqGZlSWPCvpgp-jGUlUxrigl2ge444QUspFMUPfS2x8t9fBRt9j3-BOm9b2gB3o0Nt-i7Xb-mCHtou48QFDHGynBzvRrd22EHALaZPYL-0OEMfDxvpOx4h1XydZjNbhMWHyCL7DB3cygXTW7hhtvEYXjXYRbn7nFfp4enxfvWTrt-fX1XKdGc7kkHHTLAphNrJqhOC0poYWICpSlFwQU0ldSLrhsNBsU1aV0UxIphPAa5n-rQp-he4m333wnynqoHb-EFKIqJhIJowUQiaKTZQJKXqARu1DyhuOihI19q12avxGjX2rqe8kkn9Exg6nooagrftf-jBJU0HwZSGoaCz0BmobwAyq9vY_-Q8u3J87
CitedBy_id crossref_primary_10_1007_s10311_023_01604_3
crossref_primary_10_1021_acs_jcim_5c00676
crossref_primary_10_1016_j_biteb_2022_101167
crossref_primary_10_1016_j_jaap_2025_106989
crossref_primary_10_1088_1755_1315_1500_1_012023
crossref_primary_10_3390_life14111490
crossref_primary_10_1016_j_seta_2024_103670
crossref_primary_10_1007_s13369_024_09653_8
crossref_primary_10_1007_s10815_023_02864_2
crossref_primary_10_1016_j_eti_2024_103652
crossref_primary_10_1016_j_rser_2024_114502
crossref_primary_10_1016_j_seta_2024_103796
crossref_primary_10_1007_s11831_023_09950_9
crossref_primary_10_1016_j_engeos_2024_100331
crossref_primary_10_1016_j_eti_2024_104012
crossref_primary_10_1007_s12206_024_0247_1
crossref_primary_10_1016_j_fuel_2022_125668
crossref_primary_10_1016_j_energy_2023_127875
crossref_primary_10_1016_j_renene_2024_120236
crossref_primary_10_1016_j_fuel_2025_136292
crossref_primary_10_1177_10820132231170286
crossref_primary_10_1016_j_fuel_2023_130037
crossref_primary_10_1007_s13399_024_05771_3
crossref_primary_10_1016_j_fuel_2025_135883
crossref_primary_10_1016_j_fuel_2024_133575
crossref_primary_10_1016_j_jaap_2024_106512
crossref_primary_10_1016_j_jobe_2024_110500
crossref_primary_10_1016_j_conbuildmat_2023_132828
crossref_primary_10_1080_15435075_2025_2450626
crossref_primary_10_1016_j_biombioe_2025_108247
crossref_primary_10_1016_j_biortech_2023_130291
crossref_primary_10_3390_ma18143264
crossref_primary_10_1016_j_fuel_2023_129573
crossref_primary_10_1016_j_fuel_2023_129898
crossref_primary_10_1007_s40430_025_05854_w
crossref_primary_10_1088_1402_4896_ad619b
crossref_primary_10_1088_1402_4896_acb5d1
crossref_primary_10_1007_s12209_024_00393_2
crossref_primary_10_1016_j_biombioe_2023_106884
crossref_primary_10_1080_01430750_2023_2277309
crossref_primary_10_3390_en17215306
crossref_primary_10_1016_j_biortech_2024_131156
crossref_primary_10_3390_recycling10050173
crossref_primary_10_1016_j_fuel_2025_134682
crossref_primary_10_1016_j_wasman_2024_05_044
crossref_primary_10_3390_life13071430
Cites_doi 10.1007/s13399-019-00386-5
10.1016/j.wasman.2015.09.036
10.1016/j.fuel.2008.04.008
10.1080/10485252.2017.1404598
10.1016/j.fuel.2018.02.126
10.1016/j.jngse.2020.103760
10.1016/j.fuel.2010.11.031
10.1007/978-3-642-21551-3_33
10.1016/j.fuel.2020.118906
10.1016/j.fuel.2016.12.044
10.1016/j.renene.2017.02.008
10.3390/en9010028
10.1016/j.scitotenv.2014.01.001
10.1016/j.csda.2007.05.017
10.1016/j.fuel.2012.04.015
10.1016/j.patcog.2016.12.018
10.1016/j.fuel.2019.115931
10.17798/bitlisfen.315118
10.1371/journal.pone.0194889
10.1016/j.fuel.2020.117066
10.1016/j.csda.2013.09.007
10.1016/j.tjem.2018.08.001
10.1016/j.fuel.2019.116925
10.1088/1757-899X/324/1/012049
10.1016/j.fuel.2004.10.010
10.1016/S0016-2361(01)00034-5
10.1016/j.energy.2019.116077
10.1016/j.ejpe.2015.06.001
10.1016/j.fuel.2006.12.029
10.1016/S0016-2361(01)00131-4
10.1016/0144-4565(84)90003-9
10.1016/j.asr.2007.07.020
10.1016/j.joei.2016.03.002
10.1007/BF00116251
10.1016/j.cj.2016.01.008
10.1016/j.rser.2020.110237
10.1016/j.energy.2010.10.032
10.1016/j.wasman.2019.09.035
10.1016/j.commatsci.2019.109203
10.1016/j.fuel.2009.10.022
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2022
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2022.123971
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID 10_1016_j_fuel_2022_123971
S0016236122008304
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
9DU
A6W
AAQXK
AATTM
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c328t-3cf546cb89f6631d1c14e69047360c98a481b3e5a2b799ca2682ae693d8078943
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000806782500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
IngestDate Wed Aug 13 04:26:36 EDT 2025
Sat Nov 29 05:32:04 EST 2025
Tue Nov 18 21:09:56 EST 2025
Sat Jan 18 16:09:20 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords CC
ANN
DTR
C
Higher heating value
ABE
AAE
DAF
GPR
H
Regression
GP
RMSE
Biomass
N
SVR
O
MAE
S
N-RMSE
HHV
Machine learning
FC
RFR
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-3cf546cb89f6631d1c14e69047360c98a481b3e5a2b799ca2682ae693d8078943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2673620468
PQPubID 2045474
ParticipantIDs proquest_journals_2673620468
crossref_primary_10_1016_j_fuel_2022_123971
crossref_citationtrail_10_1016_j_fuel_2022_123971
elsevier_sciencedirect_doi_10_1016_j_fuel_2022_123971
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Anca-couce, Hochenauer, Scharler (b0020) 2021; 135
Quinlan (b0155) 1986; 1
Yi, Feng, Qin, Li (b0225) 2017; 193
Candela, Rasmussen (b0165) 2005; 6
Elmaz, Büyükçakır, Yücel, Mutlu (b0185) 2020; 266
Xing, Luo, Wang, Gao, Fan (b0045) 2019; 188
Yang, Zhang, Fan, Sun (b0190) 2021; 87
MathWorks. fspecial 2021.
Majumder, Jain, Banerjee, Barnwal (b0030) 2008; 87
Birgen, Magnanelli, Carlsson, Skreiberg, Mosby, Becidan (b0180) 2021; 283
Vassilev, Baxter, Andersen, Vassileva (b0260) 2010; 89
Voyant, Muselli, Paoli, Nivet (b0090) 2011; 36
Ricci, Martínez (b0080) 2008; 52
Song, Quinton, Peng, Zhao, Ladommatos (b0255) 2016; 9
Parikh, Channiwala, Ghosal (b0065) 2007; 86
Rokach, Maimon (b0145) 2010
Shi, Mahinpey, Aqsha, Silbermann (b0245) 2016; 48
Rasmussen, Williams (b0170) 2006
Hosseinpour, Aghbashlo, Tabatabaei (b0055) 2018; 222
Elmaz, Yucel, Mutlu (b0100) 2020; 32
.
Wong (b0210) 2017; 65
Rodriguez-Galiano, Mendes, Garcia-Soldado, Chica-Olmo, Ribeiro (b0205) 2014; 476–477
Jung (b0220) 2018; 30
Nhuchhen, Abdul (b0050) 2012; 99
Wang, Lu (b0085) 2018; 324
Yin (b0240) 2010; 90
Toor, Rosendahl, Hoffmann, Pedersen, Nielsen, Søgaard (b0025) 2014
Phyllis 2. Database for biomass and waste n.d. ecn.nl/phyllis2.
Makridakis, Spiliotis, Assimakopoulos, Hernandez Montoya (b0160) 2018; 13
Xiong, Cui, Liu, Zhao, Hu, Hu (b0215) 2020; 171
Özkan, Işık, Günkaya, Özkan, Banar (b0140) 2019; 100
Cordero, Marquez, Rodriguez-Mirasol, Rodriguez (b0035) 2001; 80
Zhao, Zhang (b0150) 2008; 41
Zhang, Zhang, Wang (b0105) 2014; 70
Parikh, Channiwala, Ghosal (b0060) 2005; 84
Mathworks. Gaussian Process Regression Models 2021.
Boumanchar, Charafeddine, Chhiti, M’hamdi Alaoui, Sahibed-dine, Bentiss (b0235) 2019; 9
Channiwala, Parikh (b0040) 2002; 81
Şenol H, Elibol EA, Açıkel Ü, Şenol M. Türkiye’de Biyogaz Üretimi İçin Başlıca Biyokütle Kaynakları. Bitlis Eren Üniversitesi Fen Bilim Derg 2017;6:81–92. 10.17798/bitlisfen.315118.
Bühlmann P. Bagging, Boosting and Ensemble Methods. In: Gentle JE, Härdle WK, Mori Y, editors. Handb. Comput. Stat. Concepts Methods, Berlin, Heidelberg: Springer Berlin Heidelberg; 2012, p. 985–1022. 10.1007/978-3-642-21551-3_33.
Patle, Chouhan (b0120) 2013
Toklu (b0010) 2017; 107
Dashti, Noushabadi, Raji, Razmi, Ceylan, Mohammadi (b0115) 2019; 257
Wang, Zhou, Zhu, Dong, Guo (b0200) 2016; 4
MathWorks. Understanding Support Vector Machine Regression 2021.
Demirbas (b0230) 2016; 38
Qian, Li, Zhang, Wang, Hu, Cao (b0250) 2020; 265
Ghugare, Tambe (b0070) 2017; 90
(b0135) 2000
Akoglu (b0075) 2018; 18
Trimble, Van Hook, Gray (b0015) 1984; 6
Gendy, El-Shiekh, Zakhary (b0110) 2015; 24
Channiwala (10.1016/j.fuel.2022.123971_b0040) 2002; 81
Yang (10.1016/j.fuel.2022.123971_b0190) 2021; 87
Xing (10.1016/j.fuel.2022.123971_b0045) 2019; 188
Rasmussen (10.1016/j.fuel.2022.123971_b0170) 2006
Rokach (10.1016/j.fuel.2022.123971_b0145) 2010
Vassilev (10.1016/j.fuel.2022.123971_b0260) 2010; 89
Toor (10.1016/j.fuel.2022.123971_b0025) 2014
Voyant (10.1016/j.fuel.2022.123971_b0090) 2011; 36
10.1016/j.fuel.2022.123971_b0195
Shi (10.1016/j.fuel.2022.123971_b0245) 2016; 48
Majumder (10.1016/j.fuel.2022.123971_b0030) 2008; 87
Nhuchhen (10.1016/j.fuel.2022.123971_b0050) 2012; 99
Dashti (10.1016/j.fuel.2022.123971_b0115) 2019; 257
Zhao (10.1016/j.fuel.2022.123971_b0150) 2008; 41
Cordero (10.1016/j.fuel.2022.123971_b0035) 2001; 80
Akoglu (10.1016/j.fuel.2022.123971_b0075) 2018; 18
Song (10.1016/j.fuel.2022.123971_b0255) 2016; 9
Parikh (10.1016/j.fuel.2022.123971_b0065) 2007; 86
Yi (10.1016/j.fuel.2022.123971_b0225) 2017; 193
Anca-couce (10.1016/j.fuel.2022.123971_b0020) 2021; 135
Parikh (10.1016/j.fuel.2022.123971_b0060) 2005; 84
Trimble (10.1016/j.fuel.2022.123971_b0015) 1984; 6
Rodriguez-Galiano (10.1016/j.fuel.2022.123971_b0205) 2014; 476–477
Elmaz (10.1016/j.fuel.2022.123971_b0185) 2020; 266
Wang (10.1016/j.fuel.2022.123971_b0200) 2016; 4
Elmaz (10.1016/j.fuel.2022.123971_b0100) 2020; 32
Ghugare (10.1016/j.fuel.2022.123971_b0070) 2017; 90
Hosseinpour (10.1016/j.fuel.2022.123971_b0055) 2018; 222
Demirbas (10.1016/j.fuel.2022.123971_b0230) 2016; 38
10.1016/j.fuel.2022.123971_b0005
10.1016/j.fuel.2022.123971_b0125
Quinlan (10.1016/j.fuel.2022.123971_b0155) 1986; 1
Xiong (10.1016/j.fuel.2022.123971_b0215) 2020; 171
Toklu (10.1016/j.fuel.2022.123971_b0010) 2017; 107
Patle (10.1016/j.fuel.2022.123971_b0120) 2013
10.1016/j.fuel.2022.123971_b0095
10.1016/j.fuel.2022.123971_b0175
10.1016/j.fuel.2022.123971_b0130
Jung (10.1016/j.fuel.2022.123971_b0220) 2018; 30
Wong (10.1016/j.fuel.2022.123971_b0210) 2017; 65
Yin (10.1016/j.fuel.2022.123971_b0240) 2010; 90
Boumanchar (10.1016/j.fuel.2022.123971_b0235) 2019; 9
Zhang (10.1016/j.fuel.2022.123971_b0105) 2014; 70
Candela (10.1016/j.fuel.2022.123971_b0165) 2005; 6
Wang (10.1016/j.fuel.2022.123971_b0085) 2018; 324
(10.1016/j.fuel.2022.123971_b0135) 2000
Özkan (10.1016/j.fuel.2022.123971_b0140) 2019; 100
Birgen (10.1016/j.fuel.2022.123971_b0180) 2021; 283
Makridakis (10.1016/j.fuel.2022.123971_b0160) 2018; 13
Gendy (10.1016/j.fuel.2022.123971_b0110) 2015; 24
Qian (10.1016/j.fuel.2022.123971_b0250) 2020; 265
Ricci (10.1016/j.fuel.2022.123971_b0080) 2008; 52
References_xml – start-page: 189
  year: 2014
  end-page: 217
  ident: b0025
  article-title: Application of Hydrothermal Reactions to Biomass Conversion
  publication-title: Hydrothermal Liq Biomass
– volume: 89
  start-page: 913
  year: 2010
  end-page: 933
  ident: b0260
  article-title: An overview of the chemical composition of biomass
  publication-title: Fuel
– reference: Şenol H, Elibol EA, Açıkel Ü, Şenol M. Türkiye’de Biyogaz Üretimi İçin Başlıca Biyokütle Kaynakları. Bitlis Eren Üniversitesi Fen Bilim Derg 2017;6:81–92. 10.17798/bitlisfen.315118.
– volume: 171
  year: 2020
  ident: b0215
  article-title: Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation
  publication-title: Comput Mater Sci
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: b0155
  article-title: Induction of decision trees
  publication-title: Mach Learn
– volume: 9
  start-page: 499
  year: 2019
  end-page: 509
  ident: b0235
  article-title: Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming
  publication-title: Biomass Convers Biorefinery
– volume: 48
  start-page: 34
  year: 2016
  end-page: 47
  ident: b0245
  article-title: Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste
  publication-title: Waste Manag
– volume: 283
  year: 2021
  ident: b0180
  article-title: Machine learning based modelling for lower heating value prediction of municipal solid waste
  publication-title: Fuel
– volume: 90
  start-page: 1128
  year: 2010
  end-page: 1132
  ident: b0240
  article-title: Prediction of higher heating values of biomass from proximate and ultimate analyses
  publication-title: Fuel
– reference: Mathworks. Gaussian Process Regression Models 2021.
– reference: Bühlmann P. Bagging, Boosting and Ensemble Methods. In: Gentle JE, Härdle WK, Mori Y, editors. Handb. Comput. Stat. Concepts Methods, Berlin, Heidelberg: Springer Berlin Heidelberg; 2012, p. 985–1022. 10.1007/978-3-642-21551-3_33.
– volume: 84
  start-page: 487
  year: 2005
  end-page: 494
  ident: b0060
  article-title: A correlation for calculating HHV from proximate analysis of solid fuels
  publication-title: Fuel
– reference: Phyllis 2. Database for biomass and waste n.d. ecn.nl/phyllis2.
– volume: 324
  start-page: 012049
  year: 2018
  ident: b0085
  article-title: Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model
  publication-title: IOP Conf Ser: Mater Sci Eng
– volume: 87
  start-page: 3077
  year: 2008
  end-page: 3081
  ident: b0030
  article-title: Development of a new proximate analysis based correlation to predict calorific value of coal
  publication-title: Fuel
– volume: 265
  year: 2020
  ident: b0250
  article-title: Prediction of higher heating values of biochar from proximate and ultimate analysis
  publication-title: Fuel
– volume: 107
  start-page: 235
  year: 2017
  end-page: 244
  ident: b0010
  article-title: Biomass energy potential and utilization in Turkey
  publication-title: Renew Energy
– volume: 38
  start-page: 2693
  year: 2016
  end-page: 2697
  ident: b0230
  article-title: Calculation of higher heating values of fatty acids
  publication-title: Energy Sources, Part A Recover Util Environ Eff
– volume: 9
  start-page: 28
  year: 2016
  ident: b0255
  article-title: Effects of Oxygen Content of Fuels on Combustion and Emissions of Diesel Engines
  publication-title: Energies
– volume: 86
  start-page: 1710
  year: 2007
  end-page: 1719
  ident: b0065
  article-title: A correlation for calculating elemental composition from proximate analysis of biomass materials
  publication-title: Fuel
– start-page: 149
  year: 2010
  end-page: 174
  ident: b0145
  article-title: Classification Trees
  publication-title: Data Min. Knowl. Discov. Handb.
– volume: 81
  start-page: 1051
  year: 2002
  end-page: 1063
  ident: b0040
  article-title: A unified correlation for estimating HHV of solid, liquid and gaseous fuels
  publication-title: Fuel
– volume: 90
  start-page: 476
  year: 2017
  end-page: 484
  ident: b0070
  article-title: Genetic programming based high performing correlations for prediction of higher heating value of coals of different ranks and from diverse geographies
  publication-title: J Energy Inst
– volume: 65
  start-page: 97
  year: 2017
  end-page: 107
  ident: b0210
  article-title: Parametric methods for comparing the performance of two classification algorithms evaluated by k-fold cross validation on multiple data sets
  publication-title: Pattern Recogn
– volume: 222
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0055
  article-title: Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network-based fuzzy partial least squares coupled with principle component analysis (PCA-INFPLS)
  publication-title: Fuel
– volume: 24
  start-page: 445
  year: 2015
  end-page: 453
  ident: b0110
  article-title: A polynomial regression model for stabilized turbulent confined jet diffusion flames using bluff body burners
  publication-title: Egypt J Pet
– year: 2000
  ident: b0135
  publication-title: The Nature of Statistical Learning Theory
– reference: MathWorks. Understanding Support Vector Machine Regression 2021.
– volume: 52
  start-page: 1650
  year: 2008
  end-page: 1660
  ident: b0080
  article-title: Adjusted R2-type measures for Tweedie models
  publication-title: Comput Stat Data Anal
– volume: 4
  start-page: 212
  year: 2016
  end-page: 219
  ident: b0200
  article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data
  publication-title: Crop J
– volume: 193
  start-page: 315
  year: 2017
  end-page: 321
  ident: b0225
  article-title: Prediction of elemental composition of coal using proximate analysis
  publication-title: Fuel
– volume: 6
  start-page: 1939
  year: 2005
  end-page: 1959
  ident: b0165
  article-title: A Unifying View of Sparse Approximate Gaussian Process Regression
  publication-title: J Mach Learn Res
– volume: 135
  year: 2021
  ident: b0020
  article-title: Bioenergy technologies, uses, market and future trends with Austria as a case study
  publication-title: Renew Sustain Energy Rev
– volume: 30
  start-page: 197
  year: 2018
  end-page: 215
  ident: b0220
  article-title: Multiple predicting K-fold cross-validation for model selection
  publication-title: J Nonparametr Stat
– volume: 266
  start-page: 117066
  year: 2020
  ident: b0185
  article-title: Classification of solid fuels with machine learning
  publication-title: Fuel
– volume: 80
  start-page: 1567
  year: 2001
  end-page: 1571
  ident: b0035
  article-title: Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis
  publication-title: Fuel
– volume: 36
  start-page: 348
  year: 2011
  end-page: 359
  ident: b0090
  article-title: Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation
  publication-title: Energy
– volume: 18
  start-page: 91
  year: 2018
  end-page: 93
  ident: b0075
  article-title: User’s guide to correlation coefficients
  publication-title: Turkish J Emerg Med
– volume: 87
  year: 2021
  ident: b0190
  article-title: Experimental study on erosion behavior of fracturing pipeline involving tensile stress and erosion prediction using random forest regression
  publication-title: J Nat Gas Sci Eng
– start-page: 1
  year: 2013
  end-page: 9
  ident: b0120
  article-title: SVM kernel functions for classification
  publication-title: 2013 Int. Conf. Adv. Technol. Eng.
– volume: 41
  start-page: 1955
  year: 2008
  end-page: 1959
  ident: b0150
  article-title: Comparison of decision tree methods for finding active objects
  publication-title: Adv Sp Res
– volume: 100
  start-page: 327
  year: 2019
  end-page: 335
  ident: b0140
  article-title: A heating value estimation of refuse derived fuel using the genetic programming model
  publication-title: Waste Manage.
– year: 2006
  ident: b0170
  article-title: Gaussian Processes for Machine Learning
– reference: MathWorks. fspecial 2021.
– volume: 13
  start-page: e0194889
  year: 2018
  ident: b0160
  article-title: Statistical and Machine Learning forecasting methods: Concerns and ways forward
  publication-title: PLoS One
– volume: 6
  start-page: 3
  year: 1984
  end-page: 13
  ident: b0015
  article-title: Biomass for energy: the environmental issues
  publication-title: Biomass
– volume: 99
  start-page: 55
  year: 2012
  end-page: 63
  ident: b0050
  article-title: Estimation of higher heating value of biomass from proximate analysis: A new approach
  publication-title: Fuel
– volume: 188
  year: 2019
  ident: b0045
  article-title: A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches
  publication-title: Energy
– volume: 476–477
  start-page: 189
  year: 2014
  end-page: 206
  ident: b0205
  article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain)
  publication-title: Sci Total Environ
– reference: .
– volume: 257
  year: 2019
  ident: b0115
  article-title: Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation
  publication-title: Fuel
– volume: 70
  start-page: 183
  year: 2014
  end-page: 197
  ident: b0105
  article-title: Model detection for functional polynomial regression
  publication-title: Comput Stat Data Anal
– volume: 32
  start-page: 145
  year: 2020
  end-page: 151
  ident: b0100
  article-title: Makine Öğrenmesi ile Kısa ve Elemental Analiz Kullanarak Katı Yakıtların Üst Isı Değerinin Tahmin Edilmesi
  publication-title: Int J Adv Eng Pure Sci
– volume: 9
  start-page: 499
  issue: 3
  year: 2019
  ident: 10.1016/j.fuel.2022.123971_b0235
  article-title: Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming
  publication-title: Biomass Convers Biorefinery
  doi: 10.1007/s13399-019-00386-5
– volume: 48
  start-page: 34
  year: 2016
  ident: 10.1016/j.fuel.2022.123971_b0245
  article-title: Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2015.09.036
– volume: 87
  start-page: 3077
  year: 2008
  ident: 10.1016/j.fuel.2022.123971_b0030
  article-title: Development of a new proximate analysis based correlation to predict calorific value of coal
  publication-title: Fuel
  doi: 10.1016/j.fuel.2008.04.008
– volume: 32
  start-page: 145
  year: 2020
  ident: 10.1016/j.fuel.2022.123971_b0100
  article-title: Makine Öğrenmesi ile Kısa ve Elemental Analiz Kullanarak Katı Yakıtların Üst Isı Değerinin Tahmin Edilmesi
  publication-title: Int J Adv Eng Pure Sci
– volume: 30
  start-page: 197
  year: 2018
  ident: 10.1016/j.fuel.2022.123971_b0220
  article-title: Multiple predicting K-fold cross-validation for model selection
  publication-title: J Nonparametr Stat
  doi: 10.1080/10485252.2017.1404598
– ident: 10.1016/j.fuel.2022.123971_b0125
– volume: 38
  start-page: 2693
  year: 2016
  ident: 10.1016/j.fuel.2022.123971_b0230
  article-title: Calculation of higher heating values of fatty acids
  publication-title: Energy Sources, Part A Recover Util Environ Eff
– volume: 222
  start-page: 1
  year: 2018
  ident: 10.1016/j.fuel.2022.123971_b0055
  article-title: Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network-based fuzzy partial least squares coupled with principle component analysis (PCA-INFPLS)
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.02.126
– volume: 87
  year: 2021
  ident: 10.1016/j.fuel.2022.123971_b0190
  article-title: Experimental study on erosion behavior of fracturing pipeline involving tensile stress and erosion prediction using random forest regression
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2020.103760
– volume: 90
  start-page: 1128
  year: 2010
  ident: 10.1016/j.fuel.2022.123971_b0240
  article-title: Prediction of higher heating values of biomass from proximate and ultimate analyses
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.11.031
– ident: 10.1016/j.fuel.2022.123971_b0195
  doi: 10.1007/978-3-642-21551-3_33
– volume: 283
  year: 2021
  ident: 10.1016/j.fuel.2022.123971_b0180
  article-title: Machine learning based modelling for lower heating value prediction of municipal solid waste
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118906
– volume: 193
  start-page: 315
  year: 2017
  ident: 10.1016/j.fuel.2022.123971_b0225
  article-title: Prediction of elemental composition of coal using proximate analysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.12.044
– volume: 107
  start-page: 235
  year: 2017
  ident: 10.1016/j.fuel.2022.123971_b0010
  article-title: Biomass energy potential and utilization in Turkey
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.02.008
– volume: 9
  start-page: 28
  issue: 1
  year: 2016
  ident: 10.1016/j.fuel.2022.123971_b0255
  article-title: Effects of Oxygen Content of Fuels on Combustion and Emissions of Diesel Engines
  publication-title: Energies
  doi: 10.3390/en9010028
– volume: 476–477
  start-page: 189
  year: 2014
  ident: 10.1016/j.fuel.2022.123971_b0205
  article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain)
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2014.01.001
– volume: 52
  start-page: 1650
  year: 2008
  ident: 10.1016/j.fuel.2022.123971_b0080
  article-title: Adjusted R2-type measures for Tweedie models
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2007.05.017
– volume: 99
  start-page: 55
  year: 2012
  ident: 10.1016/j.fuel.2022.123971_b0050
  article-title: Estimation of higher heating value of biomass from proximate analysis: A new approach
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.04.015
– volume: 65
  start-page: 97
  year: 2017
  ident: 10.1016/j.fuel.2022.123971_b0210
  article-title: Parametric methods for comparing the performance of two classification algorithms evaluated by k-fold cross validation on multiple data sets
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.12.018
– start-page: 189
  year: 2014
  ident: 10.1016/j.fuel.2022.123971_b0025
  article-title: Application of Hydrothermal Reactions to Biomass Conversion
  publication-title: Hydrothermal Liq Biomass
– volume: 257
  year: 2019
  ident: 10.1016/j.fuel.2022.123971_b0115
  article-title: Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115931
– ident: 10.1016/j.fuel.2022.123971_b0005
  doi: 10.17798/bitlisfen.315118
– ident: 10.1016/j.fuel.2022.123971_b0130
– volume: 13
  start-page: e0194889
  issue: 3
  year: 2018
  ident: 10.1016/j.fuel.2022.123971_b0160
  article-title: Statistical and Machine Learning forecasting methods: Concerns and ways forward
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0194889
– ident: 10.1016/j.fuel.2022.123971_b0095
– volume: 266
  start-page: 117066
  year: 2020
  ident: 10.1016/j.fuel.2022.123971_b0185
  article-title: Classification of solid fuels with machine learning
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117066
– volume: 70
  start-page: 183
  year: 2014
  ident: 10.1016/j.fuel.2022.123971_b0105
  article-title: Model detection for functional polynomial regression
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.09.007
– volume: 18
  start-page: 91
  year: 2018
  ident: 10.1016/j.fuel.2022.123971_b0075
  article-title: User’s guide to correlation coefficients
  publication-title: Turkish J Emerg Med
  doi: 10.1016/j.tjem.2018.08.001
– volume: 265
  year: 2020
  ident: 10.1016/j.fuel.2022.123971_b0250
  article-title: Prediction of higher heating values of biochar from proximate and ultimate analysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116925
– volume: 324
  start-page: 012049
  year: 2018
  ident: 10.1016/j.fuel.2022.123971_b0085
  article-title: Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899X/324/1/012049
– volume: 84
  start-page: 487
  year: 2005
  ident: 10.1016/j.fuel.2022.123971_b0060
  article-title: A correlation for calculating HHV from proximate analysis of solid fuels
  publication-title: Fuel
  doi: 10.1016/j.fuel.2004.10.010
– volume: 80
  start-page: 1567
  year: 2001
  ident: 10.1016/j.fuel.2022.123971_b0035
  article-title: Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis
  publication-title: Fuel
  doi: 10.1016/S0016-2361(01)00034-5
– volume: 188
  year: 2019
  ident: 10.1016/j.fuel.2022.123971_b0045
  article-title: A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116077
– volume: 24
  start-page: 445
  year: 2015
  ident: 10.1016/j.fuel.2022.123971_b0110
  article-title: A polynomial regression model for stabilized turbulent confined jet diffusion flames using bluff body burners
  publication-title: Egypt J Pet
  doi: 10.1016/j.ejpe.2015.06.001
– volume: 86
  start-page: 1710
  year: 2007
  ident: 10.1016/j.fuel.2022.123971_b0065
  article-title: A correlation for calculating elemental composition from proximate analysis of biomass materials
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.12.029
– ident: 10.1016/j.fuel.2022.123971_b0175
– volume: 81
  start-page: 1051
  year: 2002
  ident: 10.1016/j.fuel.2022.123971_b0040
  article-title: A unified correlation for estimating HHV of solid, liquid and gaseous fuels
  publication-title: Fuel
  doi: 10.1016/S0016-2361(01)00131-4
– volume: 6
  start-page: 3
  year: 1984
  ident: 10.1016/j.fuel.2022.123971_b0015
  article-title: Biomass for energy: the environmental issues
  publication-title: Biomass
  doi: 10.1016/0144-4565(84)90003-9
– volume: 41
  start-page: 1955
  year: 2008
  ident: 10.1016/j.fuel.2022.123971_b0150
  article-title: Comparison of decision tree methods for finding active objects
  publication-title: Adv Sp Res
  doi: 10.1016/j.asr.2007.07.020
– volume: 90
  start-page: 476
  year: 2017
  ident: 10.1016/j.fuel.2022.123971_b0070
  article-title: Genetic programming based high performing correlations for prediction of higher heating value of coals of different ranks and from diverse geographies
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2016.03.002
– volume: 1
  start-page: 81
  year: 1986
  ident: 10.1016/j.fuel.2022.123971_b0155
  article-title: Induction of decision trees
  publication-title: Mach Learn
  doi: 10.1007/BF00116251
– start-page: 149
  year: 2010
  ident: 10.1016/j.fuel.2022.123971_b0145
  article-title: Classification Trees
– volume: 4
  start-page: 212
  year: 2016
  ident: 10.1016/j.fuel.2022.123971_b0200
  article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data
  publication-title: Crop J
  doi: 10.1016/j.cj.2016.01.008
– volume: 6
  start-page: 1939
  year: 2005
  ident: 10.1016/j.fuel.2022.123971_b0165
  article-title: A Unifying View of Sparse Approximate Gaussian Process Regression
  publication-title: J Mach Learn Res
– volume: 135
  year: 2021
  ident: 10.1016/j.fuel.2022.123971_b0020
  article-title: Bioenergy technologies, uses, market and future trends with Austria as a case study
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.110237
– year: 2006
  ident: 10.1016/j.fuel.2022.123971_b0170
– volume: 36
  start-page: 348
  year: 2011
  ident: 10.1016/j.fuel.2022.123971_b0090
  article-title: Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation
  publication-title: Energy
  doi: 10.1016/j.energy.2010.10.032
– year: 2000
  ident: 10.1016/j.fuel.2022.123971_b0135
– volume: 100
  start-page: 327
  year: 2019
  ident: 10.1016/j.fuel.2022.123971_b0140
  article-title: A heating value estimation of refuse derived fuel using the genetic programming model
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2019.09.035
– volume: 171
  year: 2020
  ident: 10.1016/j.fuel.2022.123971_b0215
  article-title: Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2019.109203
– start-page: 1
  year: 2013
  ident: 10.1016/j.fuel.2022.123971_b0120
  article-title: SVM kernel functions for classification
– volume: 89
  start-page: 913
  year: 2010
  ident: 10.1016/j.fuel.2022.123971_b0260
  article-title: An overview of the chemical composition of biomass
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.10.022
SSID ssj0007854
Score 2.5827584
Snippet •HHV of fuels are estimated from ultimate analysis on a dry, ash-free basis.•Performance of several machine learning algorithms are evaluated.•Van Krevelen...
Higher heating value (HHV) is one of the most important parameters to consider while obtaining energy efficiently from fuels. It provides means to estimate the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123971
SubjectTerms Algae
Algorithms
Biomass
Calorific value
Charcoal
Computer applications
Datasets
Fossil fuels
Fuel oils
Fuel technology
Gaseous fuels
Gasoline
Heating
Higher heating value
Learning algorithms
Machine learning
Mathematical models
Municipal solid waste
Municipal waste management
Natural gas
Performance evaluation
Polynomials
Regression
Regression analysis
Solid waste management
Statistical analysis
Title A comparison of machine learning algorithms for estimation of higher heating values of biomass and fossil fuels from ultimate analysis
URI https://dx.doi.org/10.1016/j.fuel.2022.123971
https://www.proquest.com/docview/2673620468
Volume 320
WOSCitedRecordID wos000806782500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE9RKGgPiIvlyK_Yu8cIJWpRlCKRVulptdnYqZs0CWkSVfwA_g__kJl92FEFERy4WJF3vXY8n2dmd7-ZIeRDNgKzknPpR3khYYKi4JNCkmOBxrtQYEB1OZ-LXtbvs-GQf2k0frpYmO0sm8_Z3R1f_ldRwzkQNobO_oO4q0HhBPwGocMRxA7HvxJ82_LKbW1B70bTJXNXH2LiydlksSrXVyYVg4dpNm5qx9HwPlBFY1_MBW7S0mKcPjjaerOhAMtazrxiA4bVBKggLREGwb0Ik-Rk1-ntQj-9HIEluA2Zvlp-uJRT7b6eyO22shCnGCavl2rz1dprT8sKwZeARN1y9n2yqc5-leNyupjMNmYkxzOyixmRJr6acE6zwlZF2VzsKu0w9TFHjDFZRk-zLPaz0OQZdoo8joIdVRz-1kCYtYrrJr6hJj5BE0w3z8LaHDoKQP9MdM97PTHoDAcfl998LFSGG_q2assDchhlLQ6K9LB92hl-rsx_xlom9bd9ahupZUiF92_7J2_onl-gnZ3BU_LEzlJo26DrGWnk8-fk8U7uyhfkR5vWOKOLglqcUYczWuOMgtBpjTPsbXBGLc6owRk2WJxRwBk1OKMaZxRxRh3OqMPZS3Le7Qw-nfi2qIev4oit_VgVrSRVI8YLcHbDcajCJE95kGRxGijOZAITqThvyWiUca5klLJIQod4rCsjJPErcjBfzPPXhEoWj5OAx7xQMO9IExYUCsvnjFAv5WlwREL3coWyGe-x8MpMOGrjtcB_IFAgwgjkiHjVNUuT72Vv75aTmbAeq_FEBeBt73XHTsDCqo5bESHFMgqSlL3Z3_yWPKq_nWNysF5t8nfkodquy9vVe4vHX6xYwl4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+machine+learning+algorithms+for+estimation+of+higher+heating+values+of+biomass+and+fossil+fuels+from+ultimate+analysis&rft.jtitle=Fuel+%28Guildford%29&rft.au=Yaka%2C+Havva&rft.au=Insel%2C+Mert+Akin&rft.au=Yucel%2C+Ozgun&rft.au=Sadikoglu%2C+Hasan&rft.date=2022-07-15&rft.pub=Elsevier+BV&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=320&rft.spage=1&rft_id=info:doi/10.1016%2Fj.fuel.2022.123971&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon