An effective dynamic service composition reconfiguration approach when service exceptions occur in real-life cloud manufacturing

•A dynamic service composition reconfiguration model when service exceptions occur under practical constraints(DSCRWECPC) in real-life CMfg is established.•DSCRWECPC considers service exceptions, the strict completion time constraint of original CMSC, service occupancy time constraint, and the impac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Robotics and computer-integrated manufacturing Ročník 71; s. 102143
Hlavní autoři: Wang, Yankai, Wang, Shilong, Kang, Ling, Wang, Sibao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.10.2021
Elsevier BV
Témata:
ISSN:0736-5845, 1879-2537
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A dynamic service composition reconfiguration model when service exceptions occur under practical constraints(DSCRWECPC) in real-life CMfg is established.•DSCRWECPC considers service exceptions, the strict completion time constraint of original CMSC, service occupancy time constraint, and the impact on service quality due to the reconfiguration.•An improved HHO(SCRIHHO) is developed through well-designed strategies aiming at the nature of the DSCRWECPC.•Results of numerical experiments and practical applications verify SCRIHHO is superior to PSO and GWO in tackling the real-world DSCRWECPC. Cloud Manufacturing Service Composition (CMSC), as one of the key issues of Cloud Manufacturing (CMfg), has already attracted much attention. Existing researches on CMSC mainly focus on the optimization efficiency in ideal conditions, while scarcely focus on how to efficiently reconfigure CMSC when service exceptions occur. Uncertain service exceptions often occur during CMSC's execution in real-life CMfg. Thus, it is an urgent issue to perform an adjustment for CMSC to continue to complete the processing task. Besides, some practical constraints are non-negligible in real-world CMfg. Thus, it is necessary to consider them when reconfiguring CMSC. To bridge these gaps, this paper proposes a dynamic service composition reconfiguration model when service exceptions occur under practical constraints (DSCRWECPC). This model redefines optimization objectives, including machining quality, service quality, and cost. Besides, DSCRWECPC considers service exceptions, the cloud manufacturing service occupancy time constraint, the strict time constraint of original CMSC, and dynamic service quality change as its practical constraints. To solve this model, this paper proposes a service composition reconfiguration algorithm (SCRIHHO) based on the strengthened Harris Hawks Optimizer (HHO). Finally, to certify SCRIHHO's performance, this paper conducts numerical experiments and the case application to perform comparisons between SCRIHHO and other algorithms (Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO)). Results showed SCRIHHO in this paper is superior to PSO, GWO when tackling the practical DSCRWECPC in CMfg.
AbstractList •A dynamic service composition reconfiguration model when service exceptions occur under practical constraints(DSCRWECPC) in real-life CMfg is established.•DSCRWECPC considers service exceptions, the strict completion time constraint of original CMSC, service occupancy time constraint, and the impact on service quality due to the reconfiguration.•An improved HHO(SCRIHHO) is developed through well-designed strategies aiming at the nature of the DSCRWECPC.•Results of numerical experiments and practical applications verify SCRIHHO is superior to PSO and GWO in tackling the real-world DSCRWECPC. Cloud Manufacturing Service Composition (CMSC), as one of the key issues of Cloud Manufacturing (CMfg), has already attracted much attention. Existing researches on CMSC mainly focus on the optimization efficiency in ideal conditions, while scarcely focus on how to efficiently reconfigure CMSC when service exceptions occur. Uncertain service exceptions often occur during CMSC's execution in real-life CMfg. Thus, it is an urgent issue to perform an adjustment for CMSC to continue to complete the processing task. Besides, some practical constraints are non-negligible in real-world CMfg. Thus, it is necessary to consider them when reconfiguring CMSC. To bridge these gaps, this paper proposes a dynamic service composition reconfiguration model when service exceptions occur under practical constraints (DSCRWECPC). This model redefines optimization objectives, including machining quality, service quality, and cost. Besides, DSCRWECPC considers service exceptions, the cloud manufacturing service occupancy time constraint, the strict time constraint of original CMSC, and dynamic service quality change as its practical constraints. To solve this model, this paper proposes a service composition reconfiguration algorithm (SCRIHHO) based on the strengthened Harris Hawks Optimizer (HHO). Finally, to certify SCRIHHO's performance, this paper conducts numerical experiments and the case application to perform comparisons between SCRIHHO and other algorithms (Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO)). Results showed SCRIHHO in this paper is superior to PSO, GWO when tackling the practical DSCRWECPC in CMfg.
Cloud Manufacturing Service Composition (CMSC), as one of the key issues of Cloud Manufacturing (CMfg), has already attracted much attention. Existing researches on CMSC mainly focus on the optimization efficiency in ideal conditions, while scarcely focus on how to efficiently reconfigure CMSC when service exceptions occur. Uncertain service exceptions often occur during CMSC's execution in real-life CMfg. Thus, it is an urgent issue to perform an adjustment for CMSC to continue to complete the processing task. Besides, some practical constraints are non-negligible in real-world CMfg. Thus, it is necessary to consider them when reconfiguring CMSC. To bridge these gaps, this paper proposes a dynamic service composition reconfiguration model when service exceptions occur under practical constraints (DSCRWECPC). This model redefines optimization objectives, including machining quality, service quality, and cost. Besides, DSCRWECPC considers service exceptions, the cloud manufacturing service occupancy time constraint, the strict time constraint of original CMSC, and dynamic service quality change as its practical constraints. To solve this model, this paper proposes a service composition reconfiguration algorithm (SCRIHHO) based on the strengthened Harris Hawks Optimizer (HHO). Finally, to certify SCRIHHO's performance, this paper conducts numerical experiments and the case application to perform comparisons between SCRIHHO and other algorithms (Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO)). Results showed SCRIHHO in this paper is superior to PSO, GWO when tackling the practical DSCRWECPC in CMfg.
ArticleNumber 102143
Author Kang, Ling
Wang, Shilong
Wang, Sibao
Wang, Yankai
Author_xml – sequence: 1
  givenname: Yankai
  surname: Wang
  fullname: Wang, Yankai
– sequence: 2
  givenname: Shilong
  surname: Wang
  fullname: Wang, Shilong
  email: slwang@cqu.edu.cn
– sequence: 3
  givenname: Ling
  surname: Kang
  fullname: Kang, Ling
– sequence: 4
  givenname: Sibao
  surname: Wang
  fullname: Wang, Sibao
BookMark eNp9kD1v2zAQhonAAeI4-QOZCHSWyw_JlIAsgdGmBQJ0aWeCoo7JGRKpkJLbbP3ppeyiQ4dMxPHuOfJ9rsnKBw-E3HG25YzvPh620eKwFUzwfCF4KS_ImteqKUQl1YqsmZK7oqrL6opcp3RgjImykmvy-8FTcA7shEeg3Zs3A1qaIB7RArVhGEPCCYOnEWzwDp_naE61GccYjH2hP1_A_yPgl4Vx6ScarJ0jxYU0fdGjy_v6MHd0MH52xk5zRP98Qy6d6RPc_j035MfnT9_3X4qnb49f9w9PhZWingrZKsfAKOWUaVwnRU7NTAOi5aUyXHSNrIHLuuZS7trWSNZy1ggwpShL2Tq5IR_Oe_OvX2dIkz6EOfr8pBZVxXY1U0zkqfo8ZWNIKYLTFqdT3ika7DVnevGtD3rxrRff-uw7o-I_dIw4mPj2PnR_hiBHPyJEnSyCt9Bh9j3pLuB7-B-vuZ4F
CitedBy_id crossref_primary_10_1016_j_jmsy_2023_11_016
crossref_primary_10_1109_TII_2022_3169979
crossref_primary_10_1016_j_jmsy_2021_07_012
crossref_primary_10_1007_s00607_024_01286_x
crossref_primary_10_1016_j_eswa_2024_124968
crossref_primary_10_1007_s00170_024_13704_7
crossref_primary_10_1016_j_aei_2023_101984
crossref_primary_10_1016_j_jmsy_2024_12_007
crossref_primary_10_1016_j_jmsy_2025_01_016
crossref_primary_10_1016_j_knosys_2025_113335
crossref_primary_10_1016_j_rcim_2023_102603
crossref_primary_10_3390_app13137418
crossref_primary_10_1016_j_eswa_2023_122823
crossref_primary_10_1016_j_rcim_2022_102323
crossref_primary_10_3390_e25010045
crossref_primary_10_1109_TII_2022_3171338
crossref_primary_10_1016_j_asoc_2022_109530
crossref_primary_10_1007_s11227_024_06607_7
crossref_primary_10_1016_j_cor_2022_106095
crossref_primary_10_1016_j_rcim_2025_103044
crossref_primary_10_1016_j_aei_2023_101937
crossref_primary_10_1080_00207543_2022_2070880
crossref_primary_10_1109_TII_2021_3137831
crossref_primary_10_1002_nav_70009
crossref_primary_10_1016_j_rcim_2022_102491
crossref_primary_10_1016_j_future_2023_01_018
crossref_primary_10_1109_ACCESS_2023_3278594
crossref_primary_10_1016_j_aei_2023_102343
crossref_primary_10_1016_j_rcim_2023_102712
crossref_primary_10_1016_j_asoc_2021_108053
crossref_primary_10_1016_j_rcim_2021_102256
crossref_primary_10_1080_00207543_2023_2230317
crossref_primary_10_1016_j_knosys_2021_107607
crossref_primary_10_1016_j_rcim_2025_103007
crossref_primary_10_1016_j_jmsy_2022_05_008
Cites_doi 10.1016/j.rcim.2019.101840
10.1007/s00170-015-7350-5
10.1007/s00170-017-1167-3
10.1016/j.future.2019.02.028
10.3139/120.111379
10.1016/j.rcim.2019.01.010
10.1080/00207543.2017.1402137
10.3139/120.111378
10.1016/j.rcim.2020.101970
10.1007/s00170-015-7961-x
10.1007/s10489-017-0927-y
10.1080/0951192X.2018.1493230
10.1007/s10845-014-0897-4
10.1007/s10845-015-1184-8
10.1080/00207540802275871
10.1007/s00170-017-1055-x
10.1016/j.ejor.2009.02.025
10.1016/j.rcim.2020.101989
10.1016/j.cie.2015.12.015
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Oct 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 2021
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.rcim.2021.102143
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1879-2537
ExternalDocumentID 10_1016_j_rcim_2021_102143
S0736584521000284
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-3b7f0ea77f7a9fd320160a9e2b147a12d938e13881336bba30b1092ea42443bf3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663337700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0736-5845
IngestDate Sun Nov 30 04:28:29 EST 2025
Sat Nov 29 07:14:58 EST 2025
Tue Nov 18 22:35:08 EST 2025
Fri Feb 23 02:44:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cloud manufacturing service composition (CMSC)
Service composition reconfiguration algorithm based on improved Harris hawks optimization(SCRIHHO)
Practical application
Practical constraints
Service exceptions
Dynamic service composition reconfiguration model when service exceptions occur under practical constraints (DSCRWECPC)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-3b7f0ea77f7a9fd320160a9e2b147a12d938e13881336bba30b1092ea42443bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2550680702
PQPubID 2045404
ParticipantIDs proquest_journals_2550680702
crossref_citationtrail_10_1016_j_rcim_2021_102143
crossref_primary_10_1016_j_rcim_2021_102143
elsevier_sciencedirect_doi_10_1016_j_rcim_2021_102143
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Robotics and computer-integrated manufacturing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Tao, Zhao, Yefa, Zhou (bib0013) 2010; 201
Hu, Zhu, Zhang, Lui, Wang (bib0023) 2019; 58
Bouzary, Chen (bib0005) 2020; 66
W. Ma, Z. Wang, Y. Zhao, Optimizing services composition in cloud manufacturing based on improved ant colony algorithm, 22 (2016) 113–121. https://doi.org/ 10.13196/j.cims.2016.01.011.
Yu, Zhang, Xu, Ji, Yu (bib0012) 2018; 29
Dong, Wu, Du, Zha, Yuan (bib0022) 2018; 29
Wang, Dai, Zhang, Zhang, Xu, Chen (bib0011) 2018; 31
Khalfallah, Figay, Da Silva, Ghodous (bib0016) 2016; 27
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (bib0032) 2019; 97
Laili, Lin, Tang (bib0003) 2020
Yuan, Zhou, Cai, Sun, Gu (bib0006) 2020; 61
Zhao, Wang, Zhang (bib0002) 2020; 65
Wang, Wang, Yang, Gao, Wang (bib0018) 2020
Wei, Zhao, Shu (bib0019) 2012; 3
Cao, Wang, Kang, Gao (bib0014) 2016; 82
Yıldız, Yıldız, Sait, Bureerat, Pholdee (bib0034) 2019; 61
Huang (bib0031) 2016; 84
Zhou, Yao (bib0004) 2017; 47
Wu, Ying, Jia (bib0026) 2011; 4
Du, Guo (bib0028) 2016; 94
Laili, Lin, Tang (bib0015) 2020
Environment (bib0020) 2014
Gao, Wang, Kang, Shu, Yang (bib0021) 2018
Zhou (bib0030) 2012; 18
Li, Zhang, Wang, Tao, Cao, Jiang, Song, Chai (bib0001) 2010; 16
Liu, Song, Chu, Hou, Peng (bib0024) 2016; 32
Wang, Guo, Guo, Du, Li, Wu (bib0017) 2018; 94
Yuan, Zhou, Cai, Sun, Gu (bib0009) 2020; 61
Tao, Hu, Zhao, Zhou (bib0029) 2010
Li, Yao (bib0010) 2018; 10
Wei, Liang (bib0025) 2018
Akbaripour, Houshmand, van Woensel, Mutlu (bib0008) 2018; 95
Yang, Dai, Liu, Zhang (bib0027) 2011; 41
Yıldız, Yıldız (bib0033) 2019; 61
Zhang, Yang, Zhang, Yu, Li (bib0007) 2018; 56
Heidari (10.1016/j.rcim.2021.102143_bib0032) 2019; 97
Wang (10.1016/j.rcim.2021.102143_bib0017) 2018; 94
Wang (10.1016/j.rcim.2021.102143_bib0018) 2020
Li (10.1016/j.rcim.2021.102143_bib0010) 2018; 10
Zhou (10.1016/j.rcim.2021.102143_bib0030) 2012; 18
Laili (10.1016/j.rcim.2021.102143_bib0003) 2020
Khalfallah (10.1016/j.rcim.2021.102143_bib0016) 2016; 27
Yuan (10.1016/j.rcim.2021.102143_bib0006) 2020; 61
Zhou (10.1016/j.rcim.2021.102143_bib0004) 2017; 47
Gao (10.1016/j.rcim.2021.102143_bib0021) 2018
Hu (10.1016/j.rcim.2021.102143_bib0023) 2019; 58
Bouzary (10.1016/j.rcim.2021.102143_bib0005) 2020; 66
Cao (10.1016/j.rcim.2021.102143_bib0014) 2016; 82
Huang (10.1016/j.rcim.2021.102143_bib0031) 2016; 84
Yıldız (10.1016/j.rcim.2021.102143_bib0033) 2019; 61
10.1016/j.rcim.2021.102143_bib0035
Liu (10.1016/j.rcim.2021.102143_bib0024) 2016; 32
Laili (10.1016/j.rcim.2021.102143_bib0015) 2020
Dong (10.1016/j.rcim.2021.102143_bib0022) 2018; 29
Wang (10.1016/j.rcim.2021.102143_bib0011) 2018; 31
Yuan (10.1016/j.rcim.2021.102143_bib0009) 2020; 61
Li (10.1016/j.rcim.2021.102143_bib0001) 2010; 16
Yang (10.1016/j.rcim.2021.102143_bib0027) 2011; 41
Yıldız (10.1016/j.rcim.2021.102143_bib0034) 2019; 61
Tao (10.1016/j.rcim.2021.102143_bib0029) 2010
Zhao (10.1016/j.rcim.2021.102143_bib0002) 2020; 65
Du (10.1016/j.rcim.2021.102143_bib0028) 2016; 94
Tao (10.1016/j.rcim.2021.102143_bib0013) 2010; 201
Wei (10.1016/j.rcim.2021.102143_bib0019) 2012; 3
Environment (10.1016/j.rcim.2021.102143_bib0020) 2014
Yu (10.1016/j.rcim.2021.102143_bib0012) 2018; 29
Zhang (10.1016/j.rcim.2021.102143_bib0007) 2018; 56
Wei (10.1016/j.rcim.2021.102143_bib0025) 2018
Akbaripour (10.1016/j.rcim.2021.102143_bib0008) 2018; 95
Wu (10.1016/j.rcim.2021.102143_bib0026) 2011; 4
References_xml – year: 2014
  ident: bib0020
  article-title: Exception Handling Model of Manufacturing Equipment Cloud Service for
– volume: 4
  start-page: 170
  year: 2011
  end-page: 174
  ident: bib0026
  article-title: Exception Handling Model Based on Colored Petri Net in Service-oriented Software
  publication-title: Computer Science
– volume: 84
  start-page: 183
  year: 2016
  end-page: 196
  ident: bib0031
  article-title: Service requirement conflict resolution based on ant colony optimization in group-enterprises-oriented cloud manufacturing
  publication-title: Int J Adv Manuf Technol
– year: 2018
  ident: bib0021
  article-title: Diagnosis and Handling of Exception in Cloud Manufacturing
– start-page: 61
  year: 2020
  ident: bib0003
  article-title: Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 61
  year: 2020
  ident: bib0009
  article-title: Service composition model and method in cloud manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: bib0032
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Futur. Gener. Comput. Syst.
– volume: 65
  year: 2020
  ident: bib0002
  article-title: Service agent networks in cloud manufacturing: Modeling and evaluation based on set-pair analysis
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 29
  start-page: 1193
  year: 2018
  end-page: 1200
  ident: bib0022
  article-title: Resource Abnormal Management Method of Unsteady Processes of Cloud Manufacturing Services
  publication-title: Zhongguo Jixie Gongcheng/China Mech. Eng.
– volume: 94
  start-page: 158
  year: 2016
  end-page: 169
  ident: bib0028
  article-title: Production planning conflict resolution of complex product system in group manufacturing: A novel hybrid approach using ant colony optimization and Shapley value
  publication-title: Comput. Ind. Eng.
– year: 2010
  ident: bib0029
  article-title: Study of failure detection and recovery in manufacturing grid resource service scheduling
  publication-title: Int J of Prod Res
– volume: 16
  start-page: 1
  year: 2010
  end-page: 7
  ident: bib0001
  article-title: Cloud Manufacturing: a New Service-oriented Manufacturing Model
  publication-title: CIMS
– volume: 32
  year: 2016
  ident: bib0024
  article-title: An Approach for Multipath Cloud Manufacturing Services Dynamic Composition: MUTIPATH CLOUD MANUFACTURING SERVICES COMPOSITION
  publication-title: Int. J. Intell. Syst.
– volume: 41
  start-page: 453
  year: 2011
  end-page: 457
  ident: bib0027
  article-title: Self-adaptation oriented dynamic adjustment method for composite services, Dongnan Daxue Xuebao (Ziran Kexue Ban)
  publication-title: Journal Southeast Univ. (Natural Sci. Ed.
– volume: 18
  year: 2012
  ident: bib0030
  article-title: Capability driven project monitoring and management mechanism for cloud manufacturing
  publication-title: Comput Integr Manuf Syst
– volume: 95
  start-page: 43
  year: 2018
  end-page: 70
  ident: bib0008
  article-title: Cloud manufacturing service selection optimization and scheduling with transportation considerations: mixed-integer programming models
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 29
  start-page: 1351
  year: 2018
  end-page: 1361
  ident: bib0012
  article-title: Data mining based multi-level aggregate service planning for cloud manufacturing
  publication-title: J. Intell. Manuf.
– volume: 3
  start-page: 1
  year: 2012
  end-page: 47
  ident: bib0019
  article-title: Adaptive Adjustment of Composite Cloud Service Based on QoS for Cloud Manufacturing Environment
  publication-title: Journal of Lanzhou University (Natural Sciences)
– reference: W. Ma, Z. Wang, Y. Zhao, Optimizing services composition in cloud manufacturing based on improved ant colony algorithm, 22 (2016) 113–121. https://doi.org/ 10.13196/j.cims.2016.01.011.
– volume: 61
  start-page: 735
  year: 2019
  end-page: 743
  ident: bib0034
  article-title: A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems
  publication-title: Mater. Test.
– volume: 31
  start-page: 1034
  year: 2018
  end-page: 1047
  ident: bib0011
  article-title: Urgent task-aware cloud manufacturing service composition using two-stage biogeography-based optimisation
  publication-title: Int. J. Comput. Integr. Manuf.
– volume: 201
  start-page: 129
  year: 2010
  end-page: 143
  ident: bib0013
  article-title: Correlation-aware resource service composition and optimal-selection in manufacturing grid
  publication-title: Eur. J. Oper. Res.
– year: 2020
  ident: bib0018
  article-title: An effective adaptive adjustment method for service composition exception handling in cloud manufacturing
  publication-title: J. Intell. Manuf.
– volume: 58
  start-page: 13
  year: 2019
  end-page: 20
  ident: bib0023
  article-title: Scheduling of manufacturers based on chaos optimization algorithm in cloud manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 66
  year: 2020
  ident: bib0005
  article-title: A classification-based approach for integrated service matching and composition in cloud manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
– start-page: 61
  year: 2020
  ident: bib0015
  article-title: Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 61
  start-page: 744
  year: 2019
  end-page: 748
  ident: bib0033
  article-title: The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components
  publication-title: Mater. Test.
– volume: 10
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib0010
  article-title: Cloud manufacturing service composition and formal verification based on extended process calculus
  publication-title: Adv. Mech. Eng.
– volume: 82
  start-page: 235
  year: 2016
  end-page: 251
  ident: bib0014
  article-title: A TQCS-based service selection and scheduling strategy in cloud manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 2018
  ident: bib0025
  article-title: A product platform architecture for cloud manufacturing
  publication-title: Proc. Int. Conf. Comput. Ind. Eng. CIE.
– volume: 27
  start-page: 119
  year: 2016
  end-page: 129
  ident: bib0016
  article-title: A cloud-based platform to ensure interoperability in aerospace industry
  publication-title: J. Intell. Manuf.
– volume: 61
  year: 2020
  ident: bib0006
  article-title: Service composition model and method in cloud manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 47
  start-page: 721
  year: 2017
  end-page: 742
  ident: bib0004
  article-title: Multi-objective hybrid artificial bee colony algorithm enhanced with Lévy flight and self-adaption for cloud manufacturing service composition
  publication-title: Appl. Intell.
– volume: 94
  start-page: 3519
  year: 2018
  end-page: 3535
  ident: bib0017
  article-title: Rescheduling strategy of cloud service based on shuffled frog leading algorithm and Nash equilibrium
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 56
  start-page: 4676
  year: 2018
  end-page: 4691
  ident: bib0007
  article-title: Correlation-aware manufacturing service composition model using an extended flower pollination algorithm
  publication-title: Int. J. Prod. Res.
– volume: 29
  start-page: 1193
  year: 2018
  ident: 10.1016/j.rcim.2021.102143_bib0022
  article-title: Resource Abnormal Management Method of Unsteady Processes of Cloud Manufacturing Services
  publication-title: Zhongguo Jixie Gongcheng/China Mech. Eng.
– volume: 61
  year: 2020
  ident: 10.1016/j.rcim.2021.102143_bib0009
  article-title: Service composition model and method in cloud manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.101840
– volume: 61
  year: 2020
  ident: 10.1016/j.rcim.2021.102143_bib0006
  article-title: Service composition model and method in cloud manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.101840
– volume: 82
  start-page: 235
  year: 2016
  ident: 10.1016/j.rcim.2021.102143_bib0014
  article-title: A TQCS-based service selection and scheduling strategy in cloud manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7350-5
– volume: 4
  start-page: 170
  year: 2011
  ident: 10.1016/j.rcim.2021.102143_bib0026
  article-title: Exception Handling Model Based on Colored Petri Net in Service-oriented Software
  publication-title: Computer Science
– volume: 95
  start-page: 43
  year: 2018
  ident: 10.1016/j.rcim.2021.102143_bib0008
  article-title: Cloud manufacturing service selection optimization and scheduling with transportation considerations: mixed-integer programming models
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-1167-3
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.rcim.2021.102143_bib0032
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– start-page: 61
  year: 2020
  ident: 10.1016/j.rcim.2021.102143_bib0015
  article-title: Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 61
  start-page: 744
  year: 2019
  ident: 10.1016/j.rcim.2021.102143_bib0033
  article-title: The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components
  publication-title: Mater. Test.
  doi: 10.3139/120.111379
– volume: 32
  year: 2016
  ident: 10.1016/j.rcim.2021.102143_bib0024
  article-title: An Approach for Multipath Cloud Manufacturing Services Dynamic Composition: MUTIPATH CLOUD MANUFACTURING SERVICES COMPOSITION
  publication-title: Int. J. Intell. Syst.
– year: 2014
  ident: 10.1016/j.rcim.2021.102143_bib0020
– volume: 58
  start-page: 13
  year: 2019
  ident: 10.1016/j.rcim.2021.102143_bib0023
  article-title: Scheduling of manufacturers based on chaos optimization algorithm in cloud manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.01.010
– volume: 16
  start-page: 1
  year: 2010
  ident: 10.1016/j.rcim.2021.102143_bib0001
  article-title: Cloud Manufacturing: a New Service-oriented Manufacturing Model
  publication-title: CIMS
– volume: 41
  start-page: 453
  year: 2011
  ident: 10.1016/j.rcim.2021.102143_bib0027
  article-title: Self-adaptation oriented dynamic adjustment method for composite services, Dongnan Daxue Xuebao (Ziran Kexue Ban)
  publication-title: Journal Southeast Univ. (Natural Sci. Ed.
– volume: 56
  start-page: 4676
  year: 2018
  ident: 10.1016/j.rcim.2021.102143_bib0007
  article-title: Correlation-aware manufacturing service composition model using an extended flower pollination algorithm
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2017.1402137
– volume: 61
  start-page: 735
  year: 2019
  ident: 10.1016/j.rcim.2021.102143_bib0034
  article-title: A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems
  publication-title: Mater. Test.
  doi: 10.3139/120.111378
– volume: 65
  year: 2020
  ident: 10.1016/j.rcim.2021.102143_bib0002
  article-title: Service agent networks in cloud manufacturing: Modeling and evaluation based on set-pair analysis
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2020.101970
– year: 2018
  ident: 10.1016/j.rcim.2021.102143_bib0025
  article-title: A product platform architecture for cloud manufacturing
  publication-title: Proc. Int. Conf. Comput. Ind. Eng. CIE.
– volume: 10
  start-page: 1
  year: 2018
  ident: 10.1016/j.rcim.2021.102143_bib0010
  article-title: Cloud manufacturing service composition and formal verification based on extended process calculus
  publication-title: Adv. Mech. Eng.
– volume: 84
  start-page: 183
  issue: 1-4
  year: 2016
  ident: 10.1016/j.rcim.2021.102143_bib0031
  article-title: Service requirement conflict resolution based on ant colony optimization in group-enterprises-oriented cloud manufacturing
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7961-x
– volume: 47
  start-page: 721
  year: 2017
  ident: 10.1016/j.rcim.2021.102143_bib0004
  article-title: Multi-objective hybrid artificial bee colony algorithm enhanced with Lévy flight and self-adaption for cloud manufacturing service composition
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-0927-y
– volume: 3
  start-page: 1
  year: 2012
  ident: 10.1016/j.rcim.2021.102143_bib0019
  article-title: Adaptive Adjustment of Composite Cloud Service Based on QoS for Cloud Manufacturing Environment
  publication-title: Journal of Lanzhou University (Natural Sciences)
– ident: 10.1016/j.rcim.2021.102143_bib0035
– volume: 31
  start-page: 1034
  year: 2018
  ident: 10.1016/j.rcim.2021.102143_bib0011
  article-title: Urgent task-aware cloud manufacturing service composition using two-stage biogeography-based optimisation
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2018.1493230
– volume: 27
  start-page: 119
  year: 2016
  ident: 10.1016/j.rcim.2021.102143_bib0016
  article-title: A cloud-based platform to ensure interoperability in aerospace industry
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-014-0897-4
– year: 2018
  ident: 10.1016/j.rcim.2021.102143_bib0021
– volume: 29
  start-page: 1351
  year: 2018
  ident: 10.1016/j.rcim.2021.102143_bib0012
  article-title: Data mining based multi-level aggregate service planning for cloud manufacturing
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-015-1184-8
– volume: 18
  issue: 7
  year: 2012
  ident: 10.1016/j.rcim.2021.102143_bib0030
  article-title: Capability driven project monitoring and management mechanism for cloud manufacturing
  publication-title: Comput Integr Manuf Syst
– year: 2010
  ident: 10.1016/j.rcim.2021.102143_bib0029
  article-title: Study of failure detection and recovery in manufacturing grid resource service scheduling
  publication-title: Int J of Prod Res
  doi: 10.1080/00207540802275871
– volume: 94
  start-page: 3519
  year: 2018
  ident: 10.1016/j.rcim.2021.102143_bib0017
  article-title: Rescheduling strategy of cloud service based on shuffled frog leading algorithm and Nash equilibrium
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-1055-x
– volume: 201
  start-page: 129
  year: 2010
  ident: 10.1016/j.rcim.2021.102143_bib0013
  article-title: Correlation-aware resource service composition and optimal-selection in manufacturing grid
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.02.025
– volume: 66
  year: 2020
  ident: 10.1016/j.rcim.2021.102143_bib0005
  article-title: A classification-based approach for integrated service matching and composition in cloud manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2020.101989
– start-page: 61
  year: 2020
  ident: 10.1016/j.rcim.2021.102143_bib0003
  article-title: Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment
  publication-title: Robot. Comput. Integr. Manuf.
– year: 2020
  ident: 10.1016/j.rcim.2021.102143_bib0018
  article-title: An effective adaptive adjustment method for service composition exception handling in cloud manufacturing
  publication-title: J. Intell. Manuf.
– volume: 94
  start-page: 158
  year: 2016
  ident: 10.1016/j.rcim.2021.102143_bib0028
  article-title: Production planning conflict resolution of complex product system in group manufacturing: A novel hybrid approach using ant colony optimization and Shapley value
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2015.12.015
SSID ssj0002453
Score 2.4691632
Snippet •A dynamic service composition reconfiguration model when service exceptions occur under practical constraints(DSCRWECPC) in real-life CMfg is...
Cloud Manufacturing Service Composition (CMSC), as one of the key issues of Cloud Manufacturing (CMfg), has already attracted much attention. Existing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102143
SubjectTerms Algorithms
Cloud manufacturing service composition (CMSC)
Composition effects
Constraint modelling
Dynamic service composition reconfiguration model when service exceptions occur under practical constraints (DSCRWECPC)
Machining
Manufacturing
Occupancy
Optimization
Particle swarm optimization
Practical application
Practical constraints
Quality of service
Reconfiguration
Service composition reconfiguration algorithm based on improved Harris hawks optimization(SCRIHHO)
Service exceptions
Title An effective dynamic service composition reconfiguration approach when service exceptions occur in real-life cloud manufacturing
URI https://dx.doi.org/10.1016/j.rcim.2021.102143
https://www.proquest.com/docview/2550680702
Volume 71
WOSCitedRecordID wos000663337700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2537
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002453
  issn: 0736-5845
  databaseCode: AIEXJ
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwN74LGAWFiQD4hL5VVtJ7F9rFBXPKqC2C4qp8hJnCVLlXT7WHrkf_HnsGM7LVWp4MAlqtyMW_X7Oh47M_MB8DLthplgWYioiFIUqISjJFIhCqKQcKUCiakVm2DDIR-PxcdW66evhbmZsLLkq5WY_leo9ZgG25TO_gPczaR6QL_WoOurhl1f_wr4XumSNExOUGYF5ztz6xLqDHKXptWp98J5cbl0JPDtxTvfv6qysVArn_jSqdJ0ObMFMHKCJkWu55tUy8ykwC5NhURd8rgZ7n6qkqrpA506AQnUtKjYZVkf7lsH9EWW32SxPXpuxBfWN793w4MdE5wXiaw2zzUIbjLk3GFbU3DzecMlMhohHTLZ5-DKumzOBCKhbR3jfbqVdXFOGe9cKuypxdXpLC1MRwKCT2uVc7peGH0ywPBDfHYxGMSj_nj0anqNjGSZebTv9FtugQPCQsHb4KD3tj9-1wQCJLBNUP2XdjVbNr1w-2P_FBdtRQh12DO6D-66_QrsWZ49AC1VHoF7XgsEuqXhCBxuNLZ8CH70StiQEDoSQkcpuEFCuEVC6EkIDQkbizUJYU1CWBhLR0JYkxD-RqVH4OKsP3r9BjmtD5RSwheIJizvKslYzqTIM0pM50MpFElwwCQmmaBcYco5pjRKEkm7Ce4KoqQp1KRJTh-DdlmV6gmAPMLa0YQZTgQJmMpkLiTPAkJkFGZ6u3AMsP-l49Q1wjd6LJPYZzxexQad2KATW3SOQaexmdo2MHvvDj2AsQtkbYAaa_LttTvxaMfOo8xjvec3-jisS57uf_sZuLP-H52A9mK2VM_B7fRmUcxnLxw5fwHVOM2q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+dynamic+service+composition+reconfiguration+approach+when+service+exceptions+occur+in+real-life+cloud+manufacturing&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Wang%2C+Yankai&rft.au=Wang%2C+Shilong&rft.au=Kang%2C+Ling&rft.au=Wang%2C+Sibao&rft.date=2021-10-01&rft.pub=Elsevier+BV&rft.issn=0736-5845&rft.eissn=1879-2537&rft.volume=71&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rcim.2021.102143&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon