An effective dynamic service composition reconfiguration approach when service exceptions occur in real-life cloud manufacturing
•A dynamic service composition reconfiguration model when service exceptions occur under practical constraints(DSCRWECPC) in real-life CMfg is established.•DSCRWECPC considers service exceptions, the strict completion time constraint of original CMSC, service occupancy time constraint, and the impac...
Uloženo v:
| Vydáno v: | Robotics and computer-integrated manufacturing Ročník 71; s. 102143 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.10.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0736-5845, 1879-2537 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A dynamic service composition reconfiguration model when service exceptions occur under practical constraints(DSCRWECPC) in real-life CMfg is established.•DSCRWECPC considers service exceptions, the strict completion time constraint of original CMSC, service occupancy time constraint, and the impact on service quality due to the reconfiguration.•An improved HHO(SCRIHHO) is developed through well-designed strategies aiming at the nature of the DSCRWECPC.•Results of numerical experiments and practical applications verify SCRIHHO is superior to PSO and GWO in tackling the real-world DSCRWECPC.
Cloud Manufacturing Service Composition (CMSC), as one of the key issues of Cloud Manufacturing (CMfg), has already attracted much attention. Existing researches on CMSC mainly focus on the optimization efficiency in ideal conditions, while scarcely focus on how to efficiently reconfigure CMSC when service exceptions occur. Uncertain service exceptions often occur during CMSC's execution in real-life CMfg. Thus, it is an urgent issue to perform an adjustment for CMSC to continue to complete the processing task. Besides, some practical constraints are non-negligible in real-world CMfg. Thus, it is necessary to consider them when reconfiguring CMSC. To bridge these gaps, this paper proposes a dynamic service composition reconfiguration model when service exceptions occur under practical constraints (DSCRWECPC). This model redefines optimization objectives, including machining quality, service quality, and cost. Besides, DSCRWECPC considers service exceptions, the cloud manufacturing service occupancy time constraint, the strict time constraint of original CMSC, and dynamic service quality change as its practical constraints. To solve this model, this paper proposes a service composition reconfiguration algorithm (SCRIHHO) based on the strengthened Harris Hawks Optimizer (HHO). Finally, to certify SCRIHHO's performance, this paper conducts numerical experiments and the case application to perform comparisons between SCRIHHO and other algorithms (Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO)). Results showed SCRIHHO in this paper is superior to PSO, GWO when tackling the practical DSCRWECPC in CMfg. |
|---|---|
| AbstractList | •A dynamic service composition reconfiguration model when service exceptions occur under practical constraints(DSCRWECPC) in real-life CMfg is established.•DSCRWECPC considers service exceptions, the strict completion time constraint of original CMSC, service occupancy time constraint, and the impact on service quality due to the reconfiguration.•An improved HHO(SCRIHHO) is developed through well-designed strategies aiming at the nature of the DSCRWECPC.•Results of numerical experiments and practical applications verify SCRIHHO is superior to PSO and GWO in tackling the real-world DSCRWECPC.
Cloud Manufacturing Service Composition (CMSC), as one of the key issues of Cloud Manufacturing (CMfg), has already attracted much attention. Existing researches on CMSC mainly focus on the optimization efficiency in ideal conditions, while scarcely focus on how to efficiently reconfigure CMSC when service exceptions occur. Uncertain service exceptions often occur during CMSC's execution in real-life CMfg. Thus, it is an urgent issue to perform an adjustment for CMSC to continue to complete the processing task. Besides, some practical constraints are non-negligible in real-world CMfg. Thus, it is necessary to consider them when reconfiguring CMSC. To bridge these gaps, this paper proposes a dynamic service composition reconfiguration model when service exceptions occur under practical constraints (DSCRWECPC). This model redefines optimization objectives, including machining quality, service quality, and cost. Besides, DSCRWECPC considers service exceptions, the cloud manufacturing service occupancy time constraint, the strict time constraint of original CMSC, and dynamic service quality change as its practical constraints. To solve this model, this paper proposes a service composition reconfiguration algorithm (SCRIHHO) based on the strengthened Harris Hawks Optimizer (HHO). Finally, to certify SCRIHHO's performance, this paper conducts numerical experiments and the case application to perform comparisons between SCRIHHO and other algorithms (Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO)). Results showed SCRIHHO in this paper is superior to PSO, GWO when tackling the practical DSCRWECPC in CMfg. Cloud Manufacturing Service Composition (CMSC), as one of the key issues of Cloud Manufacturing (CMfg), has already attracted much attention. Existing researches on CMSC mainly focus on the optimization efficiency in ideal conditions, while scarcely focus on how to efficiently reconfigure CMSC when service exceptions occur. Uncertain service exceptions often occur during CMSC's execution in real-life CMfg. Thus, it is an urgent issue to perform an adjustment for CMSC to continue to complete the processing task. Besides, some practical constraints are non-negligible in real-world CMfg. Thus, it is necessary to consider them when reconfiguring CMSC. To bridge these gaps, this paper proposes a dynamic service composition reconfiguration model when service exceptions occur under practical constraints (DSCRWECPC). This model redefines optimization objectives, including machining quality, service quality, and cost. Besides, DSCRWECPC considers service exceptions, the cloud manufacturing service occupancy time constraint, the strict time constraint of original CMSC, and dynamic service quality change as its practical constraints. To solve this model, this paper proposes a service composition reconfiguration algorithm (SCRIHHO) based on the strengthened Harris Hawks Optimizer (HHO). Finally, to certify SCRIHHO's performance, this paper conducts numerical experiments and the case application to perform comparisons between SCRIHHO and other algorithms (Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO)). Results showed SCRIHHO in this paper is superior to PSO, GWO when tackling the practical DSCRWECPC in CMfg. |
| ArticleNumber | 102143 |
| Author | Kang, Ling Wang, Shilong Wang, Sibao Wang, Yankai |
| Author_xml | – sequence: 1 givenname: Yankai surname: Wang fullname: Wang, Yankai – sequence: 2 givenname: Shilong surname: Wang fullname: Wang, Shilong email: slwang@cqu.edu.cn – sequence: 3 givenname: Ling surname: Kang fullname: Kang, Ling – sequence: 4 givenname: Sibao surname: Wang fullname: Wang, Sibao |
| BookMark | eNp9kD1v2zAQhonAAeI4-QOZCHSWyw_JlIAsgdGmBQJ0aWeCoo7JGRKpkJLbbP3ppeyiQ4dMxPHuOfJ9rsnKBw-E3HG25YzvPh620eKwFUzwfCF4KS_ImteqKUQl1YqsmZK7oqrL6opcp3RgjImykmvy-8FTcA7shEeg3Zs3A1qaIB7RArVhGEPCCYOnEWzwDp_naE61GccYjH2hP1_A_yPgl4Vx6ScarJ0jxYU0fdGjy_v6MHd0MH52xk5zRP98Qy6d6RPc_j035MfnT9_3X4qnb49f9w9PhZWingrZKsfAKOWUaVwnRU7NTAOi5aUyXHSNrIHLuuZS7trWSNZy1ggwpShL2Tq5IR_Oe_OvX2dIkz6EOfr8pBZVxXY1U0zkqfo8ZWNIKYLTFqdT3ika7DVnevGtD3rxrRff-uw7o-I_dIw4mPj2PnR_hiBHPyJEnSyCt9Bh9j3pLuB7-B-vuZ4F |
| CitedBy_id | crossref_primary_10_1016_j_jmsy_2023_11_016 crossref_primary_10_1109_TII_2022_3169979 crossref_primary_10_1016_j_jmsy_2021_07_012 crossref_primary_10_1007_s00607_024_01286_x crossref_primary_10_1016_j_eswa_2024_124968 crossref_primary_10_1007_s00170_024_13704_7 crossref_primary_10_1016_j_aei_2023_101984 crossref_primary_10_1016_j_jmsy_2024_12_007 crossref_primary_10_1016_j_jmsy_2025_01_016 crossref_primary_10_1016_j_knosys_2025_113335 crossref_primary_10_1016_j_rcim_2023_102603 crossref_primary_10_3390_app13137418 crossref_primary_10_1016_j_eswa_2023_122823 crossref_primary_10_1016_j_rcim_2022_102323 crossref_primary_10_3390_e25010045 crossref_primary_10_1109_TII_2022_3171338 crossref_primary_10_1016_j_asoc_2022_109530 crossref_primary_10_1007_s11227_024_06607_7 crossref_primary_10_1016_j_cor_2022_106095 crossref_primary_10_1016_j_rcim_2025_103044 crossref_primary_10_1016_j_aei_2023_101937 crossref_primary_10_1080_00207543_2022_2070880 crossref_primary_10_1109_TII_2021_3137831 crossref_primary_10_1002_nav_70009 crossref_primary_10_1016_j_rcim_2022_102491 crossref_primary_10_1016_j_future_2023_01_018 crossref_primary_10_1109_ACCESS_2023_3278594 crossref_primary_10_1016_j_aei_2023_102343 crossref_primary_10_1016_j_rcim_2023_102712 crossref_primary_10_1016_j_asoc_2021_108053 crossref_primary_10_1016_j_rcim_2021_102256 crossref_primary_10_1080_00207543_2023_2230317 crossref_primary_10_1016_j_knosys_2021_107607 crossref_primary_10_1016_j_rcim_2025_103007 crossref_primary_10_1016_j_jmsy_2022_05_008 |
| Cites_doi | 10.1016/j.rcim.2019.101840 10.1007/s00170-015-7350-5 10.1007/s00170-017-1167-3 10.1016/j.future.2019.02.028 10.3139/120.111379 10.1016/j.rcim.2019.01.010 10.1080/00207543.2017.1402137 10.3139/120.111378 10.1016/j.rcim.2020.101970 10.1007/s00170-015-7961-x 10.1007/s10489-017-0927-y 10.1080/0951192X.2018.1493230 10.1007/s10845-014-0897-4 10.1007/s10845-015-1184-8 10.1080/00207540802275871 10.1007/s00170-017-1055-x 10.1016/j.ejor.2009.02.025 10.1016/j.rcim.2020.101989 10.1016/j.cie.2015.12.015 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Oct 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Oct 2021 |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1016/j.rcim.2021.102143 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1879-2537 |
| ExternalDocumentID | 10_1016_j_rcim_2021_102143 S0736584521000284 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PZZ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-3b7f0ea77f7a9fd320160a9e2b147a12d938e13881336bba30b1092ea42443bf3 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663337700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0736-5845 |
| IngestDate | Sun Nov 30 04:28:29 EST 2025 Sat Nov 29 07:14:58 EST 2025 Tue Nov 18 22:35:08 EST 2025 Fri Feb 23 02:44:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cloud manufacturing service composition (CMSC) Service composition reconfiguration algorithm based on improved Harris hawks optimization(SCRIHHO) Practical application Practical constraints Service exceptions Dynamic service composition reconfiguration model when service exceptions occur under practical constraints (DSCRWECPC) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-3b7f0ea77f7a9fd320160a9e2b147a12d938e13881336bba30b1092ea42443bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2550680702 |
| PQPubID | 2045404 |
| ParticipantIDs | proquest_journals_2550680702 crossref_citationtrail_10_1016_j_rcim_2021_102143 crossref_primary_10_1016_j_rcim_2021_102143 elsevier_sciencedirect_doi_10_1016_j_rcim_2021_102143 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Robotics and computer-integrated manufacturing |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Tao, Zhao, Yefa, Zhou (bib0013) 2010; 201 Hu, Zhu, Zhang, Lui, Wang (bib0023) 2019; 58 Bouzary, Chen (bib0005) 2020; 66 W. Ma, Z. Wang, Y. Zhao, Optimizing services composition in cloud manufacturing based on improved ant colony algorithm, 22 (2016) 113–121. https://doi.org/ 10.13196/j.cims.2016.01.011. Yu, Zhang, Xu, Ji, Yu (bib0012) 2018; 29 Dong, Wu, Du, Zha, Yuan (bib0022) 2018; 29 Wang, Dai, Zhang, Zhang, Xu, Chen (bib0011) 2018; 31 Khalfallah, Figay, Da Silva, Ghodous (bib0016) 2016; 27 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (bib0032) 2019; 97 Laili, Lin, Tang (bib0003) 2020 Yuan, Zhou, Cai, Sun, Gu (bib0006) 2020; 61 Zhao, Wang, Zhang (bib0002) 2020; 65 Wang, Wang, Yang, Gao, Wang (bib0018) 2020 Wei, Zhao, Shu (bib0019) 2012; 3 Cao, Wang, Kang, Gao (bib0014) 2016; 82 Yıldız, Yıldız, Sait, Bureerat, Pholdee (bib0034) 2019; 61 Huang (bib0031) 2016; 84 Zhou, Yao (bib0004) 2017; 47 Wu, Ying, Jia (bib0026) 2011; 4 Du, Guo (bib0028) 2016; 94 Laili, Lin, Tang (bib0015) 2020 Environment (bib0020) 2014 Gao, Wang, Kang, Shu, Yang (bib0021) 2018 Zhou (bib0030) 2012; 18 Li, Zhang, Wang, Tao, Cao, Jiang, Song, Chai (bib0001) 2010; 16 Liu, Song, Chu, Hou, Peng (bib0024) 2016; 32 Wang, Guo, Guo, Du, Li, Wu (bib0017) 2018; 94 Yuan, Zhou, Cai, Sun, Gu (bib0009) 2020; 61 Tao, Hu, Zhao, Zhou (bib0029) 2010 Li, Yao (bib0010) 2018; 10 Wei, Liang (bib0025) 2018 Akbaripour, Houshmand, van Woensel, Mutlu (bib0008) 2018; 95 Yang, Dai, Liu, Zhang (bib0027) 2011; 41 Yıldız, Yıldız (bib0033) 2019; 61 Zhang, Yang, Zhang, Yu, Li (bib0007) 2018; 56 Heidari (10.1016/j.rcim.2021.102143_bib0032) 2019; 97 Wang (10.1016/j.rcim.2021.102143_bib0017) 2018; 94 Wang (10.1016/j.rcim.2021.102143_bib0018) 2020 Li (10.1016/j.rcim.2021.102143_bib0010) 2018; 10 Zhou (10.1016/j.rcim.2021.102143_bib0030) 2012; 18 Laili (10.1016/j.rcim.2021.102143_bib0003) 2020 Khalfallah (10.1016/j.rcim.2021.102143_bib0016) 2016; 27 Yuan (10.1016/j.rcim.2021.102143_bib0006) 2020; 61 Zhou (10.1016/j.rcim.2021.102143_bib0004) 2017; 47 Gao (10.1016/j.rcim.2021.102143_bib0021) 2018 Hu (10.1016/j.rcim.2021.102143_bib0023) 2019; 58 Bouzary (10.1016/j.rcim.2021.102143_bib0005) 2020; 66 Cao (10.1016/j.rcim.2021.102143_bib0014) 2016; 82 Huang (10.1016/j.rcim.2021.102143_bib0031) 2016; 84 Yıldız (10.1016/j.rcim.2021.102143_bib0033) 2019; 61 10.1016/j.rcim.2021.102143_bib0035 Liu (10.1016/j.rcim.2021.102143_bib0024) 2016; 32 Laili (10.1016/j.rcim.2021.102143_bib0015) 2020 Dong (10.1016/j.rcim.2021.102143_bib0022) 2018; 29 Wang (10.1016/j.rcim.2021.102143_bib0011) 2018; 31 Yuan (10.1016/j.rcim.2021.102143_bib0009) 2020; 61 Li (10.1016/j.rcim.2021.102143_bib0001) 2010; 16 Yang (10.1016/j.rcim.2021.102143_bib0027) 2011; 41 Yıldız (10.1016/j.rcim.2021.102143_bib0034) 2019; 61 Tao (10.1016/j.rcim.2021.102143_bib0029) 2010 Zhao (10.1016/j.rcim.2021.102143_bib0002) 2020; 65 Du (10.1016/j.rcim.2021.102143_bib0028) 2016; 94 Tao (10.1016/j.rcim.2021.102143_bib0013) 2010; 201 Wei (10.1016/j.rcim.2021.102143_bib0019) 2012; 3 Environment (10.1016/j.rcim.2021.102143_bib0020) 2014 Yu (10.1016/j.rcim.2021.102143_bib0012) 2018; 29 Zhang (10.1016/j.rcim.2021.102143_bib0007) 2018; 56 Wei (10.1016/j.rcim.2021.102143_bib0025) 2018 Akbaripour (10.1016/j.rcim.2021.102143_bib0008) 2018; 95 Wu (10.1016/j.rcim.2021.102143_bib0026) 2011; 4 |
| References_xml | – year: 2014 ident: bib0020 article-title: Exception Handling Model of Manufacturing Equipment Cloud Service for – volume: 4 start-page: 170 year: 2011 end-page: 174 ident: bib0026 article-title: Exception Handling Model Based on Colored Petri Net in Service-oriented Software publication-title: Computer Science – volume: 84 start-page: 183 year: 2016 end-page: 196 ident: bib0031 article-title: Service requirement conflict resolution based on ant colony optimization in group-enterprises-oriented cloud manufacturing publication-title: Int J Adv Manuf Technol – year: 2018 ident: bib0021 article-title: Diagnosis and Handling of Exception in Cloud Manufacturing – start-page: 61 year: 2020 ident: bib0003 article-title: Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment publication-title: Robot. Comput. Integr. Manuf. – volume: 61 year: 2020 ident: bib0009 article-title: Service composition model and method in cloud manufacturing publication-title: Robot. Comput. Integr. Manuf. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: bib0032 article-title: Harris hawks optimization: Algorithm and applications publication-title: Futur. Gener. Comput. Syst. – volume: 65 year: 2020 ident: bib0002 article-title: Service agent networks in cloud manufacturing: Modeling and evaluation based on set-pair analysis publication-title: Robot. Comput. Integr. Manuf. – volume: 29 start-page: 1193 year: 2018 end-page: 1200 ident: bib0022 article-title: Resource Abnormal Management Method of Unsteady Processes of Cloud Manufacturing Services publication-title: Zhongguo Jixie Gongcheng/China Mech. Eng. – volume: 94 start-page: 158 year: 2016 end-page: 169 ident: bib0028 article-title: Production planning conflict resolution of complex product system in group manufacturing: A novel hybrid approach using ant colony optimization and Shapley value publication-title: Comput. Ind. Eng. – year: 2010 ident: bib0029 article-title: Study of failure detection and recovery in manufacturing grid resource service scheduling publication-title: Int J of Prod Res – volume: 16 start-page: 1 year: 2010 end-page: 7 ident: bib0001 article-title: Cloud Manufacturing: a New Service-oriented Manufacturing Model publication-title: CIMS – volume: 32 year: 2016 ident: bib0024 article-title: An Approach for Multipath Cloud Manufacturing Services Dynamic Composition: MUTIPATH CLOUD MANUFACTURING SERVICES COMPOSITION publication-title: Int. J. Intell. Syst. – volume: 41 start-page: 453 year: 2011 end-page: 457 ident: bib0027 article-title: Self-adaptation oriented dynamic adjustment method for composite services, Dongnan Daxue Xuebao (Ziran Kexue Ban) publication-title: Journal Southeast Univ. (Natural Sci. Ed. – volume: 18 year: 2012 ident: bib0030 article-title: Capability driven project monitoring and management mechanism for cloud manufacturing publication-title: Comput Integr Manuf Syst – volume: 95 start-page: 43 year: 2018 end-page: 70 ident: bib0008 article-title: Cloud manufacturing service selection optimization and scheduling with transportation considerations: mixed-integer programming models publication-title: Int. J. Adv. Manuf. Technol. – volume: 29 start-page: 1351 year: 2018 end-page: 1361 ident: bib0012 article-title: Data mining based multi-level aggregate service planning for cloud manufacturing publication-title: J. Intell. Manuf. – volume: 3 start-page: 1 year: 2012 end-page: 47 ident: bib0019 article-title: Adaptive Adjustment of Composite Cloud Service Based on QoS for Cloud Manufacturing Environment publication-title: Journal of Lanzhou University (Natural Sciences) – reference: W. Ma, Z. Wang, Y. Zhao, Optimizing services composition in cloud manufacturing based on improved ant colony algorithm, 22 (2016) 113–121. https://doi.org/ 10.13196/j.cims.2016.01.011. – volume: 61 start-page: 735 year: 2019 end-page: 743 ident: bib0034 article-title: A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems publication-title: Mater. Test. – volume: 31 start-page: 1034 year: 2018 end-page: 1047 ident: bib0011 article-title: Urgent task-aware cloud manufacturing service composition using two-stage biogeography-based optimisation publication-title: Int. J. Comput. Integr. Manuf. – volume: 201 start-page: 129 year: 2010 end-page: 143 ident: bib0013 article-title: Correlation-aware resource service composition and optimal-selection in manufacturing grid publication-title: Eur. J. Oper. Res. – year: 2020 ident: bib0018 article-title: An effective adaptive adjustment method for service composition exception handling in cloud manufacturing publication-title: J. Intell. Manuf. – volume: 58 start-page: 13 year: 2019 end-page: 20 ident: bib0023 article-title: Scheduling of manufacturers based on chaos optimization algorithm in cloud manufacturing publication-title: Robot. Comput. Integr. Manuf. – volume: 66 year: 2020 ident: bib0005 article-title: A classification-based approach for integrated service matching and composition in cloud manufacturing publication-title: Robot. Comput. Integr. Manuf. – start-page: 61 year: 2020 ident: bib0015 article-title: Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment publication-title: Robot. Comput. Integr. Manuf. – volume: 61 start-page: 744 year: 2019 end-page: 748 ident: bib0033 article-title: The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components publication-title: Mater. Test. – volume: 10 start-page: 1 year: 2018 end-page: 16 ident: bib0010 article-title: Cloud manufacturing service composition and formal verification based on extended process calculus publication-title: Adv. Mech. Eng. – volume: 82 start-page: 235 year: 2016 end-page: 251 ident: bib0014 article-title: A TQCS-based service selection and scheduling strategy in cloud manufacturing publication-title: Int. J. Adv. Manuf. Technol. – year: 2018 ident: bib0025 article-title: A product platform architecture for cloud manufacturing publication-title: Proc. Int. Conf. Comput. Ind. Eng. CIE. – volume: 27 start-page: 119 year: 2016 end-page: 129 ident: bib0016 article-title: A cloud-based platform to ensure interoperability in aerospace industry publication-title: J. Intell. Manuf. – volume: 61 year: 2020 ident: bib0006 article-title: Service composition model and method in cloud manufacturing publication-title: Robot. Comput. Integr. Manuf. – volume: 47 start-page: 721 year: 2017 end-page: 742 ident: bib0004 article-title: Multi-objective hybrid artificial bee colony algorithm enhanced with Lévy flight and self-adaption for cloud manufacturing service composition publication-title: Appl. Intell. – volume: 94 start-page: 3519 year: 2018 end-page: 3535 ident: bib0017 article-title: Rescheduling strategy of cloud service based on shuffled frog leading algorithm and Nash equilibrium publication-title: Int. J. Adv. Manuf. Technol. – volume: 56 start-page: 4676 year: 2018 end-page: 4691 ident: bib0007 article-title: Correlation-aware manufacturing service composition model using an extended flower pollination algorithm publication-title: Int. J. Prod. Res. – volume: 29 start-page: 1193 year: 2018 ident: 10.1016/j.rcim.2021.102143_bib0022 article-title: Resource Abnormal Management Method of Unsteady Processes of Cloud Manufacturing Services publication-title: Zhongguo Jixie Gongcheng/China Mech. Eng. – volume: 61 year: 2020 ident: 10.1016/j.rcim.2021.102143_bib0009 article-title: Service composition model and method in cloud manufacturing publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2019.101840 – volume: 61 year: 2020 ident: 10.1016/j.rcim.2021.102143_bib0006 article-title: Service composition model and method in cloud manufacturing publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2019.101840 – volume: 82 start-page: 235 year: 2016 ident: 10.1016/j.rcim.2021.102143_bib0014 article-title: A TQCS-based service selection and scheduling strategy in cloud manufacturing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7350-5 – volume: 4 start-page: 170 year: 2011 ident: 10.1016/j.rcim.2021.102143_bib0026 article-title: Exception Handling Model Based on Colored Petri Net in Service-oriented Software publication-title: Computer Science – volume: 95 start-page: 43 year: 2018 ident: 10.1016/j.rcim.2021.102143_bib0008 article-title: Cloud manufacturing service selection optimization and scheduling with transportation considerations: mixed-integer programming models publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-1167-3 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.rcim.2021.102143_bib0032 article-title: Harris hawks optimization: Algorithm and applications publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – start-page: 61 year: 2020 ident: 10.1016/j.rcim.2021.102143_bib0015 article-title: Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment publication-title: Robot. Comput. Integr. Manuf. – volume: 61 start-page: 744 year: 2019 ident: 10.1016/j.rcim.2021.102143_bib0033 article-title: The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components publication-title: Mater. Test. doi: 10.3139/120.111379 – volume: 32 year: 2016 ident: 10.1016/j.rcim.2021.102143_bib0024 article-title: An Approach for Multipath Cloud Manufacturing Services Dynamic Composition: MUTIPATH CLOUD MANUFACTURING SERVICES COMPOSITION publication-title: Int. J. Intell. Syst. – year: 2014 ident: 10.1016/j.rcim.2021.102143_bib0020 – volume: 58 start-page: 13 year: 2019 ident: 10.1016/j.rcim.2021.102143_bib0023 article-title: Scheduling of manufacturers based on chaos optimization algorithm in cloud manufacturing publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2019.01.010 – volume: 16 start-page: 1 year: 2010 ident: 10.1016/j.rcim.2021.102143_bib0001 article-title: Cloud Manufacturing: a New Service-oriented Manufacturing Model publication-title: CIMS – volume: 41 start-page: 453 year: 2011 ident: 10.1016/j.rcim.2021.102143_bib0027 article-title: Self-adaptation oriented dynamic adjustment method for composite services, Dongnan Daxue Xuebao (Ziran Kexue Ban) publication-title: Journal Southeast Univ. (Natural Sci. Ed. – volume: 56 start-page: 4676 year: 2018 ident: 10.1016/j.rcim.2021.102143_bib0007 article-title: Correlation-aware manufacturing service composition model using an extended flower pollination algorithm publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2017.1402137 – volume: 61 start-page: 735 year: 2019 ident: 10.1016/j.rcim.2021.102143_bib0034 article-title: A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems publication-title: Mater. Test. doi: 10.3139/120.111378 – volume: 65 year: 2020 ident: 10.1016/j.rcim.2021.102143_bib0002 article-title: Service agent networks in cloud manufacturing: Modeling and evaluation based on set-pair analysis publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2020.101970 – year: 2018 ident: 10.1016/j.rcim.2021.102143_bib0025 article-title: A product platform architecture for cloud manufacturing publication-title: Proc. Int. Conf. Comput. Ind. Eng. CIE. – volume: 10 start-page: 1 year: 2018 ident: 10.1016/j.rcim.2021.102143_bib0010 article-title: Cloud manufacturing service composition and formal verification based on extended process calculus publication-title: Adv. Mech. Eng. – volume: 84 start-page: 183 issue: 1-4 year: 2016 ident: 10.1016/j.rcim.2021.102143_bib0031 article-title: Service requirement conflict resolution based on ant colony optimization in group-enterprises-oriented cloud manufacturing publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7961-x – volume: 47 start-page: 721 year: 2017 ident: 10.1016/j.rcim.2021.102143_bib0004 article-title: Multi-objective hybrid artificial bee colony algorithm enhanced with Lévy flight and self-adaption for cloud manufacturing service composition publication-title: Appl. Intell. doi: 10.1007/s10489-017-0927-y – volume: 3 start-page: 1 year: 2012 ident: 10.1016/j.rcim.2021.102143_bib0019 article-title: Adaptive Adjustment of Composite Cloud Service Based on QoS for Cloud Manufacturing Environment publication-title: Journal of Lanzhou University (Natural Sciences) – ident: 10.1016/j.rcim.2021.102143_bib0035 – volume: 31 start-page: 1034 year: 2018 ident: 10.1016/j.rcim.2021.102143_bib0011 article-title: Urgent task-aware cloud manufacturing service composition using two-stage biogeography-based optimisation publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2018.1493230 – volume: 27 start-page: 119 year: 2016 ident: 10.1016/j.rcim.2021.102143_bib0016 article-title: A cloud-based platform to ensure interoperability in aerospace industry publication-title: J. Intell. Manuf. doi: 10.1007/s10845-014-0897-4 – year: 2018 ident: 10.1016/j.rcim.2021.102143_bib0021 – volume: 29 start-page: 1351 year: 2018 ident: 10.1016/j.rcim.2021.102143_bib0012 article-title: Data mining based multi-level aggregate service planning for cloud manufacturing publication-title: J. Intell. Manuf. doi: 10.1007/s10845-015-1184-8 – volume: 18 issue: 7 year: 2012 ident: 10.1016/j.rcim.2021.102143_bib0030 article-title: Capability driven project monitoring and management mechanism for cloud manufacturing publication-title: Comput Integr Manuf Syst – year: 2010 ident: 10.1016/j.rcim.2021.102143_bib0029 article-title: Study of failure detection and recovery in manufacturing grid resource service scheduling publication-title: Int J of Prod Res doi: 10.1080/00207540802275871 – volume: 94 start-page: 3519 year: 2018 ident: 10.1016/j.rcim.2021.102143_bib0017 article-title: Rescheduling strategy of cloud service based on shuffled frog leading algorithm and Nash equilibrium publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-1055-x – volume: 201 start-page: 129 year: 2010 ident: 10.1016/j.rcim.2021.102143_bib0013 article-title: Correlation-aware resource service composition and optimal-selection in manufacturing grid publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.02.025 – volume: 66 year: 2020 ident: 10.1016/j.rcim.2021.102143_bib0005 article-title: A classification-based approach for integrated service matching and composition in cloud manufacturing publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2020.101989 – start-page: 61 year: 2020 ident: 10.1016/j.rcim.2021.102143_bib0003 article-title: Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment publication-title: Robot. Comput. Integr. Manuf. – year: 2020 ident: 10.1016/j.rcim.2021.102143_bib0018 article-title: An effective adaptive adjustment method for service composition exception handling in cloud manufacturing publication-title: J. Intell. Manuf. – volume: 94 start-page: 158 year: 2016 ident: 10.1016/j.rcim.2021.102143_bib0028 article-title: Production planning conflict resolution of complex product system in group manufacturing: A novel hybrid approach using ant colony optimization and Shapley value publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2015.12.015 |
| SSID | ssj0002453 |
| Score | 2.4691632 |
| Snippet | •A dynamic service composition reconfiguration model when service exceptions occur under practical constraints(DSCRWECPC) in real-life CMfg is... Cloud Manufacturing Service Composition (CMSC), as one of the key issues of Cloud Manufacturing (CMfg), has already attracted much attention. Existing... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102143 |
| SubjectTerms | Algorithms Cloud manufacturing service composition (CMSC) Composition effects Constraint modelling Dynamic service composition reconfiguration model when service exceptions occur under practical constraints (DSCRWECPC) Machining Manufacturing Occupancy Optimization Particle swarm optimization Practical application Practical constraints Quality of service Reconfiguration Service composition reconfiguration algorithm based on improved Harris hawks optimization(SCRIHHO) Service exceptions |
| Title | An effective dynamic service composition reconfiguration approach when service exceptions occur in real-life cloud manufacturing |
| URI | https://dx.doi.org/10.1016/j.rcim.2021.102143 https://www.proquest.com/docview/2550680702 |
| Volume | 71 |
| WOSCitedRecordID | wos000663337700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2537 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002453 issn: 0736-5845 databaseCode: AIEXJ dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwN74LGAWFiQD4hL5VVtJ7F9rFBXPKqC2C4qp8hJnCVLlXT7WHrkf_HnsGM7LVWp4MAlqtyMW_X7Oh47M_MB8DLthplgWYioiFIUqISjJFIhCqKQcKUCiakVm2DDIR-PxcdW66evhbmZsLLkq5WY_leo9ZgG25TO_gPczaR6QL_WoOurhl1f_wr4XumSNExOUGYF5ztz6xLqDHKXptWp98J5cbl0JPDtxTvfv6qysVArn_jSqdJ0ObMFMHKCJkWu55tUy8ykwC5NhURd8rgZ7n6qkqrpA506AQnUtKjYZVkf7lsH9EWW32SxPXpuxBfWN793w4MdE5wXiaw2zzUIbjLk3GFbU3DzecMlMhohHTLZ5-DKumzOBCKhbR3jfbqVdXFOGe9cKuypxdXpLC1MRwKCT2uVc7peGH0ywPBDfHYxGMSj_nj0anqNjGSZebTv9FtugQPCQsHb4KD3tj9-1wQCJLBNUP2XdjVbNr1w-2P_FBdtRQh12DO6D-66_QrsWZ49AC1VHoF7XgsEuqXhCBxuNLZ8CH70StiQEDoSQkcpuEFCuEVC6EkIDQkbizUJYU1CWBhLR0JYkxD-RqVH4OKsP3r9BjmtD5RSwheIJizvKslYzqTIM0pM50MpFElwwCQmmaBcYco5pjRKEkm7Ce4KoqQp1KRJTh-DdlmV6gmAPMLa0YQZTgQJmMpkLiTPAkJkFGZ6u3AMsP-l49Q1wjd6LJPYZzxexQad2KATW3SOQaexmdo2MHvvDj2AsQtkbYAaa_LttTvxaMfOo8xjvec3-jisS57uf_sZuLP-H52A9mK2VM_B7fRmUcxnLxw5fwHVOM2q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+dynamic+service+composition+reconfiguration+approach+when+service+exceptions+occur+in+real-life+cloud+manufacturing&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Wang%2C+Yankai&rft.au=Wang%2C+Shilong&rft.au=Kang%2C+Ling&rft.au=Wang%2C+Sibao&rft.date=2021-10-01&rft.pub=Elsevier+BV&rft.issn=0736-5845&rft.eissn=1879-2537&rft.volume=71&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rcim.2021.102143&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon |