A hybrid self-adaptive sine cosine algorithm with opposition based learning

•A new method to solve global optimization and engineering problems called m-SCA.•The m-SCA improves the SCA using self-adaptation and opposition based learning.•Two set of benchmarks (classical and CEC 2014) is taken to evaluate the performance.•The m-SCA is also tested on engineering optimization...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 119; s. 210 - 230
Hlavní autori: Gupta, Shubham, Deep, Kusum
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 01.04.2019
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A new method to solve global optimization and engineering problems called m-SCA.•The m-SCA improves the SCA using self-adaptation and opposition based learning.•Two set of benchmarks (classical and CEC 2014) is taken to evaluate the performance.•The m-SCA is also tested on engineering optimization problems.•Comparisons illustrate the improvement on the performance of m-SCA. Real-world optimization problems demand an efficient meta-heuristic algorithm which maintains the diversity of solutions and properly exploits the search space of the problem to find the global optimal solution. Sine Cosine Algorithm (SCA) is a recently developed population-based meta-heuristic algorithm for solving global optimization problems. SCA uses the characteristics of sine and cosine trigonometric functions to update the solutions. But, like other population-based optimization algorithms, SCA also suffers the problem of low diversity, stagnation in local optima and skipping of true solutions. Therefore, in the present work, an attempt has been made towards the eradication of these issues, by proposing a modified version of SCA. The proposed algorithm is named as modified Sine Cosine Algorithm (m-SCA). In m-SCA, the opposite population is generated using opposite numbers based on perturbation rate to jump out from the local optima. Secondly, in the search equations of SCA self-adaptive component is added to exploit all the promising search regions which are pre-visited. To evaluate the effectiveness in solving the global optimization problems, m-SCA has been tested on two sets of benchmark problems – classical set of 23 well-known benchmark problems and standard IEEE CEC 2014 benchmark test problems. In the paper, the performance of proposed algorithm m-SCA is also tested on five engineering optimization problems. The conducted statistical, convergence and average distance analysis demonstrate the efficacy of the proposed algorithm to determine the efficient solution of real-life global optimization problems.
AbstractList •A new method to solve global optimization and engineering problems called m-SCA.•The m-SCA improves the SCA using self-adaptation and opposition based learning.•Two set of benchmarks (classical and CEC 2014) is taken to evaluate the performance.•The m-SCA is also tested on engineering optimization problems.•Comparisons illustrate the improvement on the performance of m-SCA. Real-world optimization problems demand an efficient meta-heuristic algorithm which maintains the diversity of solutions and properly exploits the search space of the problem to find the global optimal solution. Sine Cosine Algorithm (SCA) is a recently developed population-based meta-heuristic algorithm for solving global optimization problems. SCA uses the characteristics of sine and cosine trigonometric functions to update the solutions. But, like other population-based optimization algorithms, SCA also suffers the problem of low diversity, stagnation in local optima and skipping of true solutions. Therefore, in the present work, an attempt has been made towards the eradication of these issues, by proposing a modified version of SCA. The proposed algorithm is named as modified Sine Cosine Algorithm (m-SCA). In m-SCA, the opposite population is generated using opposite numbers based on perturbation rate to jump out from the local optima. Secondly, in the search equations of SCA self-adaptive component is added to exploit all the promising search regions which are pre-visited. To evaluate the effectiveness in solving the global optimization problems, m-SCA has been tested on two sets of benchmark problems – classical set of 23 well-known benchmark problems and standard IEEE CEC 2014 benchmark test problems. In the paper, the performance of proposed algorithm m-SCA is also tested on five engineering optimization problems. The conducted statistical, convergence and average distance analysis demonstrate the efficacy of the proposed algorithm to determine the efficient solution of real-life global optimization problems.
Real-world optimization problems demand an efficient meta-heuristic algorithm which maintains the diversity of solutions and properly exploits the search space of the problem to find the global optimal solution. Sine Cosine Algorithm (SCA) is a recently developed population-based meta-heuristic algorithm for solving global optimization problems. SCA uses the characteristics of sine and cosine trigonometric functions to update the solutions. But, like other population-based optimization algorithms, SCA also suffers the problem of low diversity, stagnation in local optima and skipping of true solutions. Therefore, in the present work, an attempt has been made towards the eradication of these issues, by proposing a modified version of SCA. The proposed algorithm is named as modified Sine Cosine Algorithm (m-SCA). In m-SCA, the opposite population is generated using opposite numbers based on perturbation rate to jump out from the local optima. Secondly, in the search equations of SCA self-adaptive component is added to exploit all the promising search regions which are pre-visited. To evaluate the effectiveness in solving the global optimization problems, m-SCA has been tested on two sets of benchmark problems – classical set of 23 well-known benchmark problems and standard IEEE CEC 2014 benchmark test problems. In the paper, the performance of proposed algorithm m-SCA is also tested on five engineering optimization problems. The conducted statistical, convergence and average distance analysis demonstrate the efficacy of the proposed algorithm to determine the efficient solution of real-life global optimization problems.
Author Deep, Kusum
Gupta, Shubham
Author_xml – sequence: 1
  givenname: Shubham
  orcidid: 0000-0002-3779-2932
  surname: Gupta
  fullname: Gupta, Shubham
  email: sgupta@ma.iitr.ac.in
– sequence: 2
  givenname: Kusum
  surname: Deep
  fullname: Deep, Kusum
  email: kusumfma@iitr.ac.in
BookMark eNp9kDtPwzAUhS1UJNrCH2CKxJxgx4ntSCxVxUtUYoHZ8uOmdZXGwQ6t-u9JKBNDl3uko_vdx5mhSetbQOiW4Ixgwu63GcSDynJMxGBkuMQXaEoEpynjFZ2gKa5KnhaEF1doFuMWY8Ix5lP0tkg2Rx2cTSI0daqs6nq3hyS6FhLjf0U1ax9cv9klh6EmvusGv3e-TbSKYJMGVGhdu75Gl7VqItz86Rx9Pj1-LF_S1fvz63KxSg3NRZ9SXdJC14VQlaJUCwu0qIUmwlSUFbkVgjHOQRMLmgG1uGIlJ9hqaizjtKBzdHea2wX_9Q2xl1v_HdphpcwJz0nBRIWHLnHqMsHHGKCWxvVqPLsPyjWSYDlGJ7dyjE6O0Y3eEN2A5v_QLridCsfz0MMJguH1vYMgo3HQGrAugOml9e4c_gPrZoob
CitedBy_id crossref_primary_10_1186_s43067_020_00023_6
crossref_primary_10_1007_s00500_019_04411_7
crossref_primary_10_1007_s42235_023_00437_8
crossref_primary_10_1016_j_eswa_2019_113113
crossref_primary_10_1016_j_eswa_2020_113486
crossref_primary_10_1109_ACCESS_2023_3296255
crossref_primary_10_1016_j_eswa_2021_116001
crossref_primary_10_1016_j_compbiomed_2022_106239
crossref_primary_10_1007_s10586_024_04982_7
crossref_primary_10_1016_j_amc_2019_124872
crossref_primary_10_3390_s22176420
crossref_primary_10_1016_j_jocs_2020_101219
crossref_primary_10_1007_s00607_024_01256_3
crossref_primary_10_1016_j_eswa_2022_118372
crossref_primary_10_3390_sym13122388
crossref_primary_10_1016_j_compbiomed_2021_104582
crossref_primary_10_1016_j_eswa_2023_121048
crossref_primary_10_1016_j_advengsoft_2023_103517
crossref_primary_10_1088_2632_2153_ad55a5
crossref_primary_10_1007_s00521_020_05610_2
crossref_primary_10_1371_journal_pone_0325272
crossref_primary_10_1038_s41598_022_17881_x
crossref_primary_10_1007_s00500_019_03949_w
crossref_primary_10_1016_j_asoc_2022_109869
crossref_primary_10_1007_s00366_020_01083_y
crossref_primary_10_1016_j_eswa_2021_114950
crossref_primary_10_1016_j_engappai_2020_103718
crossref_primary_10_3389_feart_2023_1116664
crossref_primary_10_1007_s10614_024_10728_9
crossref_primary_10_1016_j_knosys_2024_111850
crossref_primary_10_1038_s41598_025_95678_4
crossref_primary_10_1007_s00500_022_07389_x
crossref_primary_10_3390_diagnostics13081422
crossref_primary_10_1038_s41598_025_95545_2
crossref_primary_10_1016_j_eswa_2020_113395
crossref_primary_10_1016_j_eswa_2023_120849
crossref_primary_10_1371_journal_pone_0276210
crossref_primary_10_1016_j_apm_2021_02_002
crossref_primary_10_1007_s10489_023_04705_2
crossref_primary_10_1016_j_eswa_2022_116856
crossref_primary_10_1007_s00366_021_01448_x
crossref_primary_10_3390_en12112189
crossref_primary_10_1002_int_22658
crossref_primary_10_1016_j_asoc_2021_107384
crossref_primary_10_1007_s00521_020_05500_7
crossref_primary_10_1007_s00521_021_05963_2
crossref_primary_10_1109_ACCESS_2021_3055367
crossref_primary_10_1016_j_asoc_2021_107146
crossref_primary_10_1016_j_asoc_2020_106933
crossref_primary_10_3390_biomimetics9060334
crossref_primary_10_1007_s42235_022_00323_9
crossref_primary_10_1016_j_phycom_2022_101996
crossref_primary_10_1007_s11042_023_17189_6
crossref_primary_10_1080_23302674_2024_2305817
crossref_primary_10_1371_journal_pone_0255269
crossref_primary_10_1016_j_jocs_2023_102105
crossref_primary_10_3390_pr13092707
crossref_primary_10_1007_s42235_024_00510_w
crossref_primary_10_1016_j_cma_2023_115878
crossref_primary_10_1016_j_asoc_2021_107197
crossref_primary_10_1080_08839514_2020_1848276
crossref_primary_10_1007_s10489_022_03786_9
crossref_primary_10_1016_j_asoc_2022_108562
crossref_primary_10_1007_s42235_025_00675_y
crossref_primary_10_1016_j_knosys_2020_106461
crossref_primary_10_1109_ACCESS_2021_3054053
crossref_primary_10_1007_s00500_019_03939_y
crossref_primary_10_1007_s12065_019_00251_4
crossref_primary_10_32604_cmes_2023_024247
crossref_primary_10_3390_biomimetics10080494
crossref_primary_10_1109_ACCESS_2020_3003366
crossref_primary_10_1371_journal_pone_0322111
crossref_primary_10_1016_j_jocs_2021_101477
crossref_primary_10_1038_s41598_024_77440_4
crossref_primary_10_1016_j_geits_2022_100040
crossref_primary_10_1007_s10462_025_11289_5
crossref_primary_10_3390_math10183368
crossref_primary_10_1007_s10462_022_10277_3
crossref_primary_10_1016_j_jhydrol_2020_125223
crossref_primary_10_1166_jmihi_2021_3838
crossref_primary_10_1007_s11831_021_09562_1
crossref_primary_10_1155_2020_4873501
crossref_primary_10_1007_s00366_020_01252_z
crossref_primary_10_1007_s12559_025_10415_3
crossref_primary_10_1007_s42235_021_0050_y
crossref_primary_10_1016_j_knosys_2022_109326
crossref_primary_10_1007_s00366_021_01464_x
crossref_primary_10_1007_s10462_022_10343_w
crossref_primary_10_1038_s41598_025_15205_3
crossref_primary_10_1155_2022_6872162
crossref_primary_10_1016_j_compbiomed_2024_107950
crossref_primary_10_1016_j_matcom_2022_11_020
crossref_primary_10_1155_2022_8171164
crossref_primary_10_1002_aisy_202300406
crossref_primary_10_1007_s11227_024_06649_x
crossref_primary_10_1080_00207160_2020_1775820
crossref_primary_10_1016_j_eswa_2023_119898
crossref_primary_10_3233_JIFS_200101
crossref_primary_10_1007_s00500_020_05057_6
crossref_primary_10_1007_s10115_023_01931_5
crossref_primary_10_1016_j_asoc_2021_107854
crossref_primary_10_1016_j_matcom_2022_10_007
crossref_primary_10_1007_s13042_021_01326_4
crossref_primary_10_1016_j_asoc_2025_113462
crossref_primary_10_1016_j_eswa_2021_114864
crossref_primary_10_1016_j_neucom_2022_01_001
crossref_primary_10_1007_s12065_021_00610_0
crossref_primary_10_1016_j_bspc_2024_107457
crossref_primary_10_7717_peerj_cs_2935
crossref_primary_10_1016_j_eswa_2022_118831
crossref_primary_10_1016_j_eswa_2022_117866
crossref_primary_10_1016_j_compbiomed_2023_107551
crossref_primary_10_1155_2020_8882086
crossref_primary_10_1007_s10586_024_04602_4
crossref_primary_10_1016_j_asoc_2019_105744
crossref_primary_10_1038_s41598_024_56919_0
crossref_primary_10_1038_s41598_024_69734_4
crossref_primary_10_1016_j_matcom_2022_08_020
crossref_primary_10_3390_en16010024
crossref_primary_10_1016_j_eswa_2020_113882
crossref_primary_10_1016_j_rineng_2025_103951
crossref_primary_10_1007_s00607_024_01290_1
crossref_primary_10_1016_j_dajour_2022_100125
crossref_primary_10_3233_JIFS_230132
crossref_primary_10_1007_s00521_023_08229_1
crossref_primary_10_1016_j_jksuci_2023_101704
crossref_primary_10_1093_jcde_qwac119
crossref_primary_10_1007_s00521_020_05056_6
crossref_primary_10_1109_ACCESS_2020_2971249
crossref_primary_10_1007_s12065_025_01052_8
crossref_primary_10_1016_j_jestch_2020_08_011
crossref_primary_10_1016_j_swevo_2020_100821
crossref_primary_10_1016_j_asoc_2021_107675
crossref_primary_10_1155_2020_6084917
crossref_primary_10_1007_s00500_020_05227_6
crossref_primary_10_1016_j_eswa_2024_123444
crossref_primary_10_1016_j_knosys_2018_12_008
crossref_primary_10_1111_exsy_12854
crossref_primary_10_1016_j_eswa_2020_114503
crossref_primary_10_1155_2019_9517568
crossref_primary_10_1016_j_eswa_2022_117562
crossref_primary_10_1016_j_asoc_2019_105521
crossref_primary_10_1007_s12530_025_09683_z
crossref_primary_10_1016_j_asoc_2022_109682
crossref_primary_10_1007_s11227_024_06291_7
crossref_primary_10_1016_j_compbiomed_2023_107212
crossref_primary_10_1016_j_eswa_2021_116417
crossref_primary_10_1109_ACCESS_2019_2948939
crossref_primary_10_7717_peerj_cs_1420
crossref_primary_10_1007_s42235_023_00336_y
crossref_primary_10_1016_j_isatra_2021_11_037
crossref_primary_10_1016_j_mseb_2024_117506
crossref_primary_10_1109_ACCESS_2019_2926444
crossref_primary_10_1016_j_knosys_2022_108833
crossref_primary_10_1007_s42235_022_00185_1
crossref_primary_10_4316_AECE_2020_02008
crossref_primary_10_1007_s00500_023_09471_4
crossref_primary_10_1038_s41598_025_02154_0
crossref_primary_10_1111_coin_12272
crossref_primary_10_1016_j_compbiomed_2022_105563
crossref_primary_10_1007_s00521_022_07842_w
crossref_primary_10_1007_s11227_021_04050_6
crossref_primary_10_1038_s41598_022_24840_z
crossref_primary_10_1016_j_aej_2025_02_046
crossref_primary_10_1093_jcde_qwad094
crossref_primary_10_1016_j_eswa_2022_119041
crossref_primary_10_1007_s12652_021_03183_z
crossref_primary_10_1016_j_compbiomed_2023_106949
crossref_primary_10_3390_sym12081234
crossref_primary_10_1016_j_asoc_2021_108071
crossref_primary_10_3390_en13010215
crossref_primary_10_1016_j_compbiomed_2021_105137
crossref_primary_10_3390_app15116064
crossref_primary_10_3390_a17050172
crossref_primary_10_1155_2021_6639671
crossref_primary_10_1007_s12652_022_03731_1
crossref_primary_10_1016_j_asoc_2021_107900
crossref_primary_10_1007_s00500_020_05425_2
crossref_primary_10_1016_j_bspc_2022_104511
crossref_primary_10_1016_j_knosys_2022_108411
crossref_primary_10_1007_s00366_021_01571_9
crossref_primary_10_1007_s00500_020_05099_w
crossref_primary_10_1016_j_eswa_2023_120027
crossref_primary_10_1007_s42835_021_00666_z
crossref_primary_10_1007_s00366_021_01510_8
crossref_primary_10_1007_s00521_023_09023_9
crossref_primary_10_1016_j_cma_2021_114029
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_1109_ACCESS_2020_2970992
crossref_primary_10_1007_s11227_023_05618_0
crossref_primary_10_1109_ACCESS_2022_3219486
crossref_primary_10_1016_j_cma_2023_116582
crossref_primary_10_1016_j_eswa_2020_113974
crossref_primary_10_1016_j_compbiomed_2025_110495
crossref_primary_10_1007_s10489_022_04201_z
crossref_primary_10_1007_s10489_019_01570_w
crossref_primary_10_1007_s42235_023_00386_2
crossref_primary_10_1016_j_rineng_2025_104215
crossref_primary_10_1109_ACCESS_2022_3183902
crossref_primary_10_1109_ACCESS_2024_3433483
crossref_primary_10_1007_s12652_021_03391_7
crossref_primary_10_1080_0952813X_2022_2115144
crossref_primary_10_1093_jcde_qwae044
crossref_primary_10_1016_j_asoc_2020_106651
crossref_primary_10_1016_j_asoc_2022_109828
crossref_primary_10_1016_j_advengsoft_2024_103665
crossref_primary_10_1109_ACCESS_2021_3056520
crossref_primary_10_1016_j_advengsoft_2024_103784
crossref_primary_10_1016_j_eswa_2022_119095
crossref_primary_10_1016_j_knosys_2021_107348
crossref_primary_10_1007_s00500_023_08578_y
crossref_primary_10_1007_s10586_024_04753_4
crossref_primary_10_1007_s10489_023_04473_z
crossref_primary_10_1016_j_swevo_2024_101779
crossref_primary_10_1155_2021_6379469
crossref_primary_10_1155_2022_6215574
crossref_primary_10_1007_s13198_023_02008_w
crossref_primary_10_3390_en17112559
crossref_primary_10_1007_s13198_023_01857_9
crossref_primary_10_1007_s42235_024_00590_8
crossref_primary_10_1155_2021_6636918
crossref_primary_10_1016_j_epsr_2023_110051
crossref_primary_10_1016_j_eswa_2020_113510
crossref_primary_10_1016_j_eswa_2023_119941
crossref_primary_10_1016_j_knosys_2023_111081
crossref_primary_10_1007_s11831_024_10218_z
crossref_primary_10_1016_j_cma_2023_116238
crossref_primary_10_1016_j_swevo_2023_101462
crossref_primary_10_1111_coin_12341
crossref_primary_10_1155_2020_9495281
Cites_doi 10.1016/j.ins.2012.08.023
10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
10.1007/s12293-013-0128-0
10.1007/s00521-015-1870-7
10.1016/j.asoc.2012.11.026
10.1504/IJBIC.2010.032124
10.1016/j.eswa.2010.07.086
10.1115/1.2919393
10.1115/1.2912596
10.1016/j.swevo.2018.01.008
10.2514/2.1657
10.1109/TEVC.2004.826069
10.1016/j.knosys.2014.07.025
10.1016/j.knosys.2015.07.006
10.1007/s10898-007-9149-x
10.1016/j.eswa.2017.10.042
10.1109/4235.585893
10.1145/2480741.2480752
10.1016/j.eswa.2017.04.023
10.1016/j.swevo.2018.01.009
10.1016/j.asoc.2007.07.010
10.1016/j.advengsoft.2016.01.008
10.1016/j.swevo.2017.09.010
10.1016/j.swevo.2018.02.011
10.1016/j.advengsoft.2013.12.007
10.1007/s00521-017-2837-7
10.1023/A:1008202821328
10.1016/j.amc.2006.10.047
10.3390/sym9100203
10.1016/j.eswa.2017.04.029
10.1080/03052150108940941
10.2514/1.1711
10.1007/s00366-011-0241-y
10.1016/j.eswa.2017.07.043
10.1016/j.knosys.2015.12.022
10.1016/j.neunet.2017.10.009
10.1177/003754970107600201
10.1016/j.asoc.2015.01.004
10.1109/TEVC.2005.857610
10.2528/PIER07082403
10.1080/03052150500066737
10.1613/jair.855
10.1016/j.ins.2009.03.004
10.1016/j.eswa.2016.04.018
10.1016/j.eswa.2017.08.038
10.1016/j.advengsoft.2015.01.010
10.1016/j.isatra.2014.03.018
10.1016/j.swevo.2016.12.005
10.1016/j.ins.2018.03.042
10.1016/j.advengsoft.2017.01.004
10.1016/j.advengsoft.2017.07.002
10.1007/s00466-004-0623-8
10.1016/j.compstruc.2012.09.003
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Apr 1, 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 1, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2018.10.050
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 230
ExternalDocumentID 10_1016_j_eswa_2018_10_050
S0957417418307164
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-3b534bf48a9a33b8de34f8b18c93642d886677eb1deb6e3d0965710db3cd67343
ISICitedReferencesCount 250
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456222700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 06:12:37 EST 2025
Sat Nov 29 06:14:29 EST 2025
Tue Nov 18 19:37:07 EST 2025
Fri Feb 23 02:24:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Engineering application problems
Self-adaptation
Sine Cosine algorithm (SCA)
Benchmark test problems
Population based algorithms
Opposition based learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-3b534bf48a9a33b8de34f8b18c93642d886677eb1deb6e3d0965710db3cd67343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3779-2932
PQID 2172146890
PQPubID 2045477
PageCount 21
ParticipantIDs proquest_journals_2172146890
crossref_citationtrail_10_1016_j_eswa_2018_10_050
crossref_primary_10_1016_j_eswa_2018_10_050
elsevier_sciencedirect_doi_10_1016_j_eswa_2018_10_050
PublicationCentury 2000
PublicationDate 2019-04-01
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yang (bib0075) 2010; 2
Deep, Thakur (bib0009) 2007; 188
Sahlol, Ewees, Hemdan, Hassanien (bib0056) 2016 December
Singh, Kumar, Balyan, Singh (bib0062) 2017
Tizhoosh (bib0064) 2005 November; Vol. 1
Yang, Gao, Liu, Song (bib0076) 2015; 29
Lingyun, Mei, Guangming, Guang (bib0038) 2005; 35
Karaboga, Basturk (bib0029) 2007; 39
Formato (bib0016) 2007; 77
Kumawat, Nanda, Maddila (bib0034) 2018
Hafez, Zawbaa, Emary, Hassanien (bib0022) 2016 August
Saremi, Mirjalili, Lewis (bib0077) 2017; 105
Mirjalili (bib0043) 2016; 96
Dorigo, Birattari (bib0011) 2011
Rahnamayan, Tizhoosh, Salama (bib0051) 2008; 8
Ventresca, Tizhoosh (bib0068) 2008
Gandomi (bib0017) 2014; 53
El Azi, Ewees, Hassanien (bib0013) 2017; 83
Sedaghati, Suleman, Tabarrok (bib0059) 2002; 40
Hoffmann, Nebel (bib0024) 2001; 14
Khairuzzaman, Chaudhury (bib0032) 2017; 86
Liang, Qu, Suganthan (bib0037) 2013
Eberhart, Kennedy (bib0012) 1995 October
Webster, Bernhard (bib0071) 2003
Salimi (bib0057) 2015; 75
Mirjalili, Mirjalili, Hatamlou (bib0046) 2016; 27
Das, Suganthan (bib0007) 2010
Hatamlou (bib0023) 2013; 222
Grandhi (bib0021) 1993; 31
Mirjalili (bib0042) 2015; 83
Woźniak, Połap (bib0073) 2018
Črepinšek, Liu, Mernik (bib0005) 2013; 45
Djenouri, Belhadi, Belkebir (bib0010) 2018; 94
Mirjalili, Mirjalili, Lewis (bib0047) 2014; 69
Nenavath, Jatoth, Das (bib0048) 2018
Ray, Saini (bib0053) 2001; 33
Ertenlice, Kalayci (bib0015) 2018; 39
Woźniak, Połap (bib0074) 2018; 98
Kar (bib0028) 2016; 59
Mavrovouniotis, Li, Yang (bib0040) 2017; 33
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib0044) 2017; 114
Li, Fang, Liu (bib0035) 2018; 91
Mirjalili (bib0041) 2015; 89
Wang, Zhang, Jiang (bib0070) 2004; 42
Gandomi, Yang, Alavi (bib0018) 2013; 29
Wolpert, Macready (bib0072) 1997; 1
Sandgren (bib0058) 1990; 112
Połap (bib0050) 2017; 9
Chickermane, Gea (bib0004) 1996; 39
Shi, Eberhart (bib0060) 1998 May
Liang, Qin, Suganthan, Baskar (bib0036) 2006; 10
Van den Bergh, Engelbrecht (bib0066) 2004; 8
Kennedy (bib0031) 2011
Sindhu, Ngadiran, Yacob, Zahri, Hariharan (bib0061) 2017; 28
Gomes (bib0020) 2011; 38
Mahdavi, Rahnamayan, Deb (bib0039) 2018; 39
Nowcki (bib0049) 1974; Vol. 2
Ismael, Aleem, Abdelaziz (bib0026) 2017 December
Deb, Goyal (bib0008) 1996; 26
Kumar, Kumar (bib0033) 2017
Storn, Price (bib0063) 1997; 11
Assad, Deep (bib0001) 2018; 450
Tsai (bib0065) 2005; 37
Auger, Hansen (bib0002) 2005, September; Vol. 2
Holland (bib0025) 1992
Rashedi, Nezamabadi-Pour, Saryazdi (bib0052) 2009; 179
Mirjalili, Lewis (bib0045) 2016; 95
Reddy, Panwar, Panigrahi, Kumar (bib0054) 2017
El Aziz, Oliva, Xiong (bib0014) 2017; 90
Sadollah, Bahreininejad, Eskandar, Hamdi (bib0055) 2013; 13
Kaveh, Khayatazad (bib0030) 2012; 112
Van Laarhoven, Aarts (bib0067) 1987
Bansal, Sharma, Jadon, Clerc (bib0003) 2014; 6
Geem, Kim, Loganathan (bib0019) 2001; 76
Kannan, Kramer (bib0027) 1994; 116
Chickermane (10.1016/j.eswa.2018.10.050_bib0004) 1996; 39
Woźniak (10.1016/j.eswa.2018.10.050_bib0074) 2018; 98
Assad (10.1016/j.eswa.2018.10.050_bib0001) 2018; 450
Kar (10.1016/j.eswa.2018.10.050_bib0028) 2016; 59
Ventresca (10.1016/j.eswa.2018.10.050_bib0068) 2008
Hoffmann (10.1016/j.eswa.2018.10.050_bib0024) 2001; 14
Singh (10.1016/j.eswa.2018.10.050_bib0062) 2017
Nowcki (10.1016/j.eswa.2018.10.050_bib0049) 1974; Vol. 2
Storn (10.1016/j.eswa.2018.10.050_bib0063) 1997; 11
Nenavath (10.1016/j.eswa.2018.10.050_bib0048) 2018
Mirjalili (10.1016/j.eswa.2018.10.050_bib0042) 2015; 83
Sandgren (10.1016/j.eswa.2018.10.050_bib0058) 1990; 112
Črepinšek (10.1016/j.eswa.2018.10.050_bib0005) 2013; 45
Mavrovouniotis (10.1016/j.eswa.2018.10.050_bib0040) 2017; 33
Ray (10.1016/j.eswa.2018.10.050_bib0053) 2001; 33
Sahlol (10.1016/j.eswa.2018.10.050_bib0056) 2016
Kannan (10.1016/j.eswa.2018.10.050_bib0027) 1994; 116
Van den Bergh (10.1016/j.eswa.2018.10.050_bib0066) 2004; 8
Mirjalili (10.1016/j.eswa.2018.10.050_bib0047) 2014; 69
Van Laarhoven (10.1016/j.eswa.2018.10.050_bib0067) 1987
Kumar (10.1016/j.eswa.2018.10.050_bib0033) 2017
Deb (10.1016/j.eswa.2018.10.050_bib0008) 1996; 26
Mahdavi (10.1016/j.eswa.2018.10.050_bib0039) 2018; 39
Wolpert (10.1016/j.eswa.2018.10.050_bib0072) 1997; 1
Kennedy (10.1016/j.eswa.2018.10.050_bib0031) 2011
Liang (10.1016/j.eswa.2018.10.050_bib0036) 2006; 10
Gomes (10.1016/j.eswa.2018.10.050_bib0020) 2011; 38
Sindhu (10.1016/j.eswa.2018.10.050_bib0061) 2017; 28
Mirjalili (10.1016/j.eswa.2018.10.050_bib0043) 2016; 96
Wang (10.1016/j.eswa.2018.10.050_bib0070) 2004; 42
Kumawat (10.1016/j.eswa.2018.10.050_bib0034) 2018
Mirjalili (10.1016/j.eswa.2018.10.050_bib0041) 2015; 89
Salimi (10.1016/j.eswa.2018.10.050_bib0057) 2015; 75
Bansal (10.1016/j.eswa.2018.10.050_bib0003) 2014; 6
Yang (10.1016/j.eswa.2018.10.050_bib0076) 2015; 29
Karaboga (10.1016/j.eswa.2018.10.050_bib0029) 2007; 39
Ismael (10.1016/j.eswa.2018.10.050_bib0026) 2017
Reddy (10.1016/j.eswa.2018.10.050_bib0054) 2017
Yang (10.1016/j.eswa.2018.10.050_bib0075) 2010; 2
El Azi (10.1016/j.eswa.2018.10.050_bib0013) 2017; 83
Formato (10.1016/j.eswa.2018.10.050_bib0016) 2007; 77
El Aziz (10.1016/j.eswa.2018.10.050_bib0014) 2017; 90
Li (10.1016/j.eswa.2018.10.050_bib0035) 2018; 91
Eberhart (10.1016/j.eswa.2018.10.050_bib0012) 1995
Rahnamayan (10.1016/j.eswa.2018.10.050_bib0051) 2008; 8
Saremi (10.1016/j.eswa.2018.10.050_bib0077) 2017; 105
Gandomi (10.1016/j.eswa.2018.10.050_bib0018) 2013; 29
Hafez (10.1016/j.eswa.2018.10.050_bib0022) 2016
Auger (10.1016/j.eswa.2018.10.050_bib0002) 2005; Vol. 2
Grandhi (10.1016/j.eswa.2018.10.050_bib0021) 1993; 31
Shi (10.1016/j.eswa.2018.10.050_bib0060) 1998
Deep (10.1016/j.eswa.2018.10.050_bib0009) 2007; 188
Rashedi (10.1016/j.eswa.2018.10.050_bib0052) 2009; 179
Gandomi (10.1016/j.eswa.2018.10.050_bib0017) 2014; 53
Khairuzzaman (10.1016/j.eswa.2018.10.050_bib0032) 2017; 86
Dorigo (10.1016/j.eswa.2018.10.050_bib0011) 2011
Geem (10.1016/j.eswa.2018.10.050_bib0019) 2001; 76
Djenouri (10.1016/j.eswa.2018.10.050_bib0010) 2018; 94
Mirjalili (10.1016/j.eswa.2018.10.050_bib0046) 2016; 27
Webster (10.1016/j.eswa.2018.10.050_bib0071) 2003
Hatamlou (10.1016/j.eswa.2018.10.050_bib0023) 2013; 222
Mirjalili (10.1016/j.eswa.2018.10.050_bib0044) 2017; 114
Sedaghati (10.1016/j.eswa.2018.10.050_bib0059) 2002; 40
Das (10.1016/j.eswa.2018.10.050_bib0007) 2010
Lingyun (10.1016/j.eswa.2018.10.050_bib0038) 2005; 35
Sadollah (10.1016/j.eswa.2018.10.050_bib0055) 2013; 13
Kaveh (10.1016/j.eswa.2018.10.050_bib0030) 2012; 112
Woźniak (10.1016/j.eswa.2018.10.050_bib0073) 2018
Mirjalili (10.1016/j.eswa.2018.10.050_bib0045) 2016; 95
Tsai (10.1016/j.eswa.2018.10.050_bib0065) 2005; 37
Połap (10.1016/j.eswa.2018.10.050_bib0050) 2017; 9
Liang (10.1016/j.eswa.2018.10.050_bib0037) 2013
Tizhoosh (10.1016/j.eswa.2018.10.050_bib0064) 2005; Vol. 1
Ertenlice (10.1016/j.eswa.2018.10.050_bib0015) 2018; 39
Holland (10.1016/j.eswa.2018.10.050_bib0025) 1992
References_xml – volume: 222
  start-page: 175
  year: 2013
  end-page: 184
  ident: bib0023
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Information Sciences
– volume: 14
  start-page: 253
  year: 2001
  end-page: 302
  ident: bib0024
  article-title: The FF planning system: Fast plan generation through heuristic search
  publication-title: Journal of Artificial Intelligence Research
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: bib0036
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 112
  start-page: 283
  year: 2012
  end-page: 294
  ident: bib0030
  article-title: A new meta-heuristic method: Ray optimization
  publication-title: Computers & Structures
– start-page: 35
  year: 2016 December
  end-page: 40
  ident: bib0056
  article-title: Training feedforward neural networks using Sine-Cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite
  publication-title: Computer engineering conference (ICENCO), 2016 12th international
– volume: 94
  start-page: 126
  year: 2018
  end-page: 136
  ident: bib0010
  article-title: Bees swarm optimization guided by data mining techniques for document information retrieval
  publication-title: Expert Systems with Applications
– volume: 91
  start-page: 63
  year: 2018
  end-page: 77
  ident: bib0035
  article-title: Parameter optimization of support vector regression based on sine cosine algorithm
  publication-title: Expert Systems with Applications
– start-page: 255
  year: 2008
  end-page: 284
  ident: bib0068
  article-title: Two frameworks for Improving Gradient-Based Learning Algorithms
  publication-title: Oppositional concepts in computational intelligence
– year: 1992
  ident: bib0025
  article-title: Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence
– volume: 86
  start-page: 64
  year: 2017
  end-page: 76
  ident: bib0032
  article-title: Multilevel thresholding using grey wolf optimizer for image segmentation
  publication-title: Expert Systems with Applications
– year: 2017
  ident: bib0062
  article-title: Swarm intelligence optimized piecewise gamma corrected histogram equalization for dark image enhancement
  publication-title: Computers & Electrical Engineering
– volume: 112
  start-page: 223
  year: 1990
  end-page: 229
  ident: bib0058
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: Journal of Mechanical Design
– start-page: 760
  year: 2011
  end-page: 766
  ident: bib0031
  article-title: Particle swarm optimization
  publication-title: Encyclopedia of machine learning
– volume: 90
  start-page: 484
  year: 2017
  end-page: 500
  ident: bib0014
  article-title: An improved opposition-based sine cosine algorithm for global optimization
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 382
  year: 2002
  end-page: 388
  ident: bib0059
  article-title: Structural optimization with frequency constraints using the finite element force method
  publication-title: AIAA Journal
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: bib0043
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
– start-page: 131
  year: 2018
  end-page: 139
  ident: bib0034
  article-title: Positioning LED panel for uniform illuminance in indoor VLC system using whale optimization
  publication-title: Optical and wireless technologies
– volume: 33
  start-page: 735
  year: 2001
  end-page: 748
  ident: bib0053
  article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals
  publication-title: Engineering Optimization
– volume: 45
  start-page: 35
  year: 2013
  ident: bib0005
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Computing Surveys (CSUR)
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0072
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 39
  year: 1995 October
  end-page: 43
  ident: bib0012
  article-title: A new optimizer using particle swarm theory
  publication-title: Micro machine and human science, 1995. MHS'95, proceedings of the sixth international symposium on
– volume: Vol. 2
  start-page: 1769
  year: 2005, September
  end-page: 1776
  ident: bib0002
  article-title: A restart CMA evolution strategy with increasing population size
  publication-title: Evolutionary computation, 2005. The 2005 IEEE congress on
– volume: 33
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib0040
  article-title: A survey of swarm intelligence for dynamic optimization: Algorithms and applications
  publication-title: Swarm and Evolutionary Computation
– volume: 9
  start-page: 203
  year: 2017
  ident: bib0050
  article-title: Polar Bear Optimization Algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism
  publication-title: Symmetry
– volume: 450
  start-page: 246
  year: 2018
  end-page: 266
  ident: bib0001
  article-title: A Hybrid Harmony search and Simulated Annealing algorithm for continuous optimization
  publication-title: Information Sciences
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: bib0046
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
– volume: 37
  start-page: 399
  year: 2005
  end-page: 409
  ident: bib0065
  article-title: Global optimization of nonlinear fractional programming problems in engineering design
  publication-title: Engineering Optimization
– start-page: 255
  year: 2003
  end-page: 261
  ident: bib0071
  article-title: A local search optimization algorithm based on natural principles of gravitation
  publication-title: Proceedings of the 2003 international conference on information and knowledge engineering (IKE’03)
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0063
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 39
  start-page: 829
  year: 1996
  end-page: 846
  ident: bib0004
  article-title: Structural optimization using a new local approximation method
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: bib0018
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Engineering with Computers
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib0045
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: Vol. 2
  start-page: 327
  year: 1974
  end-page: 338
  ident: bib0049
  article-title: Optimization in pre-contract ship design
  publication-title: Computer applications in the automation of shipyard operation and ship design
– volume: 35
  start-page: 361
  year: 2005
  end-page: 368
  ident: bib0038
  article-title: Truss optimization on shape and sizing with frequency constraints based on genetic algorithm
  publication-title: Computational Mechanics
– start-page: 1
  year: 2017
  end-page: 16
  ident: bib0054
  article-title: A New Binary Variant of Sine–Cosine Algorithm: Development and application to solve profit-based unit commitment problem
  publication-title: Arabian Journal for Science and Engineering
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: bib0027
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: Journal of Mechanical Design
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: bib0077
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Advances in Engineering Software
– volume: 188
  start-page: 895
  year: 2007
  end-page: 911
  ident: bib0009
  article-title: A new crossover operator for real coded genetic algorithms
  publication-title: Applied Mathematics and Computation
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: bib0041
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
– volume: 38
  start-page: 957
  year: 2011
  end-page: 968
  ident: bib0020
  article-title: Truss optimization with dynamic constraints using a particle swarm algorithm
  publication-title: Expert Systems with Applications
– volume: 39
  start-page: 36
  year: 2018
  end-page: 52
  ident: bib0015
  article-title: A survey of swarm intelligence for portfolio optimization: Algorithms and applications
  publication-title: Swarm and Evolutionary Computation
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: bib0042
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
– volume: 42
  start-page: 622
  year: 2004
  end-page: 630
  ident: bib0070
  article-title: Truss optimization on shape and sizing with frequency constraints
  publication-title: AIAA Journal
– volume: 28
  start-page: 2947
  year: 2017
  end-page: 2958
  ident: bib0061
  article-title: Sine–Cosine algorithm for feature selection with elitism strategy and new updating mechanism
  publication-title: Neural Computing and Applications
– volume: 31
  start-page: 2296
  year: 1993
  end-page: 2303
  ident: bib0021
  article-title: Structural optimization with frequency constraints-a review
  publication-title: AIAAJournal
– start-page: 103
  year: 2017 December
  end-page: 107
  ident: bib0026
  article-title: Optimal selection of conductors in Egyptian radial distribution systems using sine-cosine optimization algorithm
  publication-title: Power systems conference (MEPCON), 2017 nineteenth international middle east
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: bib0055
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Applied Soft Computing
– volume: 53
  start-page: 1168
  year: 2014
  end-page: 1183
  ident: bib0017
  article-title: Interior search algorithm (ISA): A novel approach for global optimization
  publication-title: ISA Transactions
– volume: 29
  start-page: 386
  year: 2015
  end-page: 394
  ident: bib0076
  article-title: Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight
  publication-title: Applied Soft Computing
– volume: 77
  start-page: 425
  year: 2007
  end-page: 491
  ident: bib0016
  article-title: Central force optimization
  publication-title: Progress in Electromagnetics Research
– year: 2013
  ident: bib0037
  article-title: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization
– year: 2018
  ident: bib0048
  article-title: A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking
  publication-title: Swarm and Evolutionary Computation.
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: bib0019
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
– volume: 59
  start-page: 20
  year: 2016
  end-page: 32
  ident: bib0028
  article-title: Bio inspired computing–A review of algorithms and scope of applications
  publication-title: Expert Systems with Applications
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib0047
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 8
  start-page: 906
  year: 2008
  end-page: 918
  ident: bib0051
  article-title: Opposition versus randomness in soft computing techniques
  publication-title: Applied Soft Computing
– year: 2010
  ident: bib0007
  article-title: Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems
– volume: 75
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib0057
  article-title: Stochastic fractal search: A powerful metaheuristic algorithm
  publication-title: Knowledge-Based Systems
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: bib0044
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– start-page: 69
  year: 1998 May
  end-page: 73
  ident: bib0060
  article-title: A modified particle swarm optimizer
  publication-title: Evolutionary computation proceedings, 1998. IEEE world congress on computational intelligence, the 1998 IEEE international conference on
– volume: 2
  start-page: 78
  year: 2010
  end-page: 84
  ident: bib0075
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: International Journal of Bio-Inspired Computation
– volume: Vol. 1
  start-page: 695
  year: 2005 November
  end-page: 701
  ident: bib0064
  article-title: Opposition-based learning: A new scheme for machine intelligence
  publication-title: Computational intelligence for modelling, control and automation, 2005 and international conference on intelligent agents, web technologies and internet commerce, international conference on
– start-page: 7
  year: 1987
  end-page: 15
  ident: bib0067
  article-title: Simulated annealing
  publication-title: Simulated annealing: Theory and applications
– volume: 26
  start-page: 30
  year: 1996
  end-page: 45
  ident: bib0008
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Computer Science and Informatics
– start-page: 1
  year: 2016 August
  end-page: 5
  ident: bib0022
  article-title: Sine cosine optimization algorithm for feature selection
  publication-title: Innovations in intelligent systems and applications (INISTA), 2016 International Symposium on
– volume: 98
  start-page: 16
  year: 2018
  end-page: 33
  ident: bib0074
  article-title: Adaptive neuro-heuristic hybrid model for fruit peel defects detection
  publication-title: Neural Networks
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib0052
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
– volume: 39
  start-page: 1
  year: 2018
  end-page: 23
  ident: bib0039
  article-title: Opposition based learning: A literature review
  publication-title: Swarm and Evolutionary Computation
– start-page: 715
  year: 2017
  end-page: 726
  ident: bib0033
  article-title: Data clustering using sine cosine algorithm: Data clustering using SCA
  publication-title: Handbook of research on machine learning innovations and trends
– volume: 8
  start-page: 225
  year: 2004
  end-page: 239
  ident: bib0066
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 36
  year: 2011
  end-page: 39
  ident: bib0011
  article-title: Ant colony optimization
  publication-title: Encyclopedia of machine learning
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib0029
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
– volume: 83
  start-page: 242
  year: 2017
  end-page: 256
  ident: bib0013
  article-title: Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation
  publication-title: Expert Systems with Applications
– volume: 6
  start-page: 31
  year: 2014
  end-page: 47
  ident: bib0003
  article-title: Spider monkey optimization algorithm for numerical optimization
  publication-title: Memetic Computing
– year: 2018
  ident: bib0073
  article-title: Bio-inspired methods modeled for respiratory disease detection from medical images
  publication-title: Swarm and Evolutionary Computation.
– volume: 222
  start-page: 175
  year: 2013
  ident: 10.1016/j.eswa.2018.10.050_bib0023
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2012.08.023
– volume: 39
  start-page: 829
  issue: 5
  year: 1996
  ident: 10.1016/j.eswa.2018.10.050_bib0004
  article-title: Structural optimization using a new local approximation method
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
– volume: 6
  start-page: 31
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2018.10.050_bib0003
  article-title: Spider monkey optimization algorithm for numerical optimization
  publication-title: Memetic Computing
  doi: 10.1007/s12293-013-0128-0
– start-page: 131
  year: 2018
  ident: 10.1016/j.eswa.2018.10.050_bib0034
  article-title: Positioning LED panel for uniform illuminance in indoor VLC system using whale optimization
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2018.10.050_bib0046
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1870-7
– start-page: 39
  year: 1995
  ident: 10.1016/j.eswa.2018.10.050_bib0012
  article-title: A new optimizer using particle swarm theory
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2018.10.050_bib0055
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.11.026
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2018.10.050_bib0075
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: International Journal of Bio-Inspired Computation
  doi: 10.1504/IJBIC.2010.032124
– volume: 38
  start-page: 957
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2018.10.050_bib0020
  article-title: Truss optimization with dynamic constraints using a particle swarm algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.07.086
– volume: 116
  start-page: 405
  issue: 2
  year: 1994
  ident: 10.1016/j.eswa.2018.10.050_bib0027
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: Journal of Mechanical Design
  doi: 10.1115/1.2919393
– volume: 112
  start-page: 223
  issue: 2
  year: 1990
  ident: 10.1016/j.eswa.2018.10.050_bib0058
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: Journal of Mechanical Design
  doi: 10.1115/1.2912596
– year: 2018
  ident: 10.1016/j.eswa.2018.10.050_bib0073
  article-title: Bio-inspired methods modeled for respiratory disease detection from medical images
  publication-title: Swarm and Evolutionary Computation.
  doi: 10.1016/j.swevo.2018.01.008
– volume: 40
  start-page: 382
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2018.10.050_bib0059
  article-title: Structural optimization with frequency constraints using the finite element force method
  publication-title: AIAA Journal
  doi: 10.2514/2.1657
– volume: 8
  start-page: 225
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2018.10.050_bib0066
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826069
– volume: 75
  start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2018.10.050_bib0057
  article-title: Stochastic fractal search: A powerful metaheuristic algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.07.025
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.eswa.2018.10.050_bib0041
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.07.006
– volume: Vol. 2
  start-page: 327
  year: 1974
  ident: 10.1016/j.eswa.2018.10.050_bib0049
  article-title: Optimization in pre-contract ship design
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2018.10.050_bib0029
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-007-9149-x
– volume: 94
  start-page: 126
  year: 2018
  ident: 10.1016/j.eswa.2018.10.050_bib0010
  article-title: Bees swarm optimization guided by data mining techniques for document information retrieval
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.10.042
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2018.10.050_bib0072
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 45
  start-page: 35
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2018.10.050_bib0005
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/2480741.2480752
– start-page: 255
  year: 2008
  ident: 10.1016/j.eswa.2018.10.050_bib0068
  article-title: Two frameworks for Improving Gradient-Based Learning Algorithms
– volume: Vol. 1
  start-page: 695
  year: 2005
  ident: 10.1016/j.eswa.2018.10.050_bib0064
  article-title: Opposition-based learning: A new scheme for machine intelligence
– volume: 83
  start-page: 242
  year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0013
  article-title: Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.023
– volume: 39
  start-page: 36
  year: 2018
  ident: 10.1016/j.eswa.2018.10.050_bib0015
  article-title: A survey of swarm intelligence for portfolio optimization: Algorithms and applications
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.01.009
– volume: 8
  start-page: 906
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2018.10.050_bib0051
  article-title: Opposition versus randomness in soft computing techniques
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.07.010
– year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0062
  article-title: Swarm intelligence optimized piecewise gamma corrected histogram equalization for dark image enhancement
  publication-title: Computers & Electrical Engineering
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2018.10.050_bib0045
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 31
  start-page: 2296
  issue: 12
  year: 1993
  ident: 10.1016/j.eswa.2018.10.050_bib0021
  article-title: Structural optimization with frequency constraints-a review
  publication-title: AIAAJournal
– volume: 39
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2018.10.050_bib0039
  article-title: Opposition based learning: A literature review
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.09.010
– year: 2018
  ident: 10.1016/j.eswa.2018.10.050_bib0048
  article-title: A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking
  publication-title: Swarm and Evolutionary Computation.
  doi: 10.1016/j.swevo.2018.02.011
– year: 2010
  ident: 10.1016/j.eswa.2018.10.050_bib0007
– start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2018.10.050_bib0022
  article-title: Sine cosine optimization algorithm for feature selection
– start-page: 103
  year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0026
  article-title: Optimal selection of conductors in Egyptian radial distribution systems using sine-cosine optimization algorithm
– start-page: 7
  year: 1987
  ident: 10.1016/j.eswa.2018.10.050_bib0067
  article-title: Simulated annealing
– start-page: 35
  year: 2016
  ident: 10.1016/j.eswa.2018.10.050_bib0056
  article-title: Training feedforward neural networks using Sine-Cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite
– year: 2013
  ident: 10.1016/j.eswa.2018.10.050_bib0037
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2018.10.050_bib0047
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 28
  start-page: 2947
  issue: 10
  year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0061
  article-title: Sine–Cosine algorithm for feature selection with elitism strategy and new updating mechanism
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-2837-7
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2018.10.050_bib0063
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 188
  start-page: 895
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2018.10.050_bib0009
  article-title: A new crossover operator for real coded genetic algorithms
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.10.047
– volume: 9
  start-page: 203
  issue: 10
  year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0050
  article-title: Polar Bear Optimization Algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism
  publication-title: Symmetry
  doi: 10.3390/sym9100203
– volume: 26
  start-page: 30
  year: 1996
  ident: 10.1016/j.eswa.2018.10.050_bib0008
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Computer Science and Informatics
– volume: 86
  start-page: 64
  year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0032
  article-title: Multilevel thresholding using grey wolf optimizer for image segmentation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.029
– volume: 33
  start-page: 735
  issue: 6
  year: 2001
  ident: 10.1016/j.eswa.2018.10.050_bib0053
  article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals
  publication-title: Engineering Optimization
  doi: 10.1080/03052150108940941
– volume: 42
  start-page: 622
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2018.10.050_bib0070
  article-title: Truss optimization on shape and sizing with frequency constraints
  publication-title: AIAA Journal
  doi: 10.2514/1.1711
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2018.10.050_bib0018
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-011-0241-y
– volume: 90
  start-page: 484
  year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0014
  article-title: An improved opposition-based sine cosine algorithm for global optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.07.043
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.eswa.2018.10.050_bib0043
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 98
  start-page: 16
  year: 2018
  ident: 10.1016/j.eswa.2018.10.050_bib0074
  article-title: Adaptive neuro-heuristic hybrid model for fruit peel defects detection
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.10.009
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.eswa.2018.10.050_bib0019
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– start-page: 36
  year: 2011
  ident: 10.1016/j.eswa.2018.10.050_bib0011
  article-title: Ant colony optimization
– start-page: 760
  year: 2011
  ident: 10.1016/j.eswa.2018.10.050_bib0031
  article-title: Particle swarm optimization
– volume: 29
  start-page: 386
  year: 2015
  ident: 10.1016/j.eswa.2018.10.050_bib0076
  article-title: Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.01.004
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2018.10.050_bib0036
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857610
– volume: 77
  start-page: 425
  year: 2007
  ident: 10.1016/j.eswa.2018.10.050_bib0016
  article-title: Central force optimization
  publication-title: Progress in Electromagnetics Research
  doi: 10.2528/PIER07082403
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0054
  article-title: A New Binary Variant of Sine–Cosine Algorithm: Development and application to solve profit-based unit commitment problem
  publication-title: Arabian Journal for Science and Engineering
– volume: 37
  start-page: 399
  issue: 4
  year: 2005
  ident: 10.1016/j.eswa.2018.10.050_bib0065
  article-title: Global optimization of nonlinear fractional programming problems in engineering design
  publication-title: Engineering Optimization
  doi: 10.1080/03052150500066737
– volume: 14
  start-page: 253
  year: 2001
  ident: 10.1016/j.eswa.2018.10.050_bib0024
  article-title: The FF planning system: Fast plan generation through heuristic search
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.855
– year: 1992
  ident: 10.1016/j.eswa.2018.10.050_bib0025
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2018.10.050_bib0052
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: Vol. 2
  start-page: 1769
  year: 2005
  ident: 10.1016/j.eswa.2018.10.050_bib0002
  article-title: A restart CMA evolution strategy with increasing population size
– volume: 59
  start-page: 20
  year: 2016
  ident: 10.1016/j.eswa.2018.10.050_bib0028
  article-title: Bio inspired computing–A review of algorithms and scope of applications
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.04.018
– volume: 91
  start-page: 63
  year: 2018
  ident: 10.1016/j.eswa.2018.10.050_bib0035
  article-title: Parameter optimization of support vector regression based on sine cosine algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.08.038
– start-page: 255
  year: 2003
  ident: 10.1016/j.eswa.2018.10.050_bib0071
  article-title: A local search optimization algorithm based on natural principles of gravitation
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.eswa.2018.10.050_bib0042
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 53
  start-page: 1168
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2018.10.050_bib0017
  article-title: Interior search algorithm (ISA): A novel approach for global optimization
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2014.03.018
– volume: 33
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0040
  article-title: A survey of swarm intelligence for dynamic optimization: Algorithms and applications
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2016.12.005
– start-page: 69
  year: 1998
  ident: 10.1016/j.eswa.2018.10.050_bib0060
  article-title: A modified particle swarm optimizer
– volume: 450
  start-page: 246
  year: 2018
  ident: 10.1016/j.eswa.2018.10.050_bib0001
  article-title: A Hybrid Harmony search and Simulated Annealing algorithm for continuous optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.03.042
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0077
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0044
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– start-page: 715
  year: 2017
  ident: 10.1016/j.eswa.2018.10.050_bib0033
  article-title: Data clustering using sine cosine algorithm: Data clustering using SCA
– volume: 35
  start-page: 361
  issue: 5
  year: 2005
  ident: 10.1016/j.eswa.2018.10.050_bib0038
  article-title: Truss optimization on shape and sizing with frequency constraints based on genetic algorithm
  publication-title: Computational Mechanics
  doi: 10.1007/s00466-004-0623-8
– volume: 112
  start-page: 283
  year: 2012
  ident: 10.1016/j.eswa.2018.10.050_bib0030
  article-title: A new meta-heuristic method: Ray optimization
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2012.09.003
SSID ssj0017007
Score 2.6505392
Snippet •A new method to solve global optimization and engineering problems called m-SCA.•The m-SCA improves the SCA using self-adaptation and opposition based...
Real-world optimization problems demand an efficient meta-heuristic algorithm which maintains the diversity of solutions and properly exploits the search space...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 210
SubjectTerms Adaptive algorithms
Algorithms
Benchmark test problems
Benchmarks
Engineering application problems
Expert systems
Global optimization
Heuristic
Heuristic methods
Machine learning
Opposition based learning
Optimization
Population (statistical)
Population based algorithms
Searching
Self-adaptation
Sine Cosine algorithm (SCA)
Stagnation
Trigonometric functions
Title A hybrid self-adaptive sine cosine algorithm with opposition based learning
URI https://dx.doi.org/10.1016/j.eswa.2018.10.050
https://www.proquest.com/docview/2172146890
Volume 119
WOSCitedRecordID wos000456222700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBeh3WGXfY917YYOuxkXOZIt-RhGx7ZAGayD3IS-3LSkjomdrvvvK1mSk2a0rIddbCNsIfv3_N7T-wTgk91VSS0ZSUlmREqUEKkQRqdYZDhHSpoCib7ZBD09ZbNZ-WM0msZcmOsFrWt2c1M2_xVqO2bBdqmzj4B7mNQO2GsLuj1a2O3xn4CfJPM_Lg0rac2iSoUWTR8d5OLbE7XsT2JxvlxddPMrb4ZdNjF0K3FCTcdWEud3zPauJnIXKj_HnLgt7_cQyLNuvEL6c76Wc3E1aMrG9K3wpus2VH8Itoas3ApRiUZDalH1fXUG_hl4XuSAaEuYjr3T5S8-7U0Gl8em_e2KP2Xs2IXY5WgjlaInfkdYDSGEMTrtkrs5uJvDDnDk7Df7Y5qXlkvvT76dzL4PTiWKfPZ8fImQQ-XD_XZXcp-esiOxezXk7AV4FvYPcOJxfwlGpn4FnsfeHDCw6tdgOoGeDOAdMoAOf-jJAA5kAB2acEMGsCcDGMngDfj15eTs89c0NM5IFR6zLsUyx0RWhIlSYCyZNphUTGZMldjuNzVjRUGpldLayMJg7SoAWU1TS6x0QTHBb8FevazNOwCFc8yTSmSMKZKjggmD7GxWvuZjqvLqAGTxM3EVqsq75iYLfj9AByAZnml8TZUH787j1-dBK_TaHrfE9OBzRxEqHn7Plrt2bC7ZsETvH7WIQ_B08z8cgb1utTYfwBN13V20q4-B0G4BlryO_Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+self-adaptive+sine+cosine+algorithm+with+opposition+based+learning&rft.jtitle=Expert+systems+with+applications&rft.au=Gupta%2C+Shubham&rft.au=Deep%2C+Kusum&rft.date=2019-04-01&rft.issn=0957-4174&rft.volume=119&rft.spage=210&rft.epage=230&rft_id=info:doi/10.1016%2Fj.eswa.2018.10.050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2018_10_050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon