A rule extraction approach from support vector machines for diagnosing hypertension among diabetics

•Classification of datasets on diabetes and its complications are considered.•Five feature selection algorithms are utilized for choosing significant features.•A hybrid rule-extraction method generating comprehensible rule sets is developed.•Experiments were performed on six datasets: one new and fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 130; S. 188 - 205
Hauptverfasser: Singh, Namrata, Singh, Pradeep, Bhagat, Deepika
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 15.09.2019
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Classification of datasets on diabetes and its complications are considered.•Five feature selection algorithms are utilized for choosing significant features.•A hybrid rule-extraction method generating comprehensible rule sets is developed.•Experiments were performed on six datasets: one new and five public.•The proposed approach outperforms ten state-of-the-art classifiers. Diabetes mellitus is a major non-communicable disease ever rising as an epidemic and a public health crisis worldwide. One of the several life-threatening complications of diabetes is hypertension or high blood pressure which mostly remains undiagnosed and untreated until symptoms become severe. Diabetic complications can be greatly reduced or prevented by early detection of individuals at risk. In recent past, several machine learning classification algorithms have been widely applied for diagnosing diabetes but very few studies have been conducted for detecting hypertension among diabetic subjects. Specifically, existing rule-based models fail to produce comprehensible rule sets. To resolve this limitation, this paper endeavours to develop a hybrid approach for extracting rules from support vector machines. A feature selection mechanism is introduced for selecting significantly associated features from the dataset. XGBoost has been utilized to convert SVM black box model into an apprehensible decision-making tool. A new dataset has been obtained from Pt. JNM, Medical College, Raipur, India comprising of 300 diabetic subjects with 108 hypertensives and 192 normotensives. In addition, five public diabetes-related datasets have been taken for generalization of the results. Experiments reveal that the proposed model outperforms ten other benchmark classifiers. Friedman rank and post hoc Bonferroni-Dunn tests demonstrate the significance of the proposed method over others.
AbstractList •Classification of datasets on diabetes and its complications are considered.•Five feature selection algorithms are utilized for choosing significant features.•A hybrid rule-extraction method generating comprehensible rule sets is developed.•Experiments were performed on six datasets: one new and five public.•The proposed approach outperforms ten state-of-the-art classifiers. Diabetes mellitus is a major non-communicable disease ever rising as an epidemic and a public health crisis worldwide. One of the several life-threatening complications of diabetes is hypertension or high blood pressure which mostly remains undiagnosed and untreated until symptoms become severe. Diabetic complications can be greatly reduced or prevented by early detection of individuals at risk. In recent past, several machine learning classification algorithms have been widely applied for diagnosing diabetes but very few studies have been conducted for detecting hypertension among diabetic subjects. Specifically, existing rule-based models fail to produce comprehensible rule sets. To resolve this limitation, this paper endeavours to develop a hybrid approach for extracting rules from support vector machines. A feature selection mechanism is introduced for selecting significantly associated features from the dataset. XGBoost has been utilized to convert SVM black box model into an apprehensible decision-making tool. A new dataset has been obtained from Pt. JNM, Medical College, Raipur, India comprising of 300 diabetic subjects with 108 hypertensives and 192 normotensives. In addition, five public diabetes-related datasets have been taken for generalization of the results. Experiments reveal that the proposed model outperforms ten other benchmark classifiers. Friedman rank and post hoc Bonferroni-Dunn tests demonstrate the significance of the proposed method over others.
Diabetes mellitus is a major non-communicable disease ever rising as an epidemic and a public health crisis worldwide. One of the several life-threatening complications of diabetes is hypertension or high blood pressure which mostly remains undiagnosed and untreated until symptoms become severe. Diabetic complications can be greatly reduced or prevented by early detection of individuals at risk. In recent past, several machine learning classification algorithms have been widely applied for diagnosing diabetes but very few studies have been conducted for detecting hypertension among diabetic subjects. Specifically, existing rule-based models fail to produce comprehensible rule sets. To resolve this limitation, this paper endeavours to develop a hybrid approach for extracting rules from support vector machines. A feature selection mechanism is introduced for selecting significantly associated features from the dataset. XGBoost has been utilized to convert SVM black box model into an apprehensible decision-making tool. A new dataset has been obtained from Pt. JNM, Medical College, Raipur, India comprising of 300 diabetic subjects with 108 hypertensives and 192 normotensives. In addition, five public diabetes-related datasets have been taken for generalization of the results. Experiments reveal that the proposed model outperforms ten other benchmark classifiers. Friedman rank and post hoc Bonferroni-Dunn tests demonstrate the significance of the proposed method over others.
Author Singh, Pradeep
Singh, Namrata
Bhagat, Deepika
Author_xml – sequence: 1
  givenname: Namrata
  orcidid: 0000-0003-1460-1117
  surname: Singh
  fullname: Singh, Namrata
  email: nsingh.phd2016.cs@nitrr.ac.in
  organization: Department of Computer Science and Engineering, National Institute of Technology, Raipur 492001, Chhattisgarh, India
– sequence: 2
  givenname: Pradeep
  orcidid: 0000-0002-2806-8432
  surname: Singh
  fullname: Singh, Pradeep
  email: psingh.cs@nitrr.ac.in
  organization: Department of Computer Science and Engineering, National Institute of Technology, Raipur 492001, Chhattisgarh, India
– sequence: 3
  givenname: Deepika
  surname: Bhagat
  fullname: Bhagat, Deepika
  organization: Department of Medicine, Dr. Bhim Rao Ambedkar Memorial Hospital, Pt. JNM, Medical College, Raipur 492001, Chhattisgarh, India
BookMark eNp9kEtvGyEQgFGUSLWT_IGckHreDY9dWKReLKsvKVIu6RmxMJtg2bABnNb_vmydUw85oBHMfMPMt0aXIQZA6I6SlhIq7nct5N-mZYSqlnQtYeoCreggeSOk4pdoRVQvm47K7hNa57wjhEpC5ArZDU7HPWD4U5KxxceAzTynaOwLnlI84Hyc55gKfgNbYsKHmvABMp7qxXnzHGL24Rm_nGZIBUL-1-EQ61PNjlC8zTfoajL7DLfv8Rr9-vb1afujeXj8_nO7eWgsZ0NpuBqHTjjKOBdjz51QXUe5sMJJKg21rBvIuBzOFOtV78QkiINptNLZYQJ-jT6f-9b5X4-Qi97FYwr1S80YV4L3A6e1ajhX2RRzTjBp64tZNq8G_F5ToheleqcXpXpRqkmnq9KKsv_QOfmDSaePoS9nCOrqbx6SztZDsOB8qk61i_4j_C8rc5OX
CitedBy_id crossref_primary_10_1016_j_chemolab_2021_104396
crossref_primary_10_1007_s11517_021_02333_x
crossref_primary_10_1007_s11831_023_10061_8
crossref_primary_10_1016_j_asoc_2020_106856
crossref_primary_10_1109_ACCESS_2022_3188689
crossref_primary_10_1002_cnm_3496
crossref_primary_10_3390_en15155744
crossref_primary_10_1016_j_eswa_2022_118003
crossref_primary_10_3390_fi13060158
crossref_primary_10_1007_s10614_022_10305_y
crossref_primary_10_1007_s12525_023_00644_5
crossref_primary_10_1038_s41598_020_67640_z
crossref_primary_10_1038_s41598_022_14143_8
crossref_primary_10_1016_j_asoc_2022_108766
crossref_primary_10_1016_j_asoc_2025_113607
crossref_primary_10_1016_j_bbe_2019_10_001
crossref_primary_10_1007_s10489_022_03803_x
crossref_primary_10_1016_j_engappai_2023_106355
crossref_primary_10_1007_s10479_021_04187_w
crossref_primary_10_32604_cmes_2022_018580
crossref_primary_10_1007_s10614_025_10962_9
crossref_primary_10_1016_j_eswa_2022_117000
crossref_primary_10_1007_s12652_021_02965_9
crossref_primary_10_2147_DMSO_S312787
crossref_primary_10_1007_s10462_021_10088_y
crossref_primary_10_3390_sym17060950
crossref_primary_10_3390_en17122810
crossref_primary_10_3390_math10091428
crossref_primary_10_1155_2020_2742781
crossref_primary_10_1109_ACCESS_2019_2945129
Cites_doi 10.1038/srep43965
10.1016/j.eswa.2017.06.031
10.1136/bmjopen-2012-002457
10.1371/journal.pone.0195344
10.1186/s40537-017-0082-7
10.1016/j.eswa.2009.01.029
10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
10.1016/j.cmpb.2017.09.004
10.1609/aimag.v33i2.2410
10.1371/journal.pone.0173021
10.1038/s41440-017-0001-5
10.1016/j.eswa.2015.11.009
10.1161/01.HYP.37.4.1053
10.1109/TNNLS.2015.2389037
10.1109/JBHI.2014.2325615
10.1109/TKDE.2008.131
10.4158/EP.8.S1.40
10.1186/s13690-015-0088-6
10.1214/aoms/1177731944
10.1016/j.diabres.2018.02.023
10.1186/1471-2105-10-213
10.1109/TKDE.2007.190610
10.1214/aos/1013203451
10.1016/j.csbj.2016.12.005
10.1186/s12859-018-2090-9
10.1080/01621459.1961.10482090
10.1038/hr.2015.120
10.1007/s00521-013-1524-6
10.1016/j.measurement.2014.08.019
10.1016/j.eswa.2012.11.007
10.2337/dc15-1536
10.1016/0950-7051(96)81920-4
10.1109/72.809084
10.1016/j.eswa.2013.09.022
10.1016/j.eswa.2018.04.023
10.1109/TITB.2009.2039485
10.1016/j.dib.2018.10.018
10.3390/a10030079
10.1016/j.diabres.2017.03.024
10.1023/A:1012427100071
10.1016/j.diabres.2017.11.028
10.1007/BF00994018
10.1016/j.eswa.2010.02.055
10.1186/s13755-016-0015-4
10.1007/BF00116251
10.1016/j.eswa.2016.11.017
10.1136/bmjopen-2013-003798
10.1109/TIT.2006.881713
10.1136/heartjnl-2011-300734
10.1016/j.imu.2016.02.001
10.1109/72.728352
10.1016/S0167-9473(01)00065-2
10.1177/193229681100500230
10.1145/1132960.1132963
10.1186/1758-5996-6-31
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Sep 15, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 15, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2019.04.029
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Public Health
EISSN 1873-6793
EndPage 205
ExternalDocumentID 10_1016_j_eswa_2019_04_029
S0957417419302593
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-39b846d12336b53d6944136c6d717a1c2480b480b3292595d6f60defbc7dc8fe3
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470341900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 07:41:00 EDT 2025
Sat Nov 29 06:14:30 EST 2025
Tue Nov 18 22:36:16 EST 2025
Fri Feb 23 02:24:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hypertension
Extreme gradient boosting
Diabetes
Support vector machine
Medical diagnosis
Rule extraction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-39b846d12336b53d6944136c6d717a1c2480b480b3292595d6f60defbc7dc8fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1460-1117
0000-0002-2806-8432
PQID 2239635831
PQPubID 2045477
PageCount 18
ParticipantIDs proquest_journals_2239635831
crossref_citationtrail_10_1016_j_eswa_2019_04_029
crossref_primary_10_1016_j_eswa_2019_04_029
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_04_029
PublicationCentury 2000
PublicationDate 2019-09-15
PublicationDateYYYYMMDD 2019-09-15
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Sim, Ban, Tan, Sethi, Loh (bib0078) 2017; 12
Seera, Lim (bib0077) 2014; 41
Barakat, Bradley (bib0004) 2006; 2
Boyd, Vandenberghe (bib0009) 2004
Kahramanli, Allahverdi (bib0049) 2009; 36
Menze, Kelm, Masuch, Himmelreich, Bachert, Petrich (bib0064) 2009; 10
Sowers, Epstein, Frohlich (bib0079) 2001; 37
Farquad, Ravi, Bapi (bib0026) 2009
Farquad, Ravi, Raju (bib0027) 2010; 37
Barakat, Bradley (bib0006) 2007; 19
Barakat, Bradley, Barakat (bib0007) 2010; 14
Katayama, Hatano, Issiki (bib0050) 2018; 41
Andrews, Diederich, Tickle (bib0002) 1995; 8
Liu, Zhao, Liu, Qi, Sun, Wang (bib0055) 2013; 3
Biostat Diabetes Dataset. (2018). Retrieved January 20, 2019, from
Guzman, Melin, Prado-Arechiga (bib0039) 2017; 10
Fung, Sandilya, Rao (bib0035) 2005
Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013).
Sakr, Elshawi, Ahmed, Qureshi, Brawner, Keteyian (bib0075) 2018; 13
Martens, Baesens, Van Gestel (bib0062) 2009; 21
Ogurtsova, Rocha Fernandes, Huang, Linnenkamp, Guariguata, Cho (bib0070) 2017; 128
Fu, Ong, Keerthi, Hung, Goh (bib0034) 2004
Cho, Shaw, Karuranga, Huang, da Rocha Fernandes, Ohlrogge (bib0013) 2018; 138
Cortes, Vapnik (bib0015) 1995; 20
Dunn (bib0024) 1961; 56
Retrieved from
Farran, Channanath, Behbehani, Thanaraj (bib0028) 2013; 3
Johansson, König, Niklasson (bib0047) 2003
(bib0090) 2011
Rodbard, Vigersky (bib0074) 2011; 5
Zhang, Li, Tang, Cui (bib0092) 2004
Luo (bib0058) 2016; 4
Maniruzzaman, Kumar, Abedin, M., M., El-Baz (bib0060) 2017; 152
de Fortuny, Martens (bib0018) 2015; 26
Steinwart (bib0080) 2003; 4
Nanditha, Ma, Ramachandran, Snehalatha, Chan, Chia (bib0067) 2016; 39
van Dieren, Beulens, Kengne, Peelen, Rutten, Woodward (bib0086) 2012; 98
Tickle, Orlowski, Diederich (bib0085) 1994
LaFreniere, Zulkernine, Barber, Martin (bib0054) 2016
Hsu, Lin (bib0043) 2002; 46
Frank, Witten (bib0030) 1998
Han, Luo, Yu, Pan, Chen (bib0041) 2015; 19
Marling, Wiley, Bunescu, Shubrook, Schwartz (bib0061) 2012; 33
Hayashi, Yukita (bib0042) 2016; 2
Tickle, Andrews, Golea, Diederich (bib0084) 1998; 9
Ding, Hua, Yu (bib0023) 2014; 25
Núñez, Angulo, Català (bib0068) 2002
Craven, Shavlik (bib0017) 1996; 8
Guo, Lu, Gao, Zhang, Yan, Su (bib0038) 2017; 7
Wang, Deng, Choi (bib0088) 2015
Friedman (bib0032) 2002; 38
Chen, Pan (bib0011) 2018; 19
Demšar (bib0019) 2006; 7
Brown (bib0010) 2009
Johansson, König, Niklasson (bib0048) 2004
Miramontes, Martínez, Melin, Prado-Arechiga (bib0065) 2017
Zhang, Su, Jia, Chu (bib0093) 2005
Alberti, Zimmet (bib0001) 1998; 15
Diederich, Barakat (bib0022) 2004
Melin, Miramontes, Prado-Arechiga (bib0063) 2018; 107
Pulido, Melin, Prado-Arechiga (bib0072) 2018
Miramontes, Martínez, Melin, Prado-Arechiga (bib0066) 2018; 648
Barakat, Diederich (bib0005) 2005; 2
Lopez-jaramillo, Lopez-Lopez, Lopez-Lopez, Rodriguez-Alvarez (bib0056) 2014; 6
Jin, Xu, Bie, Guo (bib0046) 2006
Friedman (bib0033) 1940; 11
Geng, Hamilton (bib0036) 2006; 38
Wang, Huang, Cheng (bib0089) 2014; 58
Malmir, Amini, Chang (bib0059) 2017; 88
Diederich (bib0021) 2008; 80
Vapnik (bib0087) 1995
Kavakiotis, Tsave, Salifoglou, Maglaveras, Vlahavas, Chouvarda (bib0051) 2017; 15
International Diabetes Federation IDF Diabetes Atlas-8th Edition. (2017). Retrieved June 7, 2018, from http://www.diabetesatlas.org
Dheeru, D., & Karra Taniskidou, E. (2017). UCI Machine Learning Repository. Retrieved from
Stoean, Stoean (bib0082) 2013; 40
Farquad, Ravi, Bapi (bib0025) 2008
Feld (bib0029) 2002; 8
Friedman (bib0031) 2001; 29
World Health Organization. (2013).
Cohen (bib0014) 1995
Núñez, H., Angulo, C., & Català, A. (2004). Rule Based Learning Systems from SVM and RBFNN. Retrieved from
Schmitz, Aldrich, Gouws (bib0076) 1999; 10
Chen, Guestrin (bib0012) 2016
Quinlan (bib0073) 1986; 1
Proceedings of the Advances in neural information processing systems. Retrieved from NIPS2013_4928
Teramukai, Okuda, Miyazaki, Kawamori, Shirayama, Teramoto (bib0083) 2016; 39
Ketema, Kibret (bib0052) 2015; 73
Kurano, Darestani, Shinnakasu, Yamamoto, Dochi, Uemura (bib0053) 2018; 136
Cover, Thomas (bib0016) 2006
Guzmán, Melin, Prado-Arechiga (bib0040) 2018
Gorzałczany, Rudziński (bib0037) 2017; 71
Asaduzzaman, Masud, Bhuiyan, Ahmed, Paul, Rahman (bib0003) 2018; 21
Pourpanah, Lim, Saleh (bib0071) 2016; 49
Jayanthi, Babu, Rao (bib0045) 2017; 4
Steinwart, Hush, Scovel (bib0081) 2006; 52
Stoean (10.1016/j.eswa.2019.04.029_bib0082) 2013; 40
Pourpanah (10.1016/j.eswa.2019.04.029_bib0071) 2016; 49
Teramukai (10.1016/j.eswa.2019.04.029_bib0083) 2016; 39
Demšar (10.1016/j.eswa.2019.04.029_bib0019) 2006; 7
Johansson (10.1016/j.eswa.2019.04.029_bib0048) 2004
Sim (10.1016/j.eswa.2019.04.029_bib0078) 2017; 12
Miramontes (10.1016/j.eswa.2019.04.029_bib0066) 2018; 648
Ketema (10.1016/j.eswa.2019.04.029_bib0052) 2015; 73
Martens (10.1016/j.eswa.2019.04.029_bib0062) 2009; 21
Ogurtsova (10.1016/j.eswa.2019.04.029_bib0070) 2017; 128
Kahramanli (10.1016/j.eswa.2019.04.029_bib0049) 2009; 36
Dunn (10.1016/j.eswa.2019.04.029_bib0024) 1961; 56
Farquad (10.1016/j.eswa.2019.04.029_bib0025) 2008
van Dieren (10.1016/j.eswa.2019.04.029_bib0086) 2012; 98
Sakr (10.1016/j.eswa.2019.04.029_bib0075) 2018; 13
Schmitz (10.1016/j.eswa.2019.04.029_bib0076) 1999; 10
Katayama (10.1016/j.eswa.2019.04.029_bib0050) 2018; 41
Alberti (10.1016/j.eswa.2019.04.029_bib0001) 1998; 15
(10.1016/j.eswa.2019.04.029_bib0090) 2011
Han (10.1016/j.eswa.2019.04.029_bib0041) 2015; 19
10.1016/j.eswa.2019.04.029_bib0069
10.1016/j.eswa.2019.04.029_bib0020
Asaduzzaman (10.1016/j.eswa.2019.04.029_bib0003) 2018; 21
Liu (10.1016/j.eswa.2019.04.029_bib0055) 2013; 3
10.1016/j.eswa.2019.04.029_bib0008
Guo (10.1016/j.eswa.2019.04.029_bib0038) 2017; 7
Marling (10.1016/j.eswa.2019.04.029_bib0061) 2012; 33
Chen (10.1016/j.eswa.2019.04.029_bib0012) 2016
Johansson (10.1016/j.eswa.2019.04.029_bib0047) 2003
Frank (10.1016/j.eswa.2019.04.029_bib0030) 1998
Pulido (10.1016/j.eswa.2019.04.029_bib0072) 2018
Menze (10.1016/j.eswa.2019.04.029_bib0064) 2009; 10
Wang (10.1016/j.eswa.2019.04.029_bib0089) 2014; 58
Fu (10.1016/j.eswa.2019.04.029_bib0034) 2004
Diederich (10.1016/j.eswa.2019.04.029_bib0021) 2008; 80
Farquad (10.1016/j.eswa.2019.04.029_bib0027) 2010; 37
Guzmán (10.1016/j.eswa.2019.04.029_bib0040) 2018
Cohen (10.1016/j.eswa.2019.04.029_bib0014) 1995
Feld (10.1016/j.eswa.2019.04.029_bib0029) 2002; 8
Wang (10.1016/j.eswa.2019.04.029_bib0088) 2015
10.1016/j.eswa.2019.04.029_bib0091
10.1016/j.eswa.2019.04.029_bib0057
Rodbard (10.1016/j.eswa.2019.04.029_bib0074) 2011; 5
Seera (10.1016/j.eswa.2019.04.029_bib0077) 2014; 41
Diederich (10.1016/j.eswa.2019.04.029_bib0022) 2004
Tickle (10.1016/j.eswa.2019.04.029_bib0084) 1998; 9
Friedman (10.1016/j.eswa.2019.04.029_bib0032) 2002; 38
Jin (10.1016/j.eswa.2019.04.029_bib0046) 2006
Nanditha (10.1016/j.eswa.2019.04.029_bib0067) 2016; 39
Malmir (10.1016/j.eswa.2019.04.029_bib0059) 2017; 88
Guzman (10.1016/j.eswa.2019.04.029_bib0039) 2017; 10
Kurano (10.1016/j.eswa.2019.04.029_bib0053) 2018; 136
Tickle (10.1016/j.eswa.2019.04.029_bib0085) 1994
Hayashi (10.1016/j.eswa.2019.04.029_bib0042) 2016; 2
Zhang (10.1016/j.eswa.2019.04.029_bib0092) 2004
Fung (10.1016/j.eswa.2019.04.029_bib0035) 2005
Hsu (10.1016/j.eswa.2019.04.029_bib0043) 2002; 46
Sowers (10.1016/j.eswa.2019.04.029_bib0079) 2001; 37
Cover (10.1016/j.eswa.2019.04.029_bib0016) 2006
Jayanthi (10.1016/j.eswa.2019.04.029_bib0045) 2017; 4
Craven (10.1016/j.eswa.2019.04.029_bib0017) 1996; 8
Barakat (10.1016/j.eswa.2019.04.029_bib0005) 2005; 2
Kavakiotis (10.1016/j.eswa.2019.04.029_bib0051) 2017; 15
Barakat (10.1016/j.eswa.2019.04.029_bib0006) 2007; 19
Vapnik (10.1016/j.eswa.2019.04.029_bib0087) 1995
Geng (10.1016/j.eswa.2019.04.029_bib0036) 2006; 38
Barakat (10.1016/j.eswa.2019.04.029_bib0004) 2006; 2
Cho (10.1016/j.eswa.2019.04.029_bib0013) 2018; 138
Barakat (10.1016/j.eswa.2019.04.029_bib0007) 2010; 14
Brown (10.1016/j.eswa.2019.04.029_bib0010) 2009
de Fortuny (10.1016/j.eswa.2019.04.029_bib0018) 2015; 26
Quinlan (10.1016/j.eswa.2019.04.029_bib0073) 1986; 1
Cortes (10.1016/j.eswa.2019.04.029_bib0015) 1995; 20
10.1016/j.eswa.2019.04.029_bib0044
Núñez (10.1016/j.eswa.2019.04.029_bib0068) 2002
Chen (10.1016/j.eswa.2019.04.029_bib0011) 2018; 19
Steinwart (10.1016/j.eswa.2019.04.029_bib0080) 2003; 4
Andrews (10.1016/j.eswa.2019.04.029_bib0002) 1995; 8
Farran (10.1016/j.eswa.2019.04.029_bib0028) 2013; 3
Maniruzzaman (10.1016/j.eswa.2019.04.029_bib0060) 2017; 152
Friedman (10.1016/j.eswa.2019.04.029_bib0031) 2001; 29
Lopez-jaramillo (10.1016/j.eswa.2019.04.029_bib0056) 2014; 6
Melin (10.1016/j.eswa.2019.04.029_bib0063) 2018; 107
Zhang (10.1016/j.eswa.2019.04.029_bib0093) 2005
Luo (10.1016/j.eswa.2019.04.029_bib0058) 2016; 4
Farquad (10.1016/j.eswa.2019.04.029_bib0026) 2009
Friedman (10.1016/j.eswa.2019.04.029_bib0033) 1940; 11
LaFreniere (10.1016/j.eswa.2019.04.029_bib0054) 2016
Ding (10.1016/j.eswa.2019.04.029_bib0023) 2014; 25
Gorzałczany (10.1016/j.eswa.2019.04.029_bib0037) 2017; 71
Miramontes (10.1016/j.eswa.2019.04.029_bib0065) 2017
Boyd (10.1016/j.eswa.2019.04.029_bib0009) 2004
Steinwart (10.1016/j.eswa.2019.04.029_bib0081) 2006; 52
References_xml – volume: 136
  start-page: 124
  year: 2018
  end-page: 133
  ident: bib0053
  article-title: mRNA expression of platelet activating factor receptor (PAFR) in peripheral blood mononuclear cells is associated with albuminuria and vascular dysfunction in patients with type 2 diabetes
  publication-title: Diabetes Research and Clinical Practice
– volume: 19
  start-page: 729
  year: 2007
  end-page: 741
  ident: bib0006
  article-title: Rule extraction from support vector machines: A sequential covering approach
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 73
  start-page: 43
  year: 2015
  ident: bib0052
  article-title: Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis
  publication-title: Archives of Public Health
– volume: 41
  start-page: 2239
  year: 2014
  end-page: 2249
  ident: bib0077
  article-title: A hybrid intelligent system for medical data classification
  publication-title: Expert Systems with Applications
– volume: 9
  start-page: 1057
  year: 1998
  end-page: 1068
  ident: bib0084
  article-title: The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 7
  start-page: 43965
  year: 2017
  ident: bib0038
  article-title: Cluster analysis: A new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients
  publication-title: Scientific Reports
– year: 2006
  ident: bib0016
  article-title: Elements of information theory
– volume: 25
  start-page: 975
  year: 2014
  end-page: 982
  ident: bib0023
  article-title: An overview on nonparallel hyperplane support vector machine algorithms
  publication-title: Neural Computing and Applications
– volume: 128
  start-page: 40
  year: 2017
  end-page: 50
  ident: bib0070
  article-title: IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040
  publication-title: Diabetes Research and Clinical Practice
– volume: 15
  start-page: 104
  year: 2017
  end-page: 116
  ident: bib0051
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: Computational and Structural Biotechnology Journal
– start-page: 49
  year: 2009
  end-page: 56
  ident: bib0010
  article-title: A new perspective for information theoretic feature selection
  publication-title: Proceedings of the twelfth international conference on artificial intelligence and statistics (AISTATS)
– volume: 152
  start-page: 23
  year: 2017
  end-page: 34
  ident: bib0060
  article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 71
  start-page: 26
  year: 2017
  end-page: 39
  ident: bib0037
  article-title: Interpretable and accurate medical data classification –A multi-objective genetic-fuzzy optimization approach
  publication-title: Expert Systems with Applications
– volume: 46
  start-page: 291
  year: 2002
  end-page: 314
  ident: bib0043
  article-title: A simple decomposition method for support vector machines
  publication-title: Machine Learning
– volume: 36
  start-page: 10494
  year: 2009
  end-page: 10502
  ident: bib0049
  article-title: Extracting rules for classification problems: AIS based approach
  publication-title: Expert Systems with Applications
– volume: 5
  start-page: 402
  year: 2011
  end-page: 411
  ident: bib0074
  article-title: Design of a decision support system to help clinicians manage glycemia in patients with type 2 diabetes mellitus
  publication-title: Journal of Diabetes Science and Technology
– volume: 41
  start-page: 213
  year: 2018
  end-page: 229
  ident: bib0050
  article-title: Clinical features and therapeutic perspectives on hypertension in diabetics
  publication-title: Hypertension Research
– volume: 58
  start-page: 147
  year: 2014
  end-page: 153
  ident: bib0089
  article-title: Super-parameter selection for Gaussian-Kernel SVM based on outlier-resisting
  publication-title: Measurement
– reference: . Retrieved from
– reference: Dheeru, D., & Karra Taniskidou, E. (2017). UCI Machine Learning Repository. Retrieved from
– reference: World Health Organization. (2013).
– start-page: 107
  year: 2002
  end-page: 112
  ident: bib0068
  article-title: Rule extraction from support vector machines
  publication-title: Proceedings of the European symposium on artificial neural networks (ESANN)
– start-page: 191
  year: 2004
  end-page: 195
  ident: bib0092
  article-title: DRC-BK: Mining classification rules with help of SVM
  publication-title: Proceedings of the Pacific-Asia conference on knowledge discovery and data mining
– reference: Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013).
– volume: 10
  start-page: 213
  year: 2009
  ident: bib0064
  article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
  publication-title: BMC Bioinformatics
– volume: 8
  start-page: 373
  year: 1995
  end-page: 389
  ident: bib0002
  article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks
  publication-title: Knowledge-Based Systems
– volume: 8
  start-page: 40
  year: 2002
  end-page: 82
  ident: bib0029
  article-title: The American association of clinical endocrinologists medical guidelines for the management of diabetes mellitus: The AACE system of intensive diabetes self-management - 2002 update
  publication-title: Endocrine Practice
– volume: 98
  start-page: 360
  year: 2012
  end-page: 369
  ident: bib0086
  article-title: Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: A systematic review
  publication-title: Heart
– volume: 4
  start-page: 26
  year: 2017
  ident: bib0045
  article-title: Survey on clinical prediction models for diabetes prediction
  publication-title: Journal of Big Data
– volume: 21
  start-page: 700
  year: 2018
  end-page: 708
  ident: bib0003
  article-title: Dataset on significant risk factors for Type 1 diabetes: A Bangladeshi perspective
  publication-title: Data in Brief
– volume: 10
  start-page: 1392
  year: 1999
  end-page: 1401
  ident: bib0076
  article-title: ANN-DT: An algorithm for extraction of decision trees from artificial neural networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 15
  start-page: 539
  year: 1998
  end-page: 553
  ident: bib0001
  article-title: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation
  publication-title: Diabetic Medicine
– volume: 14
  start-page: 1114
  year: 2010
  end-page: 1120
  ident: bib0007
  article-title: Intelligible support vector machines for diagnosis of diabetes mellitus
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: bib0032
  article-title: Stochastic gradient boosting
  publication-title: Computational Statistics and Data Analysis
– volume: 2
  start-page: 812
  year: 2006
  end-page: 815
  ident: bib0004
  article-title: Rule extraction from support vector machines: Measuring the explanation capability using the area under the ROC curve
  publication-title: Proceedings of the eighteenth international conference on pattern recognition (ICPR)
– volume: 49
  start-page: 74
  year: 2016
  end-page: 85
  ident: bib0071
  article-title: A hybrid model of fuzzy ARTMAP and genetic algorithm for data classification and rule extraction
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0019
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: bib0033
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: The Annals of Mathematical Statistics
– year: 1995
  ident: bib0087
  article-title: The nature of statistical learning theory
– volume: 37
  start-page: 5577
  year: 2010
  end-page: 5589
  ident: bib0027
  article-title: Support vector regression based hybrid rule extraction methods for forecasting
  publication-title: Expert Systems with Applications
– volume: 52
  start-page: 4635
  year: 2006
  end-page: 4643
  ident: bib0081
  article-title: An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels
  publication-title: IEEE Transactions on Information Theory
– start-page: 404
  year: 2009
  end-page: 426
  ident: bib0026
  article-title: Support Vector Machine based Hybrid Classifiers and Rule Extraction thereof: Application to Bankruptcy Prediction in Banks
  publication-title: Handbook of research on machine learning applications and trends: Algorithms, methods, and techniques
– start-page: 13
  year: 2003
  end-page: 16
  ident: bib0047
  article-title: Rule extraction from trained neural networks using genetic programming
  publication-title: Proceedings of the thirteenth international conference on artificial neural networks
– start-page: 1
  year: 2016
  end-page: 7
  ident: bib0054
  article-title: Using machine learning to predict hypertension from a clinical dataset
  publication-title: Proceedings of the IEEE symposium series on computational intelligence (SSCI)
– volume: 3
  year: 2013
  ident: bib0028
  article-title: Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from Kuwait—a cohort study
  publication-title: BMJ Open
– volume: 38
  year: 2006
  ident: bib0036
  article-title: Interestingness measures for data mining
  publication-title: ACM Computing Surveys (CSUR)
– volume: 12
  year: 2017
  ident: bib0078
  article-title: Development of a clinical decision support system for diabetes care: A pilot study
  publication-title: PloS One
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib0031
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: The Annals of Statistics
– start-page: 738
  year: 2015
  end-page: 744
  ident: bib0088
  article-title: Detection of epileptic seizures in EEG signals with rule-based interpretation by random forest approach
  publication-title: Proceedings of the international conference on intelligent computing
– reference: International Diabetes Federation IDF Diabetes Atlas-8th Edition. (2017). Retrieved June 7, 2018, from http://www.diabetesatlas.org/
– start-page: 541
  year: 2017
  end-page: 550
  ident: bib0065
  article-title: A Hybrid Intelligent System Model for Hypertension Diagnosis
  publication-title: Nature-inspired design of hybrid intelligent systems
– volume: 37
  start-page: 1053
  year: 2001
  end-page: 1059
  ident: bib0079
  article-title: Diabetes, hypertension, and cardiovascular disease: An update
  publication-title: Hypertension
– start-page: 1
  year: 2008
  end-page: 6
  ident: bib0025
  article-title: Rule extraction using Support Vector Machine based hybrid classifier
  publication-title: Proceedings of the TENCON IEEE Region 10 Conference
– start-page: 309
  year: 2018
  end-page: 318
  ident: bib0040
  article-title: Fuzzy optimized classifier for the diagnosis of blood pressure using genetic algorithm
  publication-title: Fuzzy logic augmentation of neural and optimization algorithms: Theoretical aspects and real applications
– volume: 6
  start-page: 31
  year: 2014
  ident: bib0056
  article-title: The goal of blood pressure in the hypertensive patient with diabetes is defined: Now the challenge is go from recommendations to practice
  publication-title: Diabetology & Metabolic Syndrome
– reference: Biostat Diabetes Dataset. (2018). Retrieved January 20, 2019, from
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0015
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 39
  start-page: 472
  year: 2016
  end-page: 485
  ident: bib0067
  article-title: Diabetes in Asia and the Pacific: Implications for the global epidemic
  publication-title: Diabetes Care
– volume: 26
  start-page: 2664
  year: 2015
  end-page: 2677
  ident: bib0018
  article-title: Active learning-based pedagogical rule extraction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 115
  year: 1995
  end-page: 123
  ident: bib0014
  article-title: Fast effective rule induction
  publication-title: Machine learning proceedings 1995
– volume: 13
  year: 2018
  ident: bib0075
  article-title: Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project
  publication-title: PloS One
– start-page: 291
  year: 2004
  end-page: 296
  ident: bib0034
  article-title: Extracting the knowledge embedded in support vector machines
  publication-title: Proceedings of the IEEE international joint conference on neural networks
– volume: 40
  start-page: 2677
  year: 2013
  end-page: 2686
  ident: bib0082
  article-title: Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection
  publication-title: Expert Systems with Applications
– volume: 33
  start-page: 67
  year: 2012
  end-page: 78
  ident: bib0061
  article-title: Emerging applications for intelligent diabetes management
  publication-title: AI Magazine
– volume: 19
  start-page: 728
  year: 2015
  end-page: 734
  ident: bib0041
  article-title: Rule extraction from support vector machines using ensemble learning approach: An application for diagnosis of diabetes
  publication-title: IEEE Journal of Biomedical and Health Informatics
– start-page: 61
  year: 2005
  end-page: 70
  ident: bib0093
  article-title: Rule extraction from trained support vector machines
  publication-title: Proceedings of the Pacific-Asia conference on knowledge discovery and data mining
– volume: 2
  start-page: 92
  year: 2016
  end-page: 104
  ident: bib0042
  article-title: Rule extraction using Recursive-Rule extraction algorithm with J48graft combined with sampling selection techniques for the diagnosis of type 2 diabetes mellitus in the Pima Indian dataset
  publication-title: Informatics in Medicine Unlocked
– volume: 2
  start-page: 59
  year: 2005
  end-page: 62
  ident: bib0005
  article-title: Eclectic rule-extraction from support vector machines
  publication-title: International Journal of Computational Intelligence
– volume: 3
  year: 2013
  ident: bib0055
  article-title: Prevalence of diabetes mellitus in outpatients with essential hypertension in China: A cross-sectional study
  publication-title: BMJ Open
– volume: 88
  start-page: 95
  year: 2017
  end-page: 108
  ident: bib0059
  article-title: A medical decision support system for disease diagnosis under uncertainty
  publication-title: Expert Systems with Applications
– volume: 56
  start-page: 52
  year: 1961
  ident: bib0024
  article-title: Multiple comparisons among means
  publication-title: Journal of the American Statistical Association
– start-page: 658
  year: 2004
  end-page: 663
  ident: bib0048
  article-title: The truth is in there-rule extraction from opaque models using genetic programming
  publication-title: Proceedings of the FLAIRS Conference
– volume: 8
  start-page: 24
  year: 1996
  end-page: 30
  ident: bib0017
  article-title: Extracting tree-structured representations of trained neural networks
  publication-title: Advances in neural information processing systems
– volume: 107
  start-page: 146
  year: 2018
  end-page: 164
  ident: bib0063
  article-title: A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis
  publication-title: Expert Systems with Applications
– volume: 10
  start-page: 79
  year: 2017
  ident: bib0039
  article-title: Design of an optimized fuzzy classifier for the diagnosis of blood pressure with a new computational method for expert rule optimization
  publication-title: Algorithms
– start-page: 144
  year: 1998
  end-page: 151
  ident: bib0030
  article-title: Generating accurate rule sets without global optimization
  publication-title: Proceedings of the fifteenth international conference on machine learning
– volume: 21
  start-page: 178
  year: 2009
  end-page: 191
  ident: bib0062
  article-title: Decompositional rule extraction from support vector machines by active learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2011
  ident: bib0090
  article-title: Waist circumference and waist-hip ratio
– start-page: 32
  year: 2005
  ident: bib0035
  article-title: Rule extraction from linear support vector machines
  publication-title: Proceeding of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining - KDD ’05
– start-page: 106
  year: 2006
  end-page: 115
  ident: bib0046
  article-title: Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles
  publication-title: Proceedings of the international workshop on data mining for biomedical applications
– volume: 4
  year: 2016
  ident: bib0058
  article-title: Automatically explaining machine learning prediction results: A demonstration on type 2 diabetes risk prediction
  publication-title: Health Information Science and Systems
– volume: 4
  start-page: 1071
  year: 2003
  end-page: 1105
  ident: bib0080
  article-title: Sparseness of support vector machines
  publication-title: Journal of Machine Learning Research
– volume: 138
  start-page: 311
  year: 2018
  end-page: 321
  ident: bib0013
  article-title: IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045
  publication-title: Diabetes Research and Clinical Practice
– year: 2004
  ident: bib0022
  article-title: Hybrid rule-extraction from support vector machines
  publication-title: Proceedings of the IEEE conference on cybernetics and intelligent systems
– volume: 19
  start-page: 109
  year: 2018
  ident: bib0011
  article-title: Diabetes classification model based on boosting algorithms
  publication-title: BMC Bioinformatics
– year: 1994
  ident: bib0085
  article-title: DEDEC: Decision detection by rule extraction from neural networks
  publication-title: Neurocomputing Research Center QUT NRC
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib0073
  article-title: Induction of decision trees
  publication-title: Machine Learning
– volume: 39
  start-page: 113
  year: 2016
  end-page: 118
  ident: bib0083
  article-title: Dynamic prediction model and risk assessment chart for cardiovascular disease based on on-treatment blood pressure and baseline risk factors
  publication-title: Hypertension Research
– year: 2004
  ident: bib0009
  article-title: Convex optimization
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib0012
  article-title: XGBoost: A scalable tree boosting system
  publication-title: Proceedings of the twenty-second ACM SIGKDD international conference on knowledge discovery and data mining
– volume: 648
  start-page: 202
  year: 2018
  end-page: 213
  ident: bib0066
  article-title: A hybrid intelligent system model for hypertension risk diagnosis
  publication-title: Fuzzy logic in intelligent system Design. NAFIPS 2017
– reference: Núñez, H., Angulo, C., & Català, A. (2004). Rule Based Learning Systems from SVM and RBFNN. Retrieved from
– volume: 80
  start-page: 3
  year: 2008
  end-page: 31
  ident: bib0021
  article-title: Rule Extraction from Support Vector Machines: An Introduction
  publication-title: Studies in computational intelligence
– start-page: 319
  year: 2018
  end-page: 327
  ident: bib0072
  article-title: A new model based on a fuzzy system for arterial hypertension classification
  publication-title: Fuzzy logic augmentation of neural and optimization algorithms: Theoretical aspects and real applications
– reference: . Proceedings of the Advances in neural information processing systems. Retrieved from NIPS2013_4928
– volume: 7
  start-page: 43965
  year: 2017
  ident: 10.1016/j.eswa.2019.04.029_bib0038
  article-title: Cluster analysis: A new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients
  publication-title: Scientific Reports
  doi: 10.1038/srep43965
– start-page: 106
  year: 2006
  ident: 10.1016/j.eswa.2019.04.029_bib0046
  article-title: Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles
– start-page: 785
  year: 2016
  ident: 10.1016/j.eswa.2019.04.029_bib0012
  article-title: XGBoost: A scalable tree boosting system
– start-page: 541
  year: 2017
  ident: 10.1016/j.eswa.2019.04.029_bib0065
  article-title: A Hybrid Intelligent System Model for Hypertension Diagnosis
– volume: 88
  start-page: 95
  year: 2017
  ident: 10.1016/j.eswa.2019.04.029_bib0059
  article-title: A medical decision support system for disease diagnosis under uncertainty
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.06.031
– start-page: 61
  year: 2005
  ident: 10.1016/j.eswa.2019.04.029_bib0093
  article-title: Rule extraction from trained support vector machines
– volume: 7
  start-page: 1
  issue: Jan
  year: 2006
  ident: 10.1016/j.eswa.2019.04.029_bib0019
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 3
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2019.04.029_bib0028
  article-title: Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from Kuwait—a cohort study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2012-002457
– ident: 10.1016/j.eswa.2019.04.029_bib0044
– volume: 13
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2019.04.029_bib0075
  article-title: Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project
  publication-title: PloS One
  doi: 10.1371/journal.pone.0195344
– volume: 80
  start-page: 3
  year: 2008
  ident: 10.1016/j.eswa.2019.04.029_bib0021
  article-title: Rule Extraction from Support Vector Machines: An Introduction
– volume: 4
  start-page: 26
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2019.04.029_bib0045
  article-title: Survey on clinical prediction models for diabetes prediction
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-017-0082-7
– volume: 36
  start-page: 10494
  issue: 7
  year: 2009
  ident: 10.1016/j.eswa.2019.04.029_bib0049
  article-title: Extracting rules for classification problems: AIS based approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.01.029
– volume: 15
  start-page: 539
  issue: 7
  year: 1998
  ident: 10.1016/j.eswa.2019.04.029_bib0001
  article-title: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation
  publication-title: Diabetic Medicine
  doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
– start-page: 32
  year: 2005
  ident: 10.1016/j.eswa.2019.04.029_bib0035
  article-title: Rule extraction from linear support vector machines
– start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2019.04.029_bib0054
  article-title: Using machine learning to predict hypertension from a clinical dataset
– volume: 152
  start-page: 23
  year: 2017
  ident: 10.1016/j.eswa.2019.04.029_bib0060
  article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2017.09.004
– volume: 33
  start-page: 67
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2019.04.029_bib0061
  article-title: Emerging applications for intelligent diabetes management
  publication-title: AI Magazine
  doi: 10.1609/aimag.v33i2.2410
– volume: 648
  start-page: 202
  year: 2018
  ident: 10.1016/j.eswa.2019.04.029_bib0066
  article-title: A hybrid intelligent system model for hypertension risk diagnosis
– start-page: 404
  year: 2009
  ident: 10.1016/j.eswa.2019.04.029_bib0026
  article-title: Support Vector Machine based Hybrid Classifiers and Rule Extraction thereof: Application to Bankruptcy Prediction in Banks
– ident: 10.1016/j.eswa.2019.04.029_bib0057
– start-page: 191
  year: 2004
  ident: 10.1016/j.eswa.2019.04.029_bib0092
  article-title: DRC-BK: Mining classification rules with help of SVM
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2019.04.029_bib0078
  article-title: Development of a clinical decision support system for diabetes care: A pilot study
  publication-title: PloS One
  doi: 10.1371/journal.pone.0173021
– volume: 4
  start-page: 1071
  issue: 11
  year: 2003
  ident: 10.1016/j.eswa.2019.04.029_bib0080
  article-title: Sparseness of support vector machines
  publication-title: Journal of Machine Learning Research
– volume: 41
  start-page: 213
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2019.04.029_bib0050
  article-title: Clinical features and therapeutic perspectives on hypertension in diabetics
  publication-title: Hypertension Research
  doi: 10.1038/s41440-017-0001-5
– volume: 49
  start-page: 74
  year: 2016
  ident: 10.1016/j.eswa.2019.04.029_bib0071
  article-title: A hybrid model of fuzzy ARTMAP and genetic algorithm for data classification and rule extraction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.11.009
– year: 2006
  ident: 10.1016/j.eswa.2019.04.029_bib0016
– volume: 37
  start-page: 1053
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2019.04.029_bib0079
  article-title: Diabetes, hypertension, and cardiovascular disease: An update
  publication-title: Hypertension
  doi: 10.1161/01.HYP.37.4.1053
– volume: 26
  start-page: 2664
  issue: 11
  year: 2015
  ident: 10.1016/j.eswa.2019.04.029_bib0018
  article-title: Active learning-based pedagogical rule extraction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2389037
– ident: 10.1016/j.eswa.2019.04.029_bib0091
– year: 2011
  ident: 10.1016/j.eswa.2019.04.029_bib0090
– volume: 19
  start-page: 728
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2019.04.029_bib0041
  article-title: Rule extraction from support vector machines using ensemble learning approach: An application for diagnosis of diabetes
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2014.2325615
– volume: 21
  start-page: 178
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2019.04.029_bib0062
  article-title: Decompositional rule extraction from support vector machines by active learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2008.131
– year: 2004
  ident: 10.1016/j.eswa.2019.04.029_bib0022
  article-title: Hybrid rule-extraction from support vector machines
– volume: 8
  start-page: 40
  issue: Supplement 1
  year: 2002
  ident: 10.1016/j.eswa.2019.04.029_bib0029
  article-title: The American association of clinical endocrinologists medical guidelines for the management of diabetes mellitus: The AACE system of intensive diabetes self-management - 2002 update
  publication-title: Endocrine Practice
  doi: 10.4158/EP.8.S1.40
– volume: 73
  start-page: 43
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2019.04.029_bib0052
  article-title: Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis
  publication-title: Archives of Public Health
  doi: 10.1186/s13690-015-0088-6
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 10.1016/j.eswa.2019.04.029_bib0033
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177731944
– volume: 138
  start-page: 311
  year: 2018
  ident: 10.1016/j.eswa.2019.04.029_bib0013
  article-title: IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045
  publication-title: Diabetes Research and Clinical Practice
  doi: 10.1016/j.diabres.2018.02.023
– start-page: 319
  year: 2018
  ident: 10.1016/j.eswa.2019.04.029_bib0072
  article-title: A new model based on a fuzzy system for arterial hypertension classification
– volume: 10
  start-page: 213
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2019.04.029_bib0064
  article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-213
– year: 1995
  ident: 10.1016/j.eswa.2019.04.029_bib0087
– start-page: 13
  year: 2003
  ident: 10.1016/j.eswa.2019.04.029_bib0047
  article-title: Rule extraction from trained neural networks using genetic programming
– volume: 8
  start-page: 24
  year: 1996
  ident: 10.1016/j.eswa.2019.04.029_bib0017
  article-title: Extracting tree-structured representations of trained neural networks
– volume: 19
  start-page: 729
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2019.04.029_bib0006
  article-title: Rule extraction from support vector machines: A sequential covering approach
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.190610
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.eswa.2019.04.029_bib0031
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1013203451
– volume: 15
  start-page: 104
  year: 2017
  ident: 10.1016/j.eswa.2019.04.029_bib0051
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: Computational and Structural Biotechnology Journal
  doi: 10.1016/j.csbj.2016.12.005
– volume: 19
  start-page: 109
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2019.04.029_bib0011
  article-title: Diabetes classification model based on boosting algorithms
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2090-9
– start-page: 115
  year: 1995
  ident: 10.1016/j.eswa.2019.04.029_bib0014
  article-title: Fast effective rule induction
– volume: 56
  start-page: 52
  issue: 293
  year: 1961
  ident: 10.1016/j.eswa.2019.04.029_bib0024
  article-title: Multiple comparisons among means
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1961.10482090
– volume: 39
  start-page: 113
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2019.04.029_bib0083
  article-title: Dynamic prediction model and risk assessment chart for cardiovascular disease based on on-treatment blood pressure and baseline risk factors
  publication-title: Hypertension Research
  doi: 10.1038/hr.2015.120
– volume: 25
  start-page: 975
  issue: 5
  year: 2014
  ident: 10.1016/j.eswa.2019.04.029_bib0023
  article-title: An overview on nonparallel hyperplane support vector machine algorithms
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-013-1524-6
– start-page: 107
  year: 2002
  ident: 10.1016/j.eswa.2019.04.029_bib0068
  article-title: Rule extraction from support vector machines
– volume: 58
  start-page: 147
  year: 2014
  ident: 10.1016/j.eswa.2019.04.029_bib0089
  article-title: Super-parameter selection for Gaussian-Kernel SVM based on outlier-resisting
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.019
– volume: 40
  start-page: 2677
  issue: 7
  year: 2013
  ident: 10.1016/j.eswa.2019.04.029_bib0082
  article-title: Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.11.007
– volume: 39
  start-page: 472
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2019.04.029_bib0067
  article-title: Diabetes in Asia and the Pacific: Implications for the global epidemic
  publication-title: Diabetes Care
  doi: 10.2337/dc15-1536
– volume: 8
  start-page: 373
  issue: 6
  year: 1995
  ident: 10.1016/j.eswa.2019.04.029_bib0002
  article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/0950-7051(96)81920-4
– volume: 10
  start-page: 1392
  issue: 6
  year: 1999
  ident: 10.1016/j.eswa.2019.04.029_bib0076
  article-title: ANN-DT: An algorithm for extraction of decision trees from artificial neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.809084
– volume: 41
  start-page: 2239
  issue: 5
  year: 2014
  ident: 10.1016/j.eswa.2019.04.029_bib0077
  article-title: A hybrid intelligent system for medical data classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.09.022
– year: 1994
  ident: 10.1016/j.eswa.2019.04.029_bib0085
  article-title: DEDEC: Decision detection by rule extraction from neural networks
  publication-title: Neurocomputing Research Center QUT NRC
– volume: 107
  start-page: 146
  year: 2018
  ident: 10.1016/j.eswa.2019.04.029_bib0063
  article-title: A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.04.023
– start-page: 144
  year: 1998
  ident: 10.1016/j.eswa.2019.04.029_bib0030
  article-title: Generating accurate rule sets without global optimization
– ident: 10.1016/j.eswa.2019.04.029_bib0069
– volume: 14
  start-page: 1114
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2019.04.029_bib0007
  article-title: Intelligible support vector machines for diagnosis of diabetes mellitus
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2009.2039485
– volume: 21
  start-page: 700
  year: 2018
  ident: 10.1016/j.eswa.2019.04.029_bib0003
  article-title: Dataset on significant risk factors for Type 1 diabetes: A Bangladeshi perspective
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2018.10.018
– volume: 10
  start-page: 79
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2019.04.029_bib0039
  article-title: Design of an optimized fuzzy classifier for the diagnosis of blood pressure with a new computational method for expert rule optimization
  publication-title: Algorithms
  doi: 10.3390/a10030079
– volume: 128
  start-page: 40
  year: 2017
  ident: 10.1016/j.eswa.2019.04.029_bib0070
  article-title: IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040
  publication-title: Diabetes Research and Clinical Practice
  doi: 10.1016/j.diabres.2017.03.024
– volume: 46
  start-page: 291
  issue: 1–3
  year: 2002
  ident: 10.1016/j.eswa.2019.04.029_bib0043
  article-title: A simple decomposition method for support vector machines
  publication-title: Machine Learning
  doi: 10.1023/A:1012427100071
– volume: 136
  start-page: 124
  year: 2018
  ident: 10.1016/j.eswa.2019.04.029_bib0053
  article-title: mRNA expression of platelet activating factor receptor (PAFR) in peripheral blood mononuclear cells is associated with albuminuria and vascular dysfunction in patients with type 2 diabetes
  publication-title: Diabetes Research and Clinical Practice
  doi: 10.1016/j.diabres.2017.11.028
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.eswa.2019.04.029_bib0015
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 37
  start-page: 5577
  issue: 8
  year: 2010
  ident: 10.1016/j.eswa.2019.04.029_bib0027
  article-title: Support vector regression based hybrid rule extraction methods for forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.02.055
– volume: 4
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2019.04.029_bib0058
  article-title: Automatically explaining machine learning prediction results: A demonstration on type 2 diabetes risk prediction
  publication-title: Health Information Science and Systems
  doi: 10.1186/s13755-016-0015-4
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.eswa.2019.04.029_bib0073
  article-title: Induction of decision trees
  publication-title: Machine Learning
  doi: 10.1007/BF00116251
– volume: 71
  start-page: 26
  year: 2017
  ident: 10.1016/j.eswa.2019.04.029_bib0037
  article-title: Interpretable and accurate medical data classification –A multi-objective genetic-fuzzy optimization approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.11.017
– ident: 10.1016/j.eswa.2019.04.029_bib0008
– start-page: 49
  year: 2009
  ident: 10.1016/j.eswa.2019.04.029_bib0010
  article-title: A new perspective for information theoretic feature selection
– volume: 3
  issue: 11
  year: 2013
  ident: 10.1016/j.eswa.2019.04.029_bib0055
  article-title: Prevalence of diabetes mellitus in outpatients with essential hypertension in China: A cross-sectional study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2013-003798
– start-page: 1
  year: 2008
  ident: 10.1016/j.eswa.2019.04.029_bib0025
  article-title: Rule extraction using Support Vector Machine based hybrid classifier
– volume: 52
  start-page: 4635
  issue: 10
  year: 2006
  ident: 10.1016/j.eswa.2019.04.029_bib0081
  article-title: An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2006.881713
– start-page: 658
  year: 2004
  ident: 10.1016/j.eswa.2019.04.029_bib0048
  article-title: The truth is in there-rule extraction from opaque models using genetic programming
– ident: 10.1016/j.eswa.2019.04.029_bib0020
– year: 2004
  ident: 10.1016/j.eswa.2019.04.029_bib0009
– volume: 98
  start-page: 360
  issue: 5
  year: 2012
  ident: 10.1016/j.eswa.2019.04.029_bib0086
  article-title: Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: A systematic review
  publication-title: Heart
  doi: 10.1136/heartjnl-2011-300734
– volume: 2
  start-page: 59
  issue: 1
  year: 2005
  ident: 10.1016/j.eswa.2019.04.029_bib0005
  article-title: Eclectic rule-extraction from support vector machines
  publication-title: International Journal of Computational Intelligence
– volume: 2
  start-page: 812
  year: 2006
  ident: 10.1016/j.eswa.2019.04.029_bib0004
  article-title: Rule extraction from support vector machines: Measuring the explanation capability using the area under the ROC curve
– volume: 2
  start-page: 92
  year: 2016
  ident: 10.1016/j.eswa.2019.04.029_bib0042
  article-title: Rule extraction using Recursive-Rule extraction algorithm with J48graft combined with sampling selection techniques for the diagnosis of type 2 diabetes mellitus in the Pima Indian dataset
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2016.02.001
– volume: 9
  start-page: 1057
  issue: 6
  year: 1998
  ident: 10.1016/j.eswa.2019.04.029_bib0084
  article-title: The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.728352
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 10.1016/j.eswa.2019.04.029_bib0032
  article-title: Stochastic gradient boosting
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/S0167-9473(01)00065-2
– start-page: 309
  year: 2018
  ident: 10.1016/j.eswa.2019.04.029_bib0040
  article-title: Fuzzy optimized classifier for the diagnosis of blood pressure using genetic algorithm
– volume: 5
  start-page: 402
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2019.04.029_bib0074
  article-title: Design of a decision support system to help clinicians manage glycemia in patients with type 2 diabetes mellitus
  publication-title: Journal of Diabetes Science and Technology
  doi: 10.1177/193229681100500230
– volume: 38
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2019.04.029_bib0036
  article-title: Interestingness measures for data mining
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/1132960.1132963
– volume: 6
  start-page: 31
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2019.04.029_bib0056
  article-title: The goal of blood pressure in the hypertensive patient with diabetes is defined: Now the challenge is go from recommendations to practice
  publication-title: Diabetology & Metabolic Syndrome
  doi: 10.1186/1758-5996-6-31
– start-page: 291
  year: 2004
  ident: 10.1016/j.eswa.2019.04.029_bib0034
  article-title: Extracting the knowledge embedded in support vector machines
– start-page: 738
  year: 2015
  ident: 10.1016/j.eswa.2019.04.029_bib0088
  article-title: Detection of epileptic seizures in EEG signals with rule-based interpretation by random forest approach
SSID ssj0017007
Score 2.4810615
Snippet •Classification of datasets on diabetes and its complications are considered.•Five feature selection algorithms are utilized for choosing significant...
Diabetes mellitus is a major non-communicable disease ever rising as an epidemic and a public health crisis worldwide. One of the several life-threatening...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 188
SubjectTerms Algorithms
Black boxes
Datasets
Decision making
Diabetes
Diabetes mellitus
Epidemics
Extreme gradient boosting
Feature extraction
Hypertension
Machine learning
Mathematical models
Medical diagnosis
Public health
Rule extraction
Signs and symptoms
Support vector machine
Support vector machines
Title A rule extraction approach from support vector machines for diagnosing hypertension among diabetics
URI https://dx.doi.org/10.1016/j.eswa.2019.04.029
https://www.proquest.com/docview/2239635831
Volume 130
WOSCitedRecordID wos000470341900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXKLgckxMcCYmFBPiAuUVaJncTJsUJdAVqVPXRRb1bqOHRLN4T0g_0F_G7GGTttF1HBgUOjyk3cqvMyGT_PzCPkTa7jJIvTxIebSflRyUs_jeDAWRlmiimmmWrFJsRwmI7H2UWv99PVwqznoqrSm5us_q-mhjEwtimd_Qdzd5PCALwHo8MRzA7HvzJ832tWc-2B022cDrjtG461JItVbWJub93y9d51m02p27YMhok1iXeGPpjCArVp09vNDK0kEfK0Lj1-1iXxwXm2I7SrldvaFe8oHJh0iv78usGCuN3xiyYvtK47fmCaf8mX6BJ1ffU13-YnwjYBCys0kTTrCmc-75CPwo9C1Oc51eh6U8H9RKBeYueb7aYNetcQFQB_8_pIQMxO9eKHaSUVZm33Wsuk7LTYHn6SZ5fn53I0GI_e1t99oz5mdumtFMsdcshEnIF3POx_GIw_dvtRIsDCe_e7bfkVZgre_to_hTi3HvZtBDN6RB7YpQftI2Qek56ujshDJ-tBrZc_IveRyqVYofaEqD41iKIbRFGHKGoQRS2iKCKKOkRRQBTdIIpuI4q2iKIdop6Sy7PB6N1732pz-IqzdOnzbAKRawFxD08mMS-SDOJqnqikEKHIQ8WiNJiYF2cZrLDjIimToNDlRIlCpaXmz8hB9a3SzwllphImZDqKeRTpQsDEcA2LYW2vgzyLjkno_k6pbON6o58yly5DcSaNCaQxgQwiCSY4Jl53TY1tW_aeHTsrSRt4YkApAWF7rztxJpXWAywkxNvwUItTHr7Y__FLcm9zv5yQg2Wz0q_IXbVeXi2a1xaBvwDc-K8e
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rule+extraction+approach+from+support+vector+machines+for+diagnosing+hypertension+among+diabetics&rft.jtitle=Expert+systems+with+applications&rft.au=Singh%2C+Namrata&rft.au=Singh%2C+Pradeep&rft.au=Bhagat%2C+Deepika&rft.date=2019-09-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=130&rft.spage=188&rft_id=info:doi/10.1016%2Fj.eswa.2019.04.029&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon