A rule extraction approach from support vector machines for diagnosing hypertension among diabetics
•Classification of datasets on diabetes and its complications are considered.•Five feature selection algorithms are utilized for choosing significant features.•A hybrid rule-extraction method generating comprehensible rule sets is developed.•Experiments were performed on six datasets: one new and fi...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 130; S. 188 - 205 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
15.09.2019
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Classification of datasets on diabetes and its complications are considered.•Five feature selection algorithms are utilized for choosing significant features.•A hybrid rule-extraction method generating comprehensible rule sets is developed.•Experiments were performed on six datasets: one new and five public.•The proposed approach outperforms ten state-of-the-art classifiers.
Diabetes mellitus is a major non-communicable disease ever rising as an epidemic and a public health crisis worldwide. One of the several life-threatening complications of diabetes is hypertension or high blood pressure which mostly remains undiagnosed and untreated until symptoms become severe. Diabetic complications can be greatly reduced or prevented by early detection of individuals at risk. In recent past, several machine learning classification algorithms have been widely applied for diagnosing diabetes but very few studies have been conducted for detecting hypertension among diabetic subjects. Specifically, existing rule-based models fail to produce comprehensible rule sets. To resolve this limitation, this paper endeavours to develop a hybrid approach for extracting rules from support vector machines. A feature selection mechanism is introduced for selecting significantly associated features from the dataset. XGBoost has been utilized to convert SVM black box model into an apprehensible decision-making tool. A new dataset has been obtained from Pt. JNM, Medical College, Raipur, India comprising of 300 diabetic subjects with 108 hypertensives and 192 normotensives. In addition, five public diabetes-related datasets have been taken for generalization of the results. Experiments reveal that the proposed model outperforms ten other benchmark classifiers. Friedman rank and post hoc Bonferroni-Dunn tests demonstrate the significance of the proposed method over others. |
|---|---|
| AbstractList | •Classification of datasets on diabetes and its complications are considered.•Five feature selection algorithms are utilized for choosing significant features.•A hybrid rule-extraction method generating comprehensible rule sets is developed.•Experiments were performed on six datasets: one new and five public.•The proposed approach outperforms ten state-of-the-art classifiers.
Diabetes mellitus is a major non-communicable disease ever rising as an epidemic and a public health crisis worldwide. One of the several life-threatening complications of diabetes is hypertension or high blood pressure which mostly remains undiagnosed and untreated until symptoms become severe. Diabetic complications can be greatly reduced or prevented by early detection of individuals at risk. In recent past, several machine learning classification algorithms have been widely applied for diagnosing diabetes but very few studies have been conducted for detecting hypertension among diabetic subjects. Specifically, existing rule-based models fail to produce comprehensible rule sets. To resolve this limitation, this paper endeavours to develop a hybrid approach for extracting rules from support vector machines. A feature selection mechanism is introduced for selecting significantly associated features from the dataset. XGBoost has been utilized to convert SVM black box model into an apprehensible decision-making tool. A new dataset has been obtained from Pt. JNM, Medical College, Raipur, India comprising of 300 diabetic subjects with 108 hypertensives and 192 normotensives. In addition, five public diabetes-related datasets have been taken for generalization of the results. Experiments reveal that the proposed model outperforms ten other benchmark classifiers. Friedman rank and post hoc Bonferroni-Dunn tests demonstrate the significance of the proposed method over others. Diabetes mellitus is a major non-communicable disease ever rising as an epidemic and a public health crisis worldwide. One of the several life-threatening complications of diabetes is hypertension or high blood pressure which mostly remains undiagnosed and untreated until symptoms become severe. Diabetic complications can be greatly reduced or prevented by early detection of individuals at risk. In recent past, several machine learning classification algorithms have been widely applied for diagnosing diabetes but very few studies have been conducted for detecting hypertension among diabetic subjects. Specifically, existing rule-based models fail to produce comprehensible rule sets. To resolve this limitation, this paper endeavours to develop a hybrid approach for extracting rules from support vector machines. A feature selection mechanism is introduced for selecting significantly associated features from the dataset. XGBoost has been utilized to convert SVM black box model into an apprehensible decision-making tool. A new dataset has been obtained from Pt. JNM, Medical College, Raipur, India comprising of 300 diabetic subjects with 108 hypertensives and 192 normotensives. In addition, five public diabetes-related datasets have been taken for generalization of the results. Experiments reveal that the proposed model outperforms ten other benchmark classifiers. Friedman rank and post hoc Bonferroni-Dunn tests demonstrate the significance of the proposed method over others. |
| Author | Singh, Pradeep Singh, Namrata Bhagat, Deepika |
| Author_xml | – sequence: 1 givenname: Namrata orcidid: 0000-0003-1460-1117 surname: Singh fullname: Singh, Namrata email: nsingh.phd2016.cs@nitrr.ac.in organization: Department of Computer Science and Engineering, National Institute of Technology, Raipur 492001, Chhattisgarh, India – sequence: 2 givenname: Pradeep orcidid: 0000-0002-2806-8432 surname: Singh fullname: Singh, Pradeep email: psingh.cs@nitrr.ac.in organization: Department of Computer Science and Engineering, National Institute of Technology, Raipur 492001, Chhattisgarh, India – sequence: 3 givenname: Deepika surname: Bhagat fullname: Bhagat, Deepika organization: Department of Medicine, Dr. Bhim Rao Ambedkar Memorial Hospital, Pt. JNM, Medical College, Raipur 492001, Chhattisgarh, India |
| BookMark | eNp9kEtvGyEQgFGUSLWT_IGckHreDY9dWKReLKsvKVIu6RmxMJtg2bABnNb_vmydUw85oBHMfMPMt0aXIQZA6I6SlhIq7nct5N-mZYSqlnQtYeoCreggeSOk4pdoRVQvm47K7hNa57wjhEpC5ArZDU7HPWD4U5KxxceAzTynaOwLnlI84Hyc55gKfgNbYsKHmvABMp7qxXnzHGL24Rm_nGZIBUL-1-EQ61PNjlC8zTfoajL7DLfv8Rr9-vb1afujeXj8_nO7eWgsZ0NpuBqHTjjKOBdjz51QXUe5sMJJKg21rBvIuBzOFOtV78QkiINptNLZYQJ-jT6f-9b5X4-Qi97FYwr1S80YV4L3A6e1ajhX2RRzTjBp64tZNq8G_F5ToheleqcXpXpRqkmnq9KKsv_QOfmDSaePoS9nCOrqbx6SztZDsOB8qk61i_4j_C8rc5OX |
| CitedBy_id | crossref_primary_10_1016_j_chemolab_2021_104396 crossref_primary_10_1007_s11517_021_02333_x crossref_primary_10_1007_s11831_023_10061_8 crossref_primary_10_1016_j_asoc_2020_106856 crossref_primary_10_1109_ACCESS_2022_3188689 crossref_primary_10_1002_cnm_3496 crossref_primary_10_3390_en15155744 crossref_primary_10_1016_j_eswa_2022_118003 crossref_primary_10_3390_fi13060158 crossref_primary_10_1007_s10614_022_10305_y crossref_primary_10_1007_s12525_023_00644_5 crossref_primary_10_1038_s41598_020_67640_z crossref_primary_10_1038_s41598_022_14143_8 crossref_primary_10_1016_j_asoc_2022_108766 crossref_primary_10_1016_j_asoc_2025_113607 crossref_primary_10_1016_j_bbe_2019_10_001 crossref_primary_10_1007_s10489_022_03803_x crossref_primary_10_1016_j_engappai_2023_106355 crossref_primary_10_1007_s10479_021_04187_w crossref_primary_10_32604_cmes_2022_018580 crossref_primary_10_1007_s10614_025_10962_9 crossref_primary_10_1016_j_eswa_2022_117000 crossref_primary_10_1007_s12652_021_02965_9 crossref_primary_10_2147_DMSO_S312787 crossref_primary_10_1007_s10462_021_10088_y crossref_primary_10_3390_sym17060950 crossref_primary_10_3390_en17122810 crossref_primary_10_3390_math10091428 crossref_primary_10_1155_2020_2742781 crossref_primary_10_1109_ACCESS_2019_2945129 |
| Cites_doi | 10.1038/srep43965 10.1016/j.eswa.2017.06.031 10.1136/bmjopen-2012-002457 10.1371/journal.pone.0195344 10.1186/s40537-017-0082-7 10.1016/j.eswa.2009.01.029 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S 10.1016/j.cmpb.2017.09.004 10.1609/aimag.v33i2.2410 10.1371/journal.pone.0173021 10.1038/s41440-017-0001-5 10.1016/j.eswa.2015.11.009 10.1161/01.HYP.37.4.1053 10.1109/TNNLS.2015.2389037 10.1109/JBHI.2014.2325615 10.1109/TKDE.2008.131 10.4158/EP.8.S1.40 10.1186/s13690-015-0088-6 10.1214/aoms/1177731944 10.1016/j.diabres.2018.02.023 10.1186/1471-2105-10-213 10.1109/TKDE.2007.190610 10.1214/aos/1013203451 10.1016/j.csbj.2016.12.005 10.1186/s12859-018-2090-9 10.1080/01621459.1961.10482090 10.1038/hr.2015.120 10.1007/s00521-013-1524-6 10.1016/j.measurement.2014.08.019 10.1016/j.eswa.2012.11.007 10.2337/dc15-1536 10.1016/0950-7051(96)81920-4 10.1109/72.809084 10.1016/j.eswa.2013.09.022 10.1016/j.eswa.2018.04.023 10.1109/TITB.2009.2039485 10.1016/j.dib.2018.10.018 10.3390/a10030079 10.1016/j.diabres.2017.03.024 10.1023/A:1012427100071 10.1016/j.diabres.2017.11.028 10.1007/BF00994018 10.1016/j.eswa.2010.02.055 10.1186/s13755-016-0015-4 10.1007/BF00116251 10.1016/j.eswa.2016.11.017 10.1136/bmjopen-2013-003798 10.1109/TIT.2006.881713 10.1136/heartjnl-2011-300734 10.1016/j.imu.2016.02.001 10.1109/72.728352 10.1016/S0167-9473(01)00065-2 10.1177/193229681100500230 10.1145/1132960.1132963 10.1186/1758-5996-6-31 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Sep 15, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Sep 15, 2019 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2019.04.029 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Public Health |
| EISSN | 1873-6793 |
| EndPage | 205 |
| ExternalDocumentID | 10_1016_j_eswa_2019_04_029 S0957417419302593 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-39b846d12336b53d6944136c6d717a1c2480b480b3292595d6f60defbc7dc8fe3 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470341900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 07:41:00 EDT 2025 Sat Nov 29 06:14:30 EST 2025 Tue Nov 18 22:36:16 EST 2025 Fri Feb 23 02:24:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hypertension Extreme gradient boosting Diabetes Support vector machine Medical diagnosis Rule extraction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-39b846d12336b53d6944136c6d717a1c2480b480b3292595d6f60defbc7dc8fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1460-1117 0000-0002-2806-8432 |
| PQID | 2239635831 |
| PQPubID | 2045477 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2239635831 crossref_citationtrail_10_1016_j_eswa_2019_04_029 crossref_primary_10_1016_j_eswa_2019_04_029 elsevier_sciencedirect_doi_10_1016_j_eswa_2019_04_029 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-15 |
| PublicationDateYYYYMMDD | 2019-09-15 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Sim, Ban, Tan, Sethi, Loh (bib0078) 2017; 12 Seera, Lim (bib0077) 2014; 41 Barakat, Bradley (bib0004) 2006; 2 Boyd, Vandenberghe (bib0009) 2004 Kahramanli, Allahverdi (bib0049) 2009; 36 Menze, Kelm, Masuch, Himmelreich, Bachert, Petrich (bib0064) 2009; 10 Sowers, Epstein, Frohlich (bib0079) 2001; 37 Farquad, Ravi, Bapi (bib0026) 2009 Farquad, Ravi, Raju (bib0027) 2010; 37 Barakat, Bradley (bib0006) 2007; 19 Barakat, Bradley, Barakat (bib0007) 2010; 14 Katayama, Hatano, Issiki (bib0050) 2018; 41 Andrews, Diederich, Tickle (bib0002) 1995; 8 Liu, Zhao, Liu, Qi, Sun, Wang (bib0055) 2013; 3 Biostat Diabetes Dataset. (2018). Retrieved January 20, 2019, from Guzman, Melin, Prado-Arechiga (bib0039) 2017; 10 Fung, Sandilya, Rao (bib0035) 2005 Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013). Sakr, Elshawi, Ahmed, Qureshi, Brawner, Keteyian (bib0075) 2018; 13 Martens, Baesens, Van Gestel (bib0062) 2009; 21 Ogurtsova, Rocha Fernandes, Huang, Linnenkamp, Guariguata, Cho (bib0070) 2017; 128 Fu, Ong, Keerthi, Hung, Goh (bib0034) 2004 Cho, Shaw, Karuranga, Huang, da Rocha Fernandes, Ohlrogge (bib0013) 2018; 138 Cortes, Vapnik (bib0015) 1995; 20 Dunn (bib0024) 1961; 56 Retrieved from Farran, Channanath, Behbehani, Thanaraj (bib0028) 2013; 3 Johansson, König, Niklasson (bib0047) 2003 (bib0090) 2011 Rodbard, Vigersky (bib0074) 2011; 5 Zhang, Li, Tang, Cui (bib0092) 2004 Luo (bib0058) 2016; 4 Maniruzzaman, Kumar, Abedin, M., M., El-Baz (bib0060) 2017; 152 de Fortuny, Martens (bib0018) 2015; 26 Steinwart (bib0080) 2003; 4 Nanditha, Ma, Ramachandran, Snehalatha, Chan, Chia (bib0067) 2016; 39 van Dieren, Beulens, Kengne, Peelen, Rutten, Woodward (bib0086) 2012; 98 Tickle, Orlowski, Diederich (bib0085) 1994 LaFreniere, Zulkernine, Barber, Martin (bib0054) 2016 Hsu, Lin (bib0043) 2002; 46 Frank, Witten (bib0030) 1998 Han, Luo, Yu, Pan, Chen (bib0041) 2015; 19 Marling, Wiley, Bunescu, Shubrook, Schwartz (bib0061) 2012; 33 Hayashi, Yukita (bib0042) 2016; 2 Tickle, Andrews, Golea, Diederich (bib0084) 1998; 9 Ding, Hua, Yu (bib0023) 2014; 25 Núñez, Angulo, Català (bib0068) 2002 Craven, Shavlik (bib0017) 1996; 8 Guo, Lu, Gao, Zhang, Yan, Su (bib0038) 2017; 7 Wang, Deng, Choi (bib0088) 2015 Friedman (bib0032) 2002; 38 Chen, Pan (bib0011) 2018; 19 Demšar (bib0019) 2006; 7 Brown (bib0010) 2009 Johansson, König, Niklasson (bib0048) 2004 Miramontes, Martínez, Melin, Prado-Arechiga (bib0065) 2017 Zhang, Su, Jia, Chu (bib0093) 2005 Alberti, Zimmet (bib0001) 1998; 15 Diederich, Barakat (bib0022) 2004 Melin, Miramontes, Prado-Arechiga (bib0063) 2018; 107 Pulido, Melin, Prado-Arechiga (bib0072) 2018 Miramontes, Martínez, Melin, Prado-Arechiga (bib0066) 2018; 648 Barakat, Diederich (bib0005) 2005; 2 Lopez-jaramillo, Lopez-Lopez, Lopez-Lopez, Rodriguez-Alvarez (bib0056) 2014; 6 Jin, Xu, Bie, Guo (bib0046) 2006 Friedman (bib0033) 1940; 11 Geng, Hamilton (bib0036) 2006; 38 Wang, Huang, Cheng (bib0089) 2014; 58 Malmir, Amini, Chang (bib0059) 2017; 88 Diederich (bib0021) 2008; 80 Vapnik (bib0087) 1995 Kavakiotis, Tsave, Salifoglou, Maglaveras, Vlahavas, Chouvarda (bib0051) 2017; 15 International Diabetes Federation IDF Diabetes Atlas-8th Edition. (2017). Retrieved June 7, 2018, from http://www.diabetesatlas.org Dheeru, D., & Karra Taniskidou, E. (2017). UCI Machine Learning Repository. Retrieved from Stoean, Stoean (bib0082) 2013; 40 Farquad, Ravi, Bapi (bib0025) 2008 Feld (bib0029) 2002; 8 Friedman (bib0031) 2001; 29 World Health Organization. (2013). Cohen (bib0014) 1995 Núñez, H., Angulo, C., & Català, A. (2004). Rule Based Learning Systems from SVM and RBFNN. Retrieved from Schmitz, Aldrich, Gouws (bib0076) 1999; 10 Chen, Guestrin (bib0012) 2016 Quinlan (bib0073) 1986; 1 Proceedings of the Advances in neural information processing systems. Retrieved from NIPS2013_4928 Teramukai, Okuda, Miyazaki, Kawamori, Shirayama, Teramoto (bib0083) 2016; 39 Ketema, Kibret (bib0052) 2015; 73 Kurano, Darestani, Shinnakasu, Yamamoto, Dochi, Uemura (bib0053) 2018; 136 Cover, Thomas (bib0016) 2006 Guzmán, Melin, Prado-Arechiga (bib0040) 2018 Gorzałczany, Rudziński (bib0037) 2017; 71 Asaduzzaman, Masud, Bhuiyan, Ahmed, Paul, Rahman (bib0003) 2018; 21 Pourpanah, Lim, Saleh (bib0071) 2016; 49 Jayanthi, Babu, Rao (bib0045) 2017; 4 Steinwart, Hush, Scovel (bib0081) 2006; 52 Stoean (10.1016/j.eswa.2019.04.029_bib0082) 2013; 40 Pourpanah (10.1016/j.eswa.2019.04.029_bib0071) 2016; 49 Teramukai (10.1016/j.eswa.2019.04.029_bib0083) 2016; 39 Demšar (10.1016/j.eswa.2019.04.029_bib0019) 2006; 7 Johansson (10.1016/j.eswa.2019.04.029_bib0048) 2004 Sim (10.1016/j.eswa.2019.04.029_bib0078) 2017; 12 Miramontes (10.1016/j.eswa.2019.04.029_bib0066) 2018; 648 Ketema (10.1016/j.eswa.2019.04.029_bib0052) 2015; 73 Martens (10.1016/j.eswa.2019.04.029_bib0062) 2009; 21 Ogurtsova (10.1016/j.eswa.2019.04.029_bib0070) 2017; 128 Kahramanli (10.1016/j.eswa.2019.04.029_bib0049) 2009; 36 Dunn (10.1016/j.eswa.2019.04.029_bib0024) 1961; 56 Farquad (10.1016/j.eswa.2019.04.029_bib0025) 2008 van Dieren (10.1016/j.eswa.2019.04.029_bib0086) 2012; 98 Sakr (10.1016/j.eswa.2019.04.029_bib0075) 2018; 13 Schmitz (10.1016/j.eswa.2019.04.029_bib0076) 1999; 10 Katayama (10.1016/j.eswa.2019.04.029_bib0050) 2018; 41 Alberti (10.1016/j.eswa.2019.04.029_bib0001) 1998; 15 (10.1016/j.eswa.2019.04.029_bib0090) 2011 Han (10.1016/j.eswa.2019.04.029_bib0041) 2015; 19 10.1016/j.eswa.2019.04.029_bib0069 10.1016/j.eswa.2019.04.029_bib0020 Asaduzzaman (10.1016/j.eswa.2019.04.029_bib0003) 2018; 21 Liu (10.1016/j.eswa.2019.04.029_bib0055) 2013; 3 10.1016/j.eswa.2019.04.029_bib0008 Guo (10.1016/j.eswa.2019.04.029_bib0038) 2017; 7 Marling (10.1016/j.eswa.2019.04.029_bib0061) 2012; 33 Chen (10.1016/j.eswa.2019.04.029_bib0012) 2016 Johansson (10.1016/j.eswa.2019.04.029_bib0047) 2003 Frank (10.1016/j.eswa.2019.04.029_bib0030) 1998 Pulido (10.1016/j.eswa.2019.04.029_bib0072) 2018 Menze (10.1016/j.eswa.2019.04.029_bib0064) 2009; 10 Wang (10.1016/j.eswa.2019.04.029_bib0089) 2014; 58 Fu (10.1016/j.eswa.2019.04.029_bib0034) 2004 Diederich (10.1016/j.eswa.2019.04.029_bib0021) 2008; 80 Farquad (10.1016/j.eswa.2019.04.029_bib0027) 2010; 37 Guzmán (10.1016/j.eswa.2019.04.029_bib0040) 2018 Cohen (10.1016/j.eswa.2019.04.029_bib0014) 1995 Feld (10.1016/j.eswa.2019.04.029_bib0029) 2002; 8 Wang (10.1016/j.eswa.2019.04.029_bib0088) 2015 10.1016/j.eswa.2019.04.029_bib0091 10.1016/j.eswa.2019.04.029_bib0057 Rodbard (10.1016/j.eswa.2019.04.029_bib0074) 2011; 5 Seera (10.1016/j.eswa.2019.04.029_bib0077) 2014; 41 Diederich (10.1016/j.eswa.2019.04.029_bib0022) 2004 Tickle (10.1016/j.eswa.2019.04.029_bib0084) 1998; 9 Friedman (10.1016/j.eswa.2019.04.029_bib0032) 2002; 38 Jin (10.1016/j.eswa.2019.04.029_bib0046) 2006 Nanditha (10.1016/j.eswa.2019.04.029_bib0067) 2016; 39 Malmir (10.1016/j.eswa.2019.04.029_bib0059) 2017; 88 Guzman (10.1016/j.eswa.2019.04.029_bib0039) 2017; 10 Kurano (10.1016/j.eswa.2019.04.029_bib0053) 2018; 136 Tickle (10.1016/j.eswa.2019.04.029_bib0085) 1994 Hayashi (10.1016/j.eswa.2019.04.029_bib0042) 2016; 2 Zhang (10.1016/j.eswa.2019.04.029_bib0092) 2004 Fung (10.1016/j.eswa.2019.04.029_bib0035) 2005 Hsu (10.1016/j.eswa.2019.04.029_bib0043) 2002; 46 Sowers (10.1016/j.eswa.2019.04.029_bib0079) 2001; 37 Cover (10.1016/j.eswa.2019.04.029_bib0016) 2006 Jayanthi (10.1016/j.eswa.2019.04.029_bib0045) 2017; 4 Craven (10.1016/j.eswa.2019.04.029_bib0017) 1996; 8 Barakat (10.1016/j.eswa.2019.04.029_bib0005) 2005; 2 Kavakiotis (10.1016/j.eswa.2019.04.029_bib0051) 2017; 15 Barakat (10.1016/j.eswa.2019.04.029_bib0006) 2007; 19 Vapnik (10.1016/j.eswa.2019.04.029_bib0087) 1995 Geng (10.1016/j.eswa.2019.04.029_bib0036) 2006; 38 Barakat (10.1016/j.eswa.2019.04.029_bib0004) 2006; 2 Cho (10.1016/j.eswa.2019.04.029_bib0013) 2018; 138 Barakat (10.1016/j.eswa.2019.04.029_bib0007) 2010; 14 Brown (10.1016/j.eswa.2019.04.029_bib0010) 2009 de Fortuny (10.1016/j.eswa.2019.04.029_bib0018) 2015; 26 Quinlan (10.1016/j.eswa.2019.04.029_bib0073) 1986; 1 Cortes (10.1016/j.eswa.2019.04.029_bib0015) 1995; 20 10.1016/j.eswa.2019.04.029_bib0044 Núñez (10.1016/j.eswa.2019.04.029_bib0068) 2002 Chen (10.1016/j.eswa.2019.04.029_bib0011) 2018; 19 Steinwart (10.1016/j.eswa.2019.04.029_bib0080) 2003; 4 Andrews (10.1016/j.eswa.2019.04.029_bib0002) 1995; 8 Farran (10.1016/j.eswa.2019.04.029_bib0028) 2013; 3 Maniruzzaman (10.1016/j.eswa.2019.04.029_bib0060) 2017; 152 Friedman (10.1016/j.eswa.2019.04.029_bib0031) 2001; 29 Lopez-jaramillo (10.1016/j.eswa.2019.04.029_bib0056) 2014; 6 Melin (10.1016/j.eswa.2019.04.029_bib0063) 2018; 107 Zhang (10.1016/j.eswa.2019.04.029_bib0093) 2005 Luo (10.1016/j.eswa.2019.04.029_bib0058) 2016; 4 Farquad (10.1016/j.eswa.2019.04.029_bib0026) 2009 Friedman (10.1016/j.eswa.2019.04.029_bib0033) 1940; 11 LaFreniere (10.1016/j.eswa.2019.04.029_bib0054) 2016 Ding (10.1016/j.eswa.2019.04.029_bib0023) 2014; 25 Gorzałczany (10.1016/j.eswa.2019.04.029_bib0037) 2017; 71 Miramontes (10.1016/j.eswa.2019.04.029_bib0065) 2017 Boyd (10.1016/j.eswa.2019.04.029_bib0009) 2004 Steinwart (10.1016/j.eswa.2019.04.029_bib0081) 2006; 52 |
| References_xml | – volume: 136 start-page: 124 year: 2018 end-page: 133 ident: bib0053 article-title: mRNA expression of platelet activating factor receptor (PAFR) in peripheral blood mononuclear cells is associated with albuminuria and vascular dysfunction in patients with type 2 diabetes publication-title: Diabetes Research and Clinical Practice – volume: 19 start-page: 729 year: 2007 end-page: 741 ident: bib0006 article-title: Rule extraction from support vector machines: A sequential covering approach publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 73 start-page: 43 year: 2015 ident: bib0052 article-title: Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis publication-title: Archives of Public Health – volume: 41 start-page: 2239 year: 2014 end-page: 2249 ident: bib0077 article-title: A hybrid intelligent system for medical data classification publication-title: Expert Systems with Applications – volume: 9 start-page: 1057 year: 1998 end-page: 1068 ident: bib0084 article-title: The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks publication-title: IEEE Transactions on Neural Networks – volume: 7 start-page: 43965 year: 2017 ident: bib0038 article-title: Cluster analysis: A new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients publication-title: Scientific Reports – year: 2006 ident: bib0016 article-title: Elements of information theory – volume: 25 start-page: 975 year: 2014 end-page: 982 ident: bib0023 article-title: An overview on nonparallel hyperplane support vector machine algorithms publication-title: Neural Computing and Applications – volume: 128 start-page: 40 year: 2017 end-page: 50 ident: bib0070 article-title: IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040 publication-title: Diabetes Research and Clinical Practice – volume: 15 start-page: 104 year: 2017 end-page: 116 ident: bib0051 article-title: Machine learning and data mining methods in diabetes research publication-title: Computational and Structural Biotechnology Journal – start-page: 49 year: 2009 end-page: 56 ident: bib0010 article-title: A new perspective for information theoretic feature selection publication-title: Proceedings of the twelfth international conference on artificial intelligence and statistics (AISTATS) – volume: 152 start-page: 23 year: 2017 end-page: 34 ident: bib0060 article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm publication-title: Computer Methods and Programs in Biomedicine – volume: 71 start-page: 26 year: 2017 end-page: 39 ident: bib0037 article-title: Interpretable and accurate medical data classification –A multi-objective genetic-fuzzy optimization approach publication-title: Expert Systems with Applications – volume: 46 start-page: 291 year: 2002 end-page: 314 ident: bib0043 article-title: A simple decomposition method for support vector machines publication-title: Machine Learning – volume: 36 start-page: 10494 year: 2009 end-page: 10502 ident: bib0049 article-title: Extracting rules for classification problems: AIS based approach publication-title: Expert Systems with Applications – volume: 5 start-page: 402 year: 2011 end-page: 411 ident: bib0074 article-title: Design of a decision support system to help clinicians manage glycemia in patients with type 2 diabetes mellitus publication-title: Journal of Diabetes Science and Technology – volume: 41 start-page: 213 year: 2018 end-page: 229 ident: bib0050 article-title: Clinical features and therapeutic perspectives on hypertension in diabetics publication-title: Hypertension Research – volume: 58 start-page: 147 year: 2014 end-page: 153 ident: bib0089 article-title: Super-parameter selection for Gaussian-Kernel SVM based on outlier-resisting publication-title: Measurement – reference: . Retrieved from – reference: Dheeru, D., & Karra Taniskidou, E. (2017). UCI Machine Learning Repository. Retrieved from – reference: World Health Organization. (2013). – start-page: 107 year: 2002 end-page: 112 ident: bib0068 article-title: Rule extraction from support vector machines publication-title: Proceedings of the European symposium on artificial neural networks (ESANN) – start-page: 191 year: 2004 end-page: 195 ident: bib0092 article-title: DRC-BK: Mining classification rules with help of SVM publication-title: Proceedings of the Pacific-Asia conference on knowledge discovery and data mining – reference: Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013). – volume: 10 start-page: 213 year: 2009 ident: bib0064 article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data publication-title: BMC Bioinformatics – volume: 8 start-page: 373 year: 1995 end-page: 389 ident: bib0002 article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks publication-title: Knowledge-Based Systems – volume: 8 start-page: 40 year: 2002 end-page: 82 ident: bib0029 article-title: The American association of clinical endocrinologists medical guidelines for the management of diabetes mellitus: The AACE system of intensive diabetes self-management - 2002 update publication-title: Endocrine Practice – volume: 98 start-page: 360 year: 2012 end-page: 369 ident: bib0086 article-title: Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: A systematic review publication-title: Heart – volume: 4 start-page: 26 year: 2017 ident: bib0045 article-title: Survey on clinical prediction models for diabetes prediction publication-title: Journal of Big Data – volume: 21 start-page: 700 year: 2018 end-page: 708 ident: bib0003 article-title: Dataset on significant risk factors for Type 1 diabetes: A Bangladeshi perspective publication-title: Data in Brief – volume: 10 start-page: 1392 year: 1999 end-page: 1401 ident: bib0076 article-title: ANN-DT: An algorithm for extraction of decision trees from artificial neural networks publication-title: IEEE Transactions on Neural Networks – volume: 15 start-page: 539 year: 1998 end-page: 553 ident: bib0001 article-title: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation publication-title: Diabetic Medicine – volume: 14 start-page: 1114 year: 2010 end-page: 1120 ident: bib0007 article-title: Intelligible support vector machines for diagnosis of diabetes mellitus publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: bib0032 article-title: Stochastic gradient boosting publication-title: Computational Statistics and Data Analysis – volume: 2 start-page: 812 year: 2006 end-page: 815 ident: bib0004 article-title: Rule extraction from support vector machines: Measuring the explanation capability using the area under the ROC curve publication-title: Proceedings of the eighteenth international conference on pattern recognition (ICPR) – volume: 49 start-page: 74 year: 2016 end-page: 85 ident: bib0071 article-title: A hybrid model of fuzzy ARTMAP and genetic algorithm for data classification and rule extraction publication-title: Expert Systems with Applications – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0019 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: bib0033 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: The Annals of Mathematical Statistics – year: 1995 ident: bib0087 article-title: The nature of statistical learning theory – volume: 37 start-page: 5577 year: 2010 end-page: 5589 ident: bib0027 article-title: Support vector regression based hybrid rule extraction methods for forecasting publication-title: Expert Systems with Applications – volume: 52 start-page: 4635 year: 2006 end-page: 4643 ident: bib0081 article-title: An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels publication-title: IEEE Transactions on Information Theory – start-page: 404 year: 2009 end-page: 426 ident: bib0026 article-title: Support Vector Machine based Hybrid Classifiers and Rule Extraction thereof: Application to Bankruptcy Prediction in Banks publication-title: Handbook of research on machine learning applications and trends: Algorithms, methods, and techniques – start-page: 13 year: 2003 end-page: 16 ident: bib0047 article-title: Rule extraction from trained neural networks using genetic programming publication-title: Proceedings of the thirteenth international conference on artificial neural networks – start-page: 1 year: 2016 end-page: 7 ident: bib0054 article-title: Using machine learning to predict hypertension from a clinical dataset publication-title: Proceedings of the IEEE symposium series on computational intelligence (SSCI) – volume: 3 year: 2013 ident: bib0028 article-title: Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from Kuwait—a cohort study publication-title: BMJ Open – volume: 38 year: 2006 ident: bib0036 article-title: Interestingness measures for data mining publication-title: ACM Computing Surveys (CSUR) – volume: 12 year: 2017 ident: bib0078 article-title: Development of a clinical decision support system for diabetes care: A pilot study publication-title: PloS One – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: bib0031 article-title: Greedy function approximation: A gradient boosting machine publication-title: The Annals of Statistics – start-page: 738 year: 2015 end-page: 744 ident: bib0088 article-title: Detection of epileptic seizures in EEG signals with rule-based interpretation by random forest approach publication-title: Proceedings of the international conference on intelligent computing – reference: International Diabetes Federation IDF Diabetes Atlas-8th Edition. (2017). Retrieved June 7, 2018, from http://www.diabetesatlas.org/ – start-page: 541 year: 2017 end-page: 550 ident: bib0065 article-title: A Hybrid Intelligent System Model for Hypertension Diagnosis publication-title: Nature-inspired design of hybrid intelligent systems – volume: 37 start-page: 1053 year: 2001 end-page: 1059 ident: bib0079 article-title: Diabetes, hypertension, and cardiovascular disease: An update publication-title: Hypertension – start-page: 1 year: 2008 end-page: 6 ident: bib0025 article-title: Rule extraction using Support Vector Machine based hybrid classifier publication-title: Proceedings of the TENCON IEEE Region 10 Conference – start-page: 309 year: 2018 end-page: 318 ident: bib0040 article-title: Fuzzy optimized classifier for the diagnosis of blood pressure using genetic algorithm publication-title: Fuzzy logic augmentation of neural and optimization algorithms: Theoretical aspects and real applications – volume: 6 start-page: 31 year: 2014 ident: bib0056 article-title: The goal of blood pressure in the hypertensive patient with diabetes is defined: Now the challenge is go from recommendations to practice publication-title: Diabetology & Metabolic Syndrome – reference: Biostat Diabetes Dataset. (2018). Retrieved January 20, 2019, from – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0015 article-title: Support-vector networks publication-title: Machine Learning – volume: 39 start-page: 472 year: 2016 end-page: 485 ident: bib0067 article-title: Diabetes in Asia and the Pacific: Implications for the global epidemic publication-title: Diabetes Care – volume: 26 start-page: 2664 year: 2015 end-page: 2677 ident: bib0018 article-title: Active learning-based pedagogical rule extraction publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 115 year: 1995 end-page: 123 ident: bib0014 article-title: Fast effective rule induction publication-title: Machine learning proceedings 1995 – volume: 13 year: 2018 ident: bib0075 article-title: Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project publication-title: PloS One – start-page: 291 year: 2004 end-page: 296 ident: bib0034 article-title: Extracting the knowledge embedded in support vector machines publication-title: Proceedings of the IEEE international joint conference on neural networks – volume: 40 start-page: 2677 year: 2013 end-page: 2686 ident: bib0082 article-title: Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection publication-title: Expert Systems with Applications – volume: 33 start-page: 67 year: 2012 end-page: 78 ident: bib0061 article-title: Emerging applications for intelligent diabetes management publication-title: AI Magazine – volume: 19 start-page: 728 year: 2015 end-page: 734 ident: bib0041 article-title: Rule extraction from support vector machines using ensemble learning approach: An application for diagnosis of diabetes publication-title: IEEE Journal of Biomedical and Health Informatics – start-page: 61 year: 2005 end-page: 70 ident: bib0093 article-title: Rule extraction from trained support vector machines publication-title: Proceedings of the Pacific-Asia conference on knowledge discovery and data mining – volume: 2 start-page: 92 year: 2016 end-page: 104 ident: bib0042 article-title: Rule extraction using Recursive-Rule extraction algorithm with J48graft combined with sampling selection techniques for the diagnosis of type 2 diabetes mellitus in the Pima Indian dataset publication-title: Informatics in Medicine Unlocked – volume: 2 start-page: 59 year: 2005 end-page: 62 ident: bib0005 article-title: Eclectic rule-extraction from support vector machines publication-title: International Journal of Computational Intelligence – volume: 3 year: 2013 ident: bib0055 article-title: Prevalence of diabetes mellitus in outpatients with essential hypertension in China: A cross-sectional study publication-title: BMJ Open – volume: 88 start-page: 95 year: 2017 end-page: 108 ident: bib0059 article-title: A medical decision support system for disease diagnosis under uncertainty publication-title: Expert Systems with Applications – volume: 56 start-page: 52 year: 1961 ident: bib0024 article-title: Multiple comparisons among means publication-title: Journal of the American Statistical Association – start-page: 658 year: 2004 end-page: 663 ident: bib0048 article-title: The truth is in there-rule extraction from opaque models using genetic programming publication-title: Proceedings of the FLAIRS Conference – volume: 8 start-page: 24 year: 1996 end-page: 30 ident: bib0017 article-title: Extracting tree-structured representations of trained neural networks publication-title: Advances in neural information processing systems – volume: 107 start-page: 146 year: 2018 end-page: 164 ident: bib0063 article-title: A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis publication-title: Expert Systems with Applications – volume: 10 start-page: 79 year: 2017 ident: bib0039 article-title: Design of an optimized fuzzy classifier for the diagnosis of blood pressure with a new computational method for expert rule optimization publication-title: Algorithms – start-page: 144 year: 1998 end-page: 151 ident: bib0030 article-title: Generating accurate rule sets without global optimization publication-title: Proceedings of the fifteenth international conference on machine learning – volume: 21 start-page: 178 year: 2009 end-page: 191 ident: bib0062 article-title: Decompositional rule extraction from support vector machines by active learning publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2011 ident: bib0090 article-title: Waist circumference and waist-hip ratio – start-page: 32 year: 2005 ident: bib0035 article-title: Rule extraction from linear support vector machines publication-title: Proceeding of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining - KDD ’05 – start-page: 106 year: 2006 end-page: 115 ident: bib0046 article-title: Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles publication-title: Proceedings of the international workshop on data mining for biomedical applications – volume: 4 year: 2016 ident: bib0058 article-title: Automatically explaining machine learning prediction results: A demonstration on type 2 diabetes risk prediction publication-title: Health Information Science and Systems – volume: 4 start-page: 1071 year: 2003 end-page: 1105 ident: bib0080 article-title: Sparseness of support vector machines publication-title: Journal of Machine Learning Research – volume: 138 start-page: 311 year: 2018 end-page: 321 ident: bib0013 article-title: IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 publication-title: Diabetes Research and Clinical Practice – year: 2004 ident: bib0022 article-title: Hybrid rule-extraction from support vector machines publication-title: Proceedings of the IEEE conference on cybernetics and intelligent systems – volume: 19 start-page: 109 year: 2018 ident: bib0011 article-title: Diabetes classification model based on boosting algorithms publication-title: BMC Bioinformatics – year: 1994 ident: bib0085 article-title: DEDEC: Decision detection by rule extraction from neural networks publication-title: Neurocomputing Research Center QUT NRC – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: bib0073 article-title: Induction of decision trees publication-title: Machine Learning – volume: 39 start-page: 113 year: 2016 end-page: 118 ident: bib0083 article-title: Dynamic prediction model and risk assessment chart for cardiovascular disease based on on-treatment blood pressure and baseline risk factors publication-title: Hypertension Research – year: 2004 ident: bib0009 article-title: Convex optimization – start-page: 785 year: 2016 end-page: 794 ident: bib0012 article-title: XGBoost: A scalable tree boosting system publication-title: Proceedings of the twenty-second ACM SIGKDD international conference on knowledge discovery and data mining – volume: 648 start-page: 202 year: 2018 end-page: 213 ident: bib0066 article-title: A hybrid intelligent system model for hypertension risk diagnosis publication-title: Fuzzy logic in intelligent system Design. NAFIPS 2017 – reference: Núñez, H., Angulo, C., & Català, A. (2004). Rule Based Learning Systems from SVM and RBFNN. Retrieved from – volume: 80 start-page: 3 year: 2008 end-page: 31 ident: bib0021 article-title: Rule Extraction from Support Vector Machines: An Introduction publication-title: Studies in computational intelligence – start-page: 319 year: 2018 end-page: 327 ident: bib0072 article-title: A new model based on a fuzzy system for arterial hypertension classification publication-title: Fuzzy logic augmentation of neural and optimization algorithms: Theoretical aspects and real applications – reference: . Proceedings of the Advances in neural information processing systems. Retrieved from NIPS2013_4928 – volume: 7 start-page: 43965 year: 2017 ident: 10.1016/j.eswa.2019.04.029_bib0038 article-title: Cluster analysis: A new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients publication-title: Scientific Reports doi: 10.1038/srep43965 – start-page: 106 year: 2006 ident: 10.1016/j.eswa.2019.04.029_bib0046 article-title: Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles – start-page: 785 year: 2016 ident: 10.1016/j.eswa.2019.04.029_bib0012 article-title: XGBoost: A scalable tree boosting system – start-page: 541 year: 2017 ident: 10.1016/j.eswa.2019.04.029_bib0065 article-title: A Hybrid Intelligent System Model for Hypertension Diagnosis – volume: 88 start-page: 95 year: 2017 ident: 10.1016/j.eswa.2019.04.029_bib0059 article-title: A medical decision support system for disease diagnosis under uncertainty publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.06.031 – start-page: 61 year: 2005 ident: 10.1016/j.eswa.2019.04.029_bib0093 article-title: Rule extraction from trained support vector machines – volume: 7 start-page: 1 issue: Jan year: 2006 ident: 10.1016/j.eswa.2019.04.029_bib0019 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 3 issue: 5 year: 2013 ident: 10.1016/j.eswa.2019.04.029_bib0028 article-title: Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from Kuwait—a cohort study publication-title: BMJ Open doi: 10.1136/bmjopen-2012-002457 – ident: 10.1016/j.eswa.2019.04.029_bib0044 – volume: 13 issue: 4 year: 2018 ident: 10.1016/j.eswa.2019.04.029_bib0075 article-title: Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project publication-title: PloS One doi: 10.1371/journal.pone.0195344 – volume: 80 start-page: 3 year: 2008 ident: 10.1016/j.eswa.2019.04.029_bib0021 article-title: Rule Extraction from Support Vector Machines: An Introduction – volume: 4 start-page: 26 issue: 1 year: 2017 ident: 10.1016/j.eswa.2019.04.029_bib0045 article-title: Survey on clinical prediction models for diabetes prediction publication-title: Journal of Big Data doi: 10.1186/s40537-017-0082-7 – volume: 36 start-page: 10494 issue: 7 year: 2009 ident: 10.1016/j.eswa.2019.04.029_bib0049 article-title: Extracting rules for classification problems: AIS based approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.01.029 – volume: 15 start-page: 539 issue: 7 year: 1998 ident: 10.1016/j.eswa.2019.04.029_bib0001 article-title: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation publication-title: Diabetic Medicine doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S – start-page: 32 year: 2005 ident: 10.1016/j.eswa.2019.04.029_bib0035 article-title: Rule extraction from linear support vector machines – start-page: 1 year: 2016 ident: 10.1016/j.eswa.2019.04.029_bib0054 article-title: Using machine learning to predict hypertension from a clinical dataset – volume: 152 start-page: 23 year: 2017 ident: 10.1016/j.eswa.2019.04.029_bib0060 article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2017.09.004 – volume: 33 start-page: 67 issue: 2 year: 2012 ident: 10.1016/j.eswa.2019.04.029_bib0061 article-title: Emerging applications for intelligent diabetes management publication-title: AI Magazine doi: 10.1609/aimag.v33i2.2410 – volume: 648 start-page: 202 year: 2018 ident: 10.1016/j.eswa.2019.04.029_bib0066 article-title: A hybrid intelligent system model for hypertension risk diagnosis – start-page: 404 year: 2009 ident: 10.1016/j.eswa.2019.04.029_bib0026 article-title: Support Vector Machine based Hybrid Classifiers and Rule Extraction thereof: Application to Bankruptcy Prediction in Banks – ident: 10.1016/j.eswa.2019.04.029_bib0057 – start-page: 191 year: 2004 ident: 10.1016/j.eswa.2019.04.029_bib0092 article-title: DRC-BK: Mining classification rules with help of SVM – volume: 12 issue: 2 year: 2017 ident: 10.1016/j.eswa.2019.04.029_bib0078 article-title: Development of a clinical decision support system for diabetes care: A pilot study publication-title: PloS One doi: 10.1371/journal.pone.0173021 – volume: 4 start-page: 1071 issue: 11 year: 2003 ident: 10.1016/j.eswa.2019.04.029_bib0080 article-title: Sparseness of support vector machines publication-title: Journal of Machine Learning Research – volume: 41 start-page: 213 issue: 4 year: 2018 ident: 10.1016/j.eswa.2019.04.029_bib0050 article-title: Clinical features and therapeutic perspectives on hypertension in diabetics publication-title: Hypertension Research doi: 10.1038/s41440-017-0001-5 – volume: 49 start-page: 74 year: 2016 ident: 10.1016/j.eswa.2019.04.029_bib0071 article-title: A hybrid model of fuzzy ARTMAP and genetic algorithm for data classification and rule extraction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.11.009 – year: 2006 ident: 10.1016/j.eswa.2019.04.029_bib0016 – volume: 37 start-page: 1053 issue: 4 year: 2001 ident: 10.1016/j.eswa.2019.04.029_bib0079 article-title: Diabetes, hypertension, and cardiovascular disease: An update publication-title: Hypertension doi: 10.1161/01.HYP.37.4.1053 – volume: 26 start-page: 2664 issue: 11 year: 2015 ident: 10.1016/j.eswa.2019.04.029_bib0018 article-title: Active learning-based pedagogical rule extraction publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2389037 – ident: 10.1016/j.eswa.2019.04.029_bib0091 – year: 2011 ident: 10.1016/j.eswa.2019.04.029_bib0090 – volume: 19 start-page: 728 issue: 2 year: 2015 ident: 10.1016/j.eswa.2019.04.029_bib0041 article-title: Rule extraction from support vector machines using ensemble learning approach: An application for diagnosis of diabetes publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2014.2325615 – volume: 21 start-page: 178 issue: 2 year: 2009 ident: 10.1016/j.eswa.2019.04.029_bib0062 article-title: Decompositional rule extraction from support vector machines by active learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2008.131 – year: 2004 ident: 10.1016/j.eswa.2019.04.029_bib0022 article-title: Hybrid rule-extraction from support vector machines – volume: 8 start-page: 40 issue: Supplement 1 year: 2002 ident: 10.1016/j.eswa.2019.04.029_bib0029 article-title: The American association of clinical endocrinologists medical guidelines for the management of diabetes mellitus: The AACE system of intensive diabetes self-management - 2002 update publication-title: Endocrine Practice doi: 10.4158/EP.8.S1.40 – volume: 73 start-page: 43 issue: 1 year: 2015 ident: 10.1016/j.eswa.2019.04.029_bib0052 article-title: Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis publication-title: Archives of Public Health doi: 10.1186/s13690-015-0088-6 – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 10.1016/j.eswa.2019.04.029_bib0033 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177731944 – volume: 138 start-page: 311 year: 2018 ident: 10.1016/j.eswa.2019.04.029_bib0013 article-title: IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 publication-title: Diabetes Research and Clinical Practice doi: 10.1016/j.diabres.2018.02.023 – start-page: 319 year: 2018 ident: 10.1016/j.eswa.2019.04.029_bib0072 article-title: A new model based on a fuzzy system for arterial hypertension classification – volume: 10 start-page: 213 issue: 1 year: 2009 ident: 10.1016/j.eswa.2019.04.029_bib0064 article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-213 – year: 1995 ident: 10.1016/j.eswa.2019.04.029_bib0087 – start-page: 13 year: 2003 ident: 10.1016/j.eswa.2019.04.029_bib0047 article-title: Rule extraction from trained neural networks using genetic programming – volume: 8 start-page: 24 year: 1996 ident: 10.1016/j.eswa.2019.04.029_bib0017 article-title: Extracting tree-structured representations of trained neural networks – volume: 19 start-page: 729 issue: 6 year: 2007 ident: 10.1016/j.eswa.2019.04.029_bib0006 article-title: Rule extraction from support vector machines: A sequential covering approach publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2007.190610 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.eswa.2019.04.029_bib0031 article-title: Greedy function approximation: A gradient boosting machine publication-title: The Annals of Statistics doi: 10.1214/aos/1013203451 – volume: 15 start-page: 104 year: 2017 ident: 10.1016/j.eswa.2019.04.029_bib0051 article-title: Machine learning and data mining methods in diabetes research publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2016.12.005 – volume: 19 start-page: 109 issue: 1 year: 2018 ident: 10.1016/j.eswa.2019.04.029_bib0011 article-title: Diabetes classification model based on boosting algorithms publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2090-9 – start-page: 115 year: 1995 ident: 10.1016/j.eswa.2019.04.029_bib0014 article-title: Fast effective rule induction – volume: 56 start-page: 52 issue: 293 year: 1961 ident: 10.1016/j.eswa.2019.04.029_bib0024 article-title: Multiple comparisons among means publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1961.10482090 – volume: 39 start-page: 113 issue: 2 year: 2016 ident: 10.1016/j.eswa.2019.04.029_bib0083 article-title: Dynamic prediction model and risk assessment chart for cardiovascular disease based on on-treatment blood pressure and baseline risk factors publication-title: Hypertension Research doi: 10.1038/hr.2015.120 – volume: 25 start-page: 975 issue: 5 year: 2014 ident: 10.1016/j.eswa.2019.04.029_bib0023 article-title: An overview on nonparallel hyperplane support vector machine algorithms publication-title: Neural Computing and Applications doi: 10.1007/s00521-013-1524-6 – start-page: 107 year: 2002 ident: 10.1016/j.eswa.2019.04.029_bib0068 article-title: Rule extraction from support vector machines – volume: 58 start-page: 147 year: 2014 ident: 10.1016/j.eswa.2019.04.029_bib0089 article-title: Super-parameter selection for Gaussian-Kernel SVM based on outlier-resisting publication-title: Measurement doi: 10.1016/j.measurement.2014.08.019 – volume: 40 start-page: 2677 issue: 7 year: 2013 ident: 10.1016/j.eswa.2019.04.029_bib0082 article-title: Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.11.007 – volume: 39 start-page: 472 issue: 3 year: 2016 ident: 10.1016/j.eswa.2019.04.029_bib0067 article-title: Diabetes in Asia and the Pacific: Implications for the global epidemic publication-title: Diabetes Care doi: 10.2337/dc15-1536 – volume: 8 start-page: 373 issue: 6 year: 1995 ident: 10.1016/j.eswa.2019.04.029_bib0002 article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks publication-title: Knowledge-Based Systems doi: 10.1016/0950-7051(96)81920-4 – volume: 10 start-page: 1392 issue: 6 year: 1999 ident: 10.1016/j.eswa.2019.04.029_bib0076 article-title: ANN-DT: An algorithm for extraction of decision trees from artificial neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.809084 – volume: 41 start-page: 2239 issue: 5 year: 2014 ident: 10.1016/j.eswa.2019.04.029_bib0077 article-title: A hybrid intelligent system for medical data classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.09.022 – year: 1994 ident: 10.1016/j.eswa.2019.04.029_bib0085 article-title: DEDEC: Decision detection by rule extraction from neural networks publication-title: Neurocomputing Research Center QUT NRC – volume: 107 start-page: 146 year: 2018 ident: 10.1016/j.eswa.2019.04.029_bib0063 article-title: A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.04.023 – start-page: 144 year: 1998 ident: 10.1016/j.eswa.2019.04.029_bib0030 article-title: Generating accurate rule sets without global optimization – ident: 10.1016/j.eswa.2019.04.029_bib0069 – volume: 14 start-page: 1114 issue: 4 year: 2010 ident: 10.1016/j.eswa.2019.04.029_bib0007 article-title: Intelligible support vector machines for diagnosis of diabetes mellitus publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2009.2039485 – volume: 21 start-page: 700 year: 2018 ident: 10.1016/j.eswa.2019.04.029_bib0003 article-title: Dataset on significant risk factors for Type 1 diabetes: A Bangladeshi perspective publication-title: Data in Brief doi: 10.1016/j.dib.2018.10.018 – volume: 10 start-page: 79 issue: 3 year: 2017 ident: 10.1016/j.eswa.2019.04.029_bib0039 article-title: Design of an optimized fuzzy classifier for the diagnosis of blood pressure with a new computational method for expert rule optimization publication-title: Algorithms doi: 10.3390/a10030079 – volume: 128 start-page: 40 year: 2017 ident: 10.1016/j.eswa.2019.04.029_bib0070 article-title: IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040 publication-title: Diabetes Research and Clinical Practice doi: 10.1016/j.diabres.2017.03.024 – volume: 46 start-page: 291 issue: 1–3 year: 2002 ident: 10.1016/j.eswa.2019.04.029_bib0043 article-title: A simple decomposition method for support vector machines publication-title: Machine Learning doi: 10.1023/A:1012427100071 – volume: 136 start-page: 124 year: 2018 ident: 10.1016/j.eswa.2019.04.029_bib0053 article-title: mRNA expression of platelet activating factor receptor (PAFR) in peripheral blood mononuclear cells is associated with albuminuria and vascular dysfunction in patients with type 2 diabetes publication-title: Diabetes Research and Clinical Practice doi: 10.1016/j.diabres.2017.11.028 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.eswa.2019.04.029_bib0015 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 37 start-page: 5577 issue: 8 year: 2010 ident: 10.1016/j.eswa.2019.04.029_bib0027 article-title: Support vector regression based hybrid rule extraction methods for forecasting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.02.055 – volume: 4 issue: 1 year: 2016 ident: 10.1016/j.eswa.2019.04.029_bib0058 article-title: Automatically explaining machine learning prediction results: A demonstration on type 2 diabetes risk prediction publication-title: Health Information Science and Systems doi: 10.1186/s13755-016-0015-4 – volume: 1 start-page: 81 issue: 1 year: 1986 ident: 10.1016/j.eswa.2019.04.029_bib0073 article-title: Induction of decision trees publication-title: Machine Learning doi: 10.1007/BF00116251 – volume: 71 start-page: 26 year: 2017 ident: 10.1016/j.eswa.2019.04.029_bib0037 article-title: Interpretable and accurate medical data classification –A multi-objective genetic-fuzzy optimization approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.11.017 – ident: 10.1016/j.eswa.2019.04.029_bib0008 – start-page: 49 year: 2009 ident: 10.1016/j.eswa.2019.04.029_bib0010 article-title: A new perspective for information theoretic feature selection – volume: 3 issue: 11 year: 2013 ident: 10.1016/j.eswa.2019.04.029_bib0055 article-title: Prevalence of diabetes mellitus in outpatients with essential hypertension in China: A cross-sectional study publication-title: BMJ Open doi: 10.1136/bmjopen-2013-003798 – start-page: 1 year: 2008 ident: 10.1016/j.eswa.2019.04.029_bib0025 article-title: Rule extraction using Support Vector Machine based hybrid classifier – volume: 52 start-page: 4635 issue: 10 year: 2006 ident: 10.1016/j.eswa.2019.04.029_bib0081 article-title: An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2006.881713 – start-page: 658 year: 2004 ident: 10.1016/j.eswa.2019.04.029_bib0048 article-title: The truth is in there-rule extraction from opaque models using genetic programming – ident: 10.1016/j.eswa.2019.04.029_bib0020 – year: 2004 ident: 10.1016/j.eswa.2019.04.029_bib0009 – volume: 98 start-page: 360 issue: 5 year: 2012 ident: 10.1016/j.eswa.2019.04.029_bib0086 article-title: Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: A systematic review publication-title: Heart doi: 10.1136/heartjnl-2011-300734 – volume: 2 start-page: 59 issue: 1 year: 2005 ident: 10.1016/j.eswa.2019.04.029_bib0005 article-title: Eclectic rule-extraction from support vector machines publication-title: International Journal of Computational Intelligence – volume: 2 start-page: 812 year: 2006 ident: 10.1016/j.eswa.2019.04.029_bib0004 article-title: Rule extraction from support vector machines: Measuring the explanation capability using the area under the ROC curve – volume: 2 start-page: 92 year: 2016 ident: 10.1016/j.eswa.2019.04.029_bib0042 article-title: Rule extraction using Recursive-Rule extraction algorithm with J48graft combined with sampling selection techniques for the diagnosis of type 2 diabetes mellitus in the Pima Indian dataset publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2016.02.001 – volume: 9 start-page: 1057 issue: 6 year: 1998 ident: 10.1016/j.eswa.2019.04.029_bib0084 article-title: The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.728352 – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.eswa.2019.04.029_bib0032 article-title: Stochastic gradient boosting publication-title: Computational Statistics and Data Analysis doi: 10.1016/S0167-9473(01)00065-2 – start-page: 309 year: 2018 ident: 10.1016/j.eswa.2019.04.029_bib0040 article-title: Fuzzy optimized classifier for the diagnosis of blood pressure using genetic algorithm – volume: 5 start-page: 402 issue: 2 year: 2011 ident: 10.1016/j.eswa.2019.04.029_bib0074 article-title: Design of a decision support system to help clinicians manage glycemia in patients with type 2 diabetes mellitus publication-title: Journal of Diabetes Science and Technology doi: 10.1177/193229681100500230 – volume: 38 issue: 3 year: 2006 ident: 10.1016/j.eswa.2019.04.029_bib0036 article-title: Interestingness measures for data mining publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/1132960.1132963 – volume: 6 start-page: 31 issue: 1 year: 2014 ident: 10.1016/j.eswa.2019.04.029_bib0056 article-title: The goal of blood pressure in the hypertensive patient with diabetes is defined: Now the challenge is go from recommendations to practice publication-title: Diabetology & Metabolic Syndrome doi: 10.1186/1758-5996-6-31 – start-page: 291 year: 2004 ident: 10.1016/j.eswa.2019.04.029_bib0034 article-title: Extracting the knowledge embedded in support vector machines – start-page: 738 year: 2015 ident: 10.1016/j.eswa.2019.04.029_bib0088 article-title: Detection of epileptic seizures in EEG signals with rule-based interpretation by random forest approach |
| SSID | ssj0017007 |
| Score | 2.4810615 |
| Snippet | •Classification of datasets on diabetes and its complications are considered.•Five feature selection algorithms are utilized for choosing significant... Diabetes mellitus is a major non-communicable disease ever rising as an epidemic and a public health crisis worldwide. One of the several life-threatening... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 188 |
| SubjectTerms | Algorithms Black boxes Datasets Decision making Diabetes Diabetes mellitus Epidemics Extreme gradient boosting Feature extraction Hypertension Machine learning Mathematical models Medical diagnosis Public health Rule extraction Signs and symptoms Support vector machine Support vector machines |
| Title | A rule extraction approach from support vector machines for diagnosing hypertension among diabetics |
| URI | https://dx.doi.org/10.1016/j.eswa.2019.04.029 https://www.proquest.com/docview/2239635831 |
| Volume | 130 |
| WOSCitedRecordID | wos000470341900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXKLgckxMcCYmFBPiAuUVaJncTJsUJdAVqVPXRRb1bqOHRLN4T0g_0F_G7GGTttF1HBgUOjyk3cqvMyGT_PzCPkTa7jJIvTxIebSflRyUs_jeDAWRlmiimmmWrFJsRwmI7H2UWv99PVwqznoqrSm5us_q-mhjEwtimd_Qdzd5PCALwHo8MRzA7HvzJ832tWc-2B022cDrjtG461JItVbWJub93y9d51m02p27YMhok1iXeGPpjCArVp09vNDK0kEfK0Lj1-1iXxwXm2I7SrldvaFe8oHJh0iv78usGCuN3xiyYvtK47fmCaf8mX6BJ1ffU13-YnwjYBCys0kTTrCmc-75CPwo9C1Oc51eh6U8H9RKBeYueb7aYNetcQFQB_8_pIQMxO9eKHaSUVZm33Wsuk7LTYHn6SZ5fn53I0GI_e1t99oz5mdumtFMsdcshEnIF3POx_GIw_dvtRIsDCe_e7bfkVZgre_to_hTi3HvZtBDN6RB7YpQftI2Qek56ujshDJ-tBrZc_IveRyqVYofaEqD41iKIbRFGHKGoQRS2iKCKKOkRRQBTdIIpuI4q2iKIdop6Sy7PB6N1732pz-IqzdOnzbAKRawFxD08mMS-SDOJqnqikEKHIQ8WiNJiYF2cZrLDjIimToNDlRIlCpaXmz8hB9a3SzwllphImZDqKeRTpQsDEcA2LYW2vgzyLjkno_k6pbON6o58yly5DcSaNCaQxgQwiCSY4Jl53TY1tW_aeHTsrSRt4YkApAWF7rztxJpXWAywkxNvwUItTHr7Y__FLcm9zv5yQg2Wz0q_IXbVeXi2a1xaBvwDc-K8e |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rule+extraction+approach+from+support+vector+machines+for+diagnosing+hypertension+among+diabetics&rft.jtitle=Expert+systems+with+applications&rft.au=Singh%2C+Namrata&rft.au=Singh%2C+Pradeep&rft.au=Bhagat%2C+Deepika&rft.date=2019-09-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=130&rft.spage=188&rft_id=info:doi/10.1016%2Fj.eswa.2019.04.029&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |