DATA: Differentiable ArchiTecture Approximation With Distribution Guided Sampling

Neural architecture search (NAS) is inherently subject to the gap of architectures during searching and validating. To bridge this gap effectively, we develop Differentiable ArchiTecture Approximation (DATA) with Ensemble Gumbel-Softmax (EGS) estimator and Architecture Distribution Constraint (ADC)...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 43; číslo 9; s. 2905 - 2920
Hlavní autori: Zhang, Xinbang, Chang, Jianlong, Guo, Yiwen, Meng, Gaofeng, Xiang, Shiming, Lin, Zhouchen, Pan, Chunhong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Neural architecture search (NAS) is inherently subject to the gap of architectures during searching and validating. To bridge this gap effectively, we develop Differentiable ArchiTecture Approximation (DATA) with Ensemble Gumbel-Softmax (EGS) estimator and Architecture Distribution Constraint (ADC) to automatically approximate architectures during searching and validating in a differentiable manner. Technically, the EGS estimator consists of a group of Gumbel-Softmax estimators, which is capable of converting probability vectors to binary codes and passing gradients reversely, reducing the estimation bias in a differentiable way. To narrow the distribution gap between sampled architectures and supernet, further, the ADC is introduced to reduce the variance of sampling during searching. Benefiting from such modeling, architecture probabilities and network weights in the NAS model can be jointly optimized with the standard back-propagation, yielding an end-to-end learning mechanism for searching deep neural architectures in an extended search space. Conclusively, in the validating process, a high-performance architecture that approaches to the learned one during searching is readily built. Extensive experiments on various tasks including image classification, few-shot learning, unsupervised clustering, semantic segmentation and language modeling strongly demonstrate that DATA is capable of discovering high-performance architectures while guaranteeing the required efficiency. Code is available at https://github.com/XinbangZhang/DATA-NAS .
AbstractList Neural architecture search (NAS) is inherently subject to the gap of architectures during searching and validating. To bridge this gap effectively, we develop Differentiable ArchiTecture Approximation (DATA) with Ensemble Gumbel-Softmax (EGS) estimator and Architecture Distribution Constraint (ADC) to automatically approximate architectures during searching and validating in a differentiable manner. Technically, the EGS estimator consists of a group of Gumbel-Softmax estimators, which is capable of converting probability vectors to binary codes and passing gradients reversely, reducing the estimation bias in a differentiable way. To narrow the distribution gap between sampled architectures and supernet, further, the ADC is introduced to reduce the variance of sampling during searching. Benefiting from such modeling, architecture probabilities and network weights in the NAS model can be jointly optimized with the standard back-propagation, yielding an end-to-end learning mechanism for searching deep neural architectures in an extended search space. Conclusively, in the validating process, a high-performance architecture that approaches to the learned one during searching is readily built. Extensive experiments on various tasks including image classification, few-shot learning, unsupervised clustering, semantic segmentation and language modeling strongly demonstrate that DATA is capable of discovering high-performance architectures while guaranteeing the required efficiency. Code is available at https://github.com/XinbangZhang/DATA-NAS .
Neural architecture search (NAS) is inherently subject to the gap of architectures during searching and validating. To bridge this gap effectively, we develop Differentiable ArchiTecture Approximation (DATA) with Ensemble Gumbel-Softmax (EGS) estimator and Architecture Distribution Constraint (ADC) to automatically approximate architectures during searching and validating in a differentiable manner. Technically, the EGS estimator consists of a group of Gumbel-Softmax estimators, which is capable of converting probability vectors to binary codes and passing gradients reversely, reducing the estimation bias in a differentiable way. To narrow the distribution gap between sampled architectures and supernet, further, the ADC is introduced to reduce the variance of sampling during searching. Benefiting from such modeling, architecture probabilities and network weights in the NAS model can be jointly optimized with the standard back-propagation, yielding an end-to-end learning mechanism for searching deep neural architectures in an extended search space. Conclusively, in the validating process, a high-performance architecture that approaches to the learned one during searching is readily built. Extensive experiments on various tasks including image classification, few-shot learning, unsupervised clustering, semantic segmentation and language modeling strongly demonstrate that DATA is capable of discovering high-performance architectures while guaranteeing the required efficiency. Code is available at https://github.com/XinbangZhang/DATA-NAS.Neural architecture search (NAS) is inherently subject to the gap of architectures during searching and validating. To bridge this gap effectively, we develop Differentiable ArchiTecture Approximation (DATA) with Ensemble Gumbel-Softmax (EGS) estimator and Architecture Distribution Constraint (ADC) to automatically approximate architectures during searching and validating in a differentiable manner. Technically, the EGS estimator consists of a group of Gumbel-Softmax estimators, which is capable of converting probability vectors to binary codes and passing gradients reversely, reducing the estimation bias in a differentiable way. To narrow the distribution gap between sampled architectures and supernet, further, the ADC is introduced to reduce the variance of sampling during searching. Benefiting from such modeling, architecture probabilities and network weights in the NAS model can be jointly optimized with the standard back-propagation, yielding an end-to-end learning mechanism for searching deep neural architectures in an extended search space. Conclusively, in the validating process, a high-performance architecture that approaches to the learned one during searching is readily built. Extensive experiments on various tasks including image classification, few-shot learning, unsupervised clustering, semantic segmentation and language modeling strongly demonstrate that DATA is capable of discovering high-performance architectures while guaranteeing the required efficiency. Code is available at https://github.com/XinbangZhang/DATA-NAS.
Author Xiang, Shiming
Guo, Yiwen
Lin, Zhouchen
Meng, Gaofeng
Zhang, Xinbang
Chang, Jianlong
Pan, Chunhong
Author_xml – sequence: 1
  givenname: Xinbang
  orcidid: 0000-0002-8329-5363
  surname: Zhang
  fullname: Zhang, Xinbang
  email: xinbang.zhang@nlpr.ia.ac.cn
  organization: Department of National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science, Beijing, China
– sequence: 2
  givenname: Jianlong
  orcidid: 0000-0002-0610-907X
  surname: Chang
  fullname: Chang, Jianlong
  email: jianlong.chang@huawei.com
  organization: Department of National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science, Beijing, China
– sequence: 3
  givenname: Yiwen
  orcidid: 0000-0002-0709-4877
  surname: Guo
  fullname: Guo, Yiwen
  email: guoyiwen.ai@bytedance.com
  organization: Huawei Cloud & AI, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Gaofeng
  orcidid: 0000-0002-7103-6321
  surname: Meng
  fullname: Meng, Gaofeng
  email: gfmeng@nlpr.ia.ac.cn
  organization: Department of National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science, Beijing, China
– sequence: 5
  givenname: Shiming
  orcidid: 0000-0002-2089-9733
  surname: Xiang
  fullname: Xiang, Shiming
  email: smxiang@nlpr.ia.ac.cn
  organization: Department of National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science, Beijing, China
– sequence: 6
  givenname: Zhouchen
  orcidid: 0000-0003-1493-7569
  surname: Lin
  fullname: Lin, Zhouchen
  email: zlin@pku.edu.cn
  organization: Bytedance AI Lab, Beijing, China
– sequence: 7
  givenname: Chunhong
  surname: Pan
  fullname: Pan, Chunhong
  email: chpan@nlpr.ia.ac.cn
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
BookMark eNp9kEtPxCAYRYnR6Pj4A7qZxI2bjvBRXu4a34lGjWNcEspQxXTaEWii_16cMS5cuIFA7uG7nG203vWdQ2if4AkhWB1P76vb6wlgwBOaF0rYGhoB4bhQoGAdjTDhUEgJcgttx_iGMSkZpptoi4LkHKtyhB7Oqml1Mj7zTeOC65I3devGVbCvfupsGkI-LBah__Bzk3zfjZ99es3xmIKvh-XN5eBnbjZ-NPNF67uXXbTRmDa6vZ99Bz1dnE9Pr4qbu8vr0-qmsHl6KqiUlghhZAmGcWOcwLQxFqAupSEAM2Fy2xkzilGlatwAIbapqamVKAWu6Q46Wr2b270PLiY999G6tjWd64eooaSKU0YFz9HDP9G3fghdbqeBMaGE5IzklFylbOhjDK7R1qflp1MwvtUE62_teqldf2vXP9ozCn_QRcjCwuf_0MEK8s65X0ARSUrg9AsUBY0E
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_engappai_2025_111476
crossref_primary_10_1016_j_isprsjprs_2022_03_007
crossref_primary_10_1016_j_neucom_2021_12_002
crossref_primary_10_1109_TNNLS_2022_3192169
crossref_primary_10_1145_3657632
crossref_primary_10_1109_TPAMI_2021_3077106
crossref_primary_10_3390_rs15092293
crossref_primary_10_23919_cje_2024_00_183
crossref_primary_10_1109_LGRS_2022_3213618
Cites_doi 10.1007/978-3-030-01246-5_2
10.24963/ijcai.2018/755
10.1016/B978-0-12-815480-9.00015-3
10.1109/CVPR.2015.7298594
10.1109/CVPR.2018.00257
10.1109/ICCV.2019.00138
10.1038/s42256-018-0006-z
10.1007/s12065-007-0002-4
10.1007/978-3-030-01264-9_8
10.1109/CVPR.2019.00720
10.1109/CVPR.2016.90
10.1109/CVPR.2019.00186
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2018.00131
10.1109/ICCV.2017.626
10.1109/TPAMI.2020.3020300
10.1109/TPAMI.2017.2699184
10.1007/978-3-030-01246-5_1
10.1109/TPAMI.2015.2389824
10.1109/CVPR.2018.00907
10.1109/TPAMI.2016.2572683
10.1109/CVPR.2019.00017
10.1109/72.265960
10.1109/CVPR.2016.308
10.1109/CVPR.2017.243
10.1038/nature14539
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.3020315
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2920
ExternalDocumentID 10_1109_TPAMI_2020_3020315
9181426
Genre orig-research
GrantInformation_xml – fundername: Qualcomm
  funderid: 10.13039/100005144
– fundername: National Natural Science Foundation of China
  grantid: 91646207; 61976208
  funderid: 10.13039/501100001809
– fundername: NSF China
  grantid: 61625301; 61731018
– fundername: Beijing Academy of Artificial Intelligence
– fundername: National Key Research and Development Plan in China
  grantid: 2019AAA0105200
  funderid: 10.13039/501100012166
– fundername: New Generation of AI
  grantid: 2018AAA0100400
– fundername: Major Scientific Research Project of Zhejiang Lab
  grantid: 2019KB0AC01; 2019KB0AB02
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c328t-388c177a842a56aae703fac22b48a122d7a145d5a95399b0f211cfb3ab97470b3
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681124300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 15:06:13 EDT 2025
Sun Jun 29 13:19:18 EDT 2025
Tue Nov 18 21:49:20 EST 2025
Sat Nov 29 05:15:59 EST 2025
Wed Aug 27 02:39:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-388c177a842a56aae703fac22b48a122d7a145d5a95399b0f211cfb3ab97470b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0610-907X
0000-0002-8329-5363
0000-0002-7103-6321
0000-0002-2089-9733
0000-0002-0709-4877
0000-0003-1493-7569
PMID 32866094
PQID 2557978651
PQPubID 85458
PageCount 16
ParticipantIDs proquest_journals_2557978651
crossref_citationtrail_10_1109_TPAMI_2020_3020315
ieee_primary_9181426
crossref_primary_10_1109_TPAMI_2020_3020315
proquest_miscellaneous_2439635376
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References xie (ref74) 2016
pham (ref22) 2018
ref58
ref14
chen (ref35) 2018
melis (ref77) 2018
battaglia (ref81) 0
ref55
gumbel (ref53) 1954; 33
vinyals (ref68) 2016
ref18
liu (ref27) 2019
real (ref16) 2018
howard (ref63) 0
elsken (ref11) 2019
chang (ref41) 2019
ref46
ref45
chen (ref65) 2017; abs 1706 5587
courbariaux (ref51) 2015
ref47
ref44
sciuto (ref17) 0
bello (ref20) 2017
grave (ref80) 2017
baker (ref42) 2018
yi (ref75) 0
ref49
cai (ref50) 2019
ref7
brock (ref43) 2018
chang (ref82) 2018
ref4
ref3
ref6
elsken (ref9) 2019; 20
shin (ref29) 2018
krizhevsky (ref1) 2012
ref5
elsken (ref32) 2018
jang (ref54) 2017
li (ref33) 2019
ref34
ref36
liu (ref59) 2018
lee (ref61) 2015
vincent (ref73) 2010; 11
ref2
ref38
hsu (ref21) 2018; abs 1806 10332
ying (ref10) 2019
chen (ref66) 2019
tran (ref40) 0
józefowicz (ref48) 2015
maddison (ref52) 2017
ref70
ref72
luo (ref28) 2018
tan (ref39) 2018
yang (ref78) 2018
merity (ref76) 2018
kamath (ref13) 2018; abs 1803 6744
inan (ref79) 2017
ref23
ioffe (ref57) 2015
ref26
ref25
ref64
zilly (ref56) 2017
bello (ref19) 2017
zoph (ref24) 2017
casale (ref31) 2019; abs 1902 5116
guo (ref12) 0
finn (ref71) 2017
lecun (ref8) 2015; 521
snell (ref67) 2017
chen (ref37) 0
ravi (ref69) 2017
ref60
ref62
xie (ref30) 2019
real (ref15) 2017
References_xml – ident: ref34
  doi: 10.1007/978-3-030-01246-5_2
– volume: abs 1803 6744
  year: 2018
  ident: ref13
  article-title: Neural architecture construction using envelopenets
  publication-title: CoRR
– year: 2017
  ident: ref19
  article-title: Neural combinatorial optimization with reinforcement learning
  publication-title: Proc Int Conf Learn Representations Workshop Track
– year: 2017
  ident: ref52
  article-title: The concrete distribution: A continuous relaxation of discrete random variables
  publication-title: Proc Int Conf Learn Representations
– ident: ref44
  doi: 10.24963/ijcai.2018/755
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref73
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref14
  doi: 10.1016/B978-0-12-815480-9.00015-3
– ident: ref62
  doi: 10.1109/CVPR.2015.7298594
– ident: ref23
  doi: 10.1109/CVPR.2018.00257
– ident: ref60
  doi: 10.1109/ICCV.2019.00138
– ident: ref18
  doi: 10.1038/s42256-018-0006-z
– year: 0
  ident: ref81
  article-title: Relational inductive biases, deep learning, and graph networks
– year: 2017
  ident: ref69
  article-title: Optimization as a model for few-shot learning
  publication-title: Proc Int Conf Learn Representations
– start-page: 874
  year: 2019
  ident: ref41
  article-title: DATA: differentiable architecture approximation
  publication-title: Proc Conf Neural Inf Process Syst
– year: 0
  ident: ref40
  article-title: ConvNet architecture search for spatiotemporal feature learning
  publication-title: CoRR
– start-page: 2820
  year: 2018
  ident: ref39
  article-title: Mnasnet: Platform-aware neural architecture search for mobile
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– year: 2017
  ident: ref54
  article-title: Categorical reparameterization with gumbel-softmax
  publication-title: Proc Int Conf Learn Representations
– year: 2018
  ident: ref43
  article-title: SMASH: one-shot model architecture search through hypernetworks
  publication-title: Proc Int Conf Learn Representations
– ident: ref47
  doi: 10.1007/s12065-007-0002-4
– ident: ref64
  doi: 10.1007/978-3-030-01264-9_8
– start-page: 3123
  year: 2015
  ident: ref51
  article-title: BinaryConnect: Training deep neural networks with binary weights during propagations
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref38
  doi: 10.1109/CVPR.2019.00720
– ident: ref3
  doi: 10.1109/CVPR.2016.90
– ident: ref26
  doi: 10.1109/CVPR.2019.00186
– year: 0
  ident: ref12
  article-title: Single path one-shot neural architecture search with uniform sampling
– start-page: 6638
  year: 0
  ident: ref37
  article-title: DetNAS: Neural architecture search on object detection
– year: 0
  ident: ref63
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
– ident: ref2
  doi: 10.1109/CVPR.2015.7298594
– year: 2019
  ident: ref66
  article-title: A closer look at few-shot classification
  publication-title: Proc Int Conf Learn Representations
– volume: abs 1902 5116
  year: 2019
  ident: ref31
  article-title: Probabilistic neural architecture search
  publication-title: CoRR
– start-page: 4189
  year: 2017
  ident: ref56
  article-title: Recurrent highway networks
  publication-title: Proc Int Conf Mach Learn
– start-page: 478
  year: 2016
  ident: ref74
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proc Int Conf Mach Learn
– year: 0
  ident: ref17
  article-title: Evaluating the search phase of neural architecture search
  publication-title: Proc Int Conf Learn Representations
– ident: ref4
  doi: 10.1109/TPAMI.2016.2577031
– year: 2018
  ident: ref78
  article-title: Breaking the softmax bottleneck: A high-rank RNN language model
  publication-title: Proc Int Conf Learn Representations
– year: 2017
  ident: ref24
  article-title: Neural architecture search with reinforcement learning
  publication-title: Proc Int Conf Learn Representations
– year: 2019
  ident: ref50
  article-title: Proxylessnas: Direct neural architecture search on target task and hardware
  publication-title: Proc Int Conf Learn Representations
– year: 2018
  ident: ref59
  article-title: Hierarchical representations for efficient architecture search
  publication-title: Proc Int Conf Learn Representations
– year: 2018
  ident: ref42
  article-title: Accelerating neural architecture search using performance prediction
  publication-title: Proc Int Conf Learn Representations Workshop Track
– start-page: 1126
  year: 2017
  ident: ref71
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref70
  doi: 10.1109/CVPR.2018.00131
– start-page: 3630
  year: 2016
  ident: ref68
  article-title: Matching networks for one shot learning
  publication-title: Proc Conf Neural Inf Process Syst
– volume: 20
  start-page: 55:1
  year: 2019
  ident: ref9
  article-title: Neural architecture search: A survey
  publication-title: J Mach Learn Res
– start-page: 459
  year: 2017
  ident: ref20
  article-title: Neural optimizer search with reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– year: 2019
  ident: ref30
  article-title: SNAS: stochastic neural architecture search
  publication-title: Proc Int Conf Learn Representations
– ident: ref72
  doi: 10.1109/ICCV.2017.626
– start-page: 4077
  year: 2017
  ident: ref67
  article-title: Prototypical networks for few-shot learning
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref49
  doi: 10.1109/TPAMI.2020.3020300
– ident: ref7
  doi: 10.1109/TPAMI.2017.2699184
– year: 2018
  ident: ref29
  article-title: Differentiable neural network architecture search
  publication-title: Proc Int Conf Learn Representations Workshop Track
– start-page: 8713
  year: 2018
  ident: ref35
  article-title: Searching for efficient multi-scale architectures for dense image prediction
  publication-title: Proc Conf Neural Inf Process Syst
– year: 0
  ident: ref75
  article-title: Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by wasserstein distance for dermoscopy image classification
– ident: ref45
  doi: 10.1007/978-3-030-01246-5_1
– start-page: 1106
  year: 2012
  ident: ref1
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Conf Neural Inf Process Syst
– start-page: 448
  year: 2015
  ident: ref57
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc 32nd Int Conf Int Conf Mach Learn
– start-page: 562
  year: 2015
  ident: ref61
  article-title: Deeply-supervised nets
  publication-title: Proc 18th Int Conf Artif Itell Statist
– ident: ref5
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref25
  doi: 10.1109/CVPR.2018.00907
– start-page: 11
  year: 2018
  ident: ref82
  article-title: Structure-aware convolutional neural networks
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref6
  doi: 10.1109/TPAMI.2016.2572683
– volume: 33
  year: 1954
  ident: ref53
  publication-title: Statistical Theory of Extreme Values and Some Practical Applications A Series of Lectures
– year: 2017
  ident: ref80
  article-title: Improving neural language models with a continuous cache
  publication-title: Proc Int Conf Learn Representations
– year: 2017
  ident: ref79
  article-title: Tying word vectors and word classifiers: A loss framework for language modeling
  publication-title: Proc Int Conf Learn Representations
– year: 2018
  ident: ref76
  article-title: Regularizing and optimizing LSTM language models
  publication-title: Proc Int Conf Learn Representations
– start-page: 4092
  year: 2018
  ident: ref22
  article-title: Efficient neural architecture search via parameter sharing
  publication-title: Proc Int Conf Mach Learn
– year: 2019
  ident: ref11
  article-title: Efficient multi-objective neural architecture search via lamarckian evolution
  publication-title: Proc Int Conf Learn Representations
– start-page: 2902
  year: 2017
  ident: ref15
  article-title: Large-scale evolution of image classifiers
  publication-title: Proc Int Conf Mach Learn
– year: 2018
  ident: ref77
  article-title: On the state of the art of evaluation in neural language models
  publication-title: Proc Int Conf Learn Representations
– ident: ref36
  doi: 10.1109/CVPR.2019.00017
– start-page: 7827
  year: 2018
  ident: ref28
  article-title: Neural architecture optimization
  publication-title: Proc Conf Neural Inf Process Syst
– year: 2019
  ident: ref27
  article-title: DARTS: differentiable architecture search
  publication-title: Proc Int Conf Learn Representations
– volume: abs 1706 5587
  year: 2017
  ident: ref65
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: CoRR
– volume: abs 1806 10332
  year: 2018
  ident: ref21
  article-title: MONAS: multi-objective neural architecture search using reinforcement learning
  publication-title: CoRR
– start-page: 2342
  year: 2015
  ident: ref48
  article-title: An empirical exploration of recurrent network architectures
  publication-title: Proc 32nd Int Conf Int Conf Mach Learn
– year: 2018
  ident: ref32
  article-title: Simple and efficient architecture search for convolutional neural networks
  publication-title: Proc Int Conf Learn Representations Workshop Track
– start-page: 7105
  year: 2019
  ident: ref10
  article-title: Nas-bench-101: Towards reproducible neural architecture search
  publication-title: Proc 36th Int Conf Mach Learn
– ident: ref46
  doi: 10.1109/72.265960
– ident: ref55
  doi: 10.1109/CVPR.2016.308
– start-page: 4780
  year: 2018
  ident: ref16
  article-title: Regularized evolution for image classifier architecture search
  publication-title: Proc AAAI
– ident: ref58
  doi: 10.1109/CVPR.2017.243
– volume: 521
  start-page: 436
  year: 2015
  ident: ref8
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2019
  ident: ref33
  article-title: Random search and reproducibility for neural architecture search
  publication-title: Proc UAI
SSID ssj0014503
Score 2.440202
Snippet Neural architecture search (NAS) is inherently subject to the gap of architectures during searching and validating. To bridge this gap effectively, we develop...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2905
SubjectTerms Approximation
Back propagation
Binary codes
Bridges
Clustering
Computer architecture
distribution guided sampling
ensemble gumbel-softmax
Estimation
Image classification
Image segmentation
Learning
Mathematical analysis
Modelling
Neural architecture search(NAS)
Optimization
Sampling
Search problems
Searching
Task analysis
Title DATA: Differentiable ArchiTecture Approximation With Distribution Guided Sampling
URI https://ieeexplore.ieee.org/document/9181426
https://www.proquest.com/docview/2557978651
https://www.proquest.com/docview/2439635376
Volume 43
WOSCitedRecordID wos000681124300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5UPOjB54rji17Ym2ZNOp3ujrfgcw8ryo44t9Cv7A5IRpwZ8edb3cmEFUXwFkgnJF1VqfpSjw_gB3cukSpWkZapiZijPNJO8MgaVmW5FaziJpBNiOtrORjkN3Nw1PXCOOdC8Zn76Q9DLt-OzNT_KjvO0R2hR5mHeSFE06vVZQxYFliQMYJBC0cYMWuQifPj_k3x-xdCQYoI1SfeEk9Xk1LJeZyzN_4oEKy8-yoHV3Ox-rWHXIOVNqQkRaMD6zDn6g1YndE1kNZ6N2D5v9mDm3B7VvSLE3LWEqSgoesHR8Ig2n6TVyCFnzf-MmyaG8n9cPIPl487iixyOR1aZ8kf5avS67_f4O7ivH96FbX8CpHBt59EqZQmEUJJRlXGlXJo_ZUylGomVUKpFQq31WYq9-NrdVwhWDSVTpX2ICTW6RYs1KPabQOx3FrGtBFKMCYoSr-qUAcMYt5UxFb0IJntcmna4eOeA-OhDCAkzssgpNILqWyF1IPD7prHZvTGp6s3vSy6la0YerA3E2bZWue4RBglED3zLOnB9-402pVPlqjajaa4BiM1DMbw-7vz8Z13YYn6-pZQb7YHC5OnqduHRfM8GY6fDlBFB_IgqOgr977f6A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS9xAFD54Kdg-eG1xvbQj9K1Gk8lkJvEtaK2iLhZT9C3MLXVBssXdFX--ZybZUFEE3wI5CcmcOTnny7l8AN-5tVEqQxmoNNYBs5QHygoeGM2qJDOCVVx7sgnR76c3N9nlDOx2vTDWWl98Zvfcoc_lm6GeuF9l-xm6I_QoszCfMEajpluryxmwxPMgYwyDNo5AYtoiE2b7xWV-cYpgkCJGdam3yBHWxDTlPMzYM4_kKVZefJe9szleet9jLsNiG1SSvNkFKzBj61VYmhI2kNZ-V-HTf9MH1-D3UV7kB-SopUhBU1d3lvhRtEWTWSC5mzj-OGjaG8n1YHyL4qOOJIv8mgyMNeRKurr0-u9n-HP8szg8CVqGhUDj24-DOE11JIRMGZUJl9Ki_VdSU6pYKiNKjZC4rCaRmRtgq8IK4aKuVCyVgyGhir_AXD2s7ToQw41hTGkhBWOCov6rCneBRtQbi9CIHkTTVS51O37csWDclR6GhFnplVQ6JZWtknrwo7vmXzN8403pNaeLTrJVQw-2psosW_sclQikBOJnnkQ92OlOo2W5dIms7XCCMhirYTiGX-CN1-_8DRZOiovz8vy0f7YJH6mrdvHVZ1swN76f2G34oB_Gg9H9V79RnwB-1-JH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DATA%3A+Differentiable+ArchiTecture+Approximation+With+Distribution+Guided+Sampling&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhang%2C+Xinbang&rft.au=Chang%2C+Jianlong&rft.au=Guo%2C+Yiwen&rft.au=Meng%2C+Gaofeng&rft.date=2021-09-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=43&rft.issue=9&rft.spage=2905&rft.epage=2920&rft_id=info:doi/10.1109%2FTPAMI.2020.3020315&rft_id=info%3Apmid%2F32866094&rft.externalDocID=9181426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon