Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning

•A methodology for fault diagnosis with limited available data is achieved.•A digital twin of the machine is used to provide fault condition data for pre-training.•One-shot learning is achieved with the proposed deep transfer learning method.•Activation function and cost function of the deep network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety Jg. 215; S. 107938
Hauptverfasser: Xia, Min, Shao, Haidong, Williams, Darren, Lu, Siliang, Shu, Lei, de Silva, Clarence W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Barking Elsevier Ltd 01.11.2021
Elsevier BV
Schlagworte:
ISSN:0951-8320, 1879-0836
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A methodology for fault diagnosis with limited available data is achieved.•A digital twin of the machine is used to provide fault condition data for pre-training.•One-shot learning is achieved with the proposed deep transfer learning method.•Activation function and cost function of the deep network structure are improved. Digital twin (DT) is emerging as a key technology for smart manufacturing. The high fidelity DT model of the physical assets can produce system performance data that is close to reality, which provides remarkable opportunities for machine fault diagnosis when the measured fault condition data are insufficient. This paper presents an intelligent fault diagnosis framework for machinery based on DT and deep transfer learning. First, the DT model of the machine is built by establishing the simulation model and with further updating through continuously measured data from the physical asset. Second, all important machine conditions can be simulated from the built DT. Third, a new-type deep structure based on novel sparse de-noising auto-encoder (NSDAE) is developed and pre-trained with condition data from the source domain, as generated from the DT. Then, to achieve accurate machine fault diagnosis with possible variations in working conditions and system characteristics, the pre-trained NSDAE is fine-tuned using parameter transfer with only one sample from the target domain. The presented method is validated through a case study of triplex pump fault diagnosis. The experimental results demonstrate that the proposed method achieves intelligent fault diagnosis with a limited amount of measured data and outperforms other state-of-the-art data-driven methods.
AbstractList •A methodology for fault diagnosis with limited available data is achieved.•A digital twin of the machine is used to provide fault condition data for pre-training.•One-shot learning is achieved with the proposed deep transfer learning method.•Activation function and cost function of the deep network structure are improved. Digital twin (DT) is emerging as a key technology for smart manufacturing. The high fidelity DT model of the physical assets can produce system performance data that is close to reality, which provides remarkable opportunities for machine fault diagnosis when the measured fault condition data are insufficient. This paper presents an intelligent fault diagnosis framework for machinery based on DT and deep transfer learning. First, the DT model of the machine is built by establishing the simulation model and with further updating through continuously measured data from the physical asset. Second, all important machine conditions can be simulated from the built DT. Third, a new-type deep structure based on novel sparse de-noising auto-encoder (NSDAE) is developed and pre-trained with condition data from the source domain, as generated from the DT. Then, to achieve accurate machine fault diagnosis with possible variations in working conditions and system characteristics, the pre-trained NSDAE is fine-tuned using parameter transfer with only one sample from the target domain. The presented method is validated through a case study of triplex pump fault diagnosis. The experimental results demonstrate that the proposed method achieves intelligent fault diagnosis with a limited amount of measured data and outperforms other state-of-the-art data-driven methods.
Digital twin (DT) is emerging as a key technology for smart manufacturing. The high fidelity DT model of the physical assets can produce system performance data that is close to reality, which provides remarkable opportunities for machine fault diagnosis when the measured fault condition data are insufficient. This paper presents an intelligent fault diagnosis framework for machinery based on DT and deep transfer learning. First, the DT model of the machine is built by establishing the simulation model and with further updating through continuously measured data from the physical asset. Second, all important machine conditions can be simulated from the built DT. Third, a new-type deep structure based on novel sparse de-noising auto-encoder (NSDAE) is developed and pre-trained with condition data from the source domain, as generated from the DT. Then, to achieve accurate machine fault diagnosis with possible variations in working conditions and system characteristics, the pre-trained NSDAE is fine-tuned using parameter transfer with only one sample from the target domain. The presented method is validated through a case study of triplex pump fault diagnosis. The experimental results demonstrate that the proposed method achieves intelligent fault diagnosis with a limited amount of measured data and outperforms other state-of-the-art data-driven methods.
ArticleNumber 107938
Author Shu, Lei
de Silva, Clarence W.
Shao, Haidong
Xia, Min
Lu, Siliang
Williams, Darren
Author_xml – sequence: 1
  givenname: Min
  surname: Xia
  fullname: Xia, Min
  organization: Department of Engineering, Lancaster University, Lancaster, LA1 4YW, United Kingdom
– sequence: 2
  givenname: Haidong
  surname: Shao
  fullname: Shao, Haidong
  email: hdshao@hnu.edu.cn
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
– sequence: 3
  givenname: Darren
  surname: Williams
  fullname: Williams, Darren
  organization: The Welding Institute, Cambridge, CB21 6AL, United Kingdom
– sequence: 4
  givenname: Siliang
  surname: Lu
  fullname: Lu, Siliang
  organization: College of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China
– sequence: 5
  givenname: Lei
  surname: Shu
  fullname: Shu, Lei
  organization: College of Engineering, Nanjing Agricultural University, Nanjing, 210095, China
– sequence: 6
  givenname: Clarence W.
  surname: de Silva
  fullname: de Silva, Clarence W.
  organization: Department of Mechanical Engineering, The University of British Columbia, Vancouver, V6T 1Z4, Canada
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz1vz0c1mwYsUPwoFL3ryENJkdk3ZZmuSVfrvTVlPHpzLwMz7zMc7QxPfe0DompIFJVTc7hYBYlwwwmguVDWXZ2hKZVUXRHIxQVNSl7SQnJELNItxRwhZ1mU1Re9rn6DrXAs-4UYPXcLW6db30UXcN3ivzYfzEI54iM63udm6pDucvp0vdMyqBBZbgANOQfvYQMAd6OCz-BKdN7qLcPWb5-jt8eF19VxsXp7Wq_tNYTiTqeCSmqamkpZlbRhsKWElpXqpLRhGS25BNKY0RoKthdjmhpHEcCG1YJUQls_RzTj3EPrPAWJSu34IPq9UrJScUsFzzJEcVSb0MQZolMmfJNf7fLjrFCXqZKXaqZOV6mSlGq3MKPuDHoLb63D8H7obIcivfzkIKhoH3oB1AUxStnf_4T9t55DO
CitedBy_id crossref_primary_10_1016_j_ress_2024_110121
crossref_primary_10_1109_COMST_2022_3208773
crossref_primary_10_1016_j_eswa_2024_124944
crossref_primary_10_1038_s41598_025_98553_4
crossref_primary_10_1177_14759217241268792
crossref_primary_10_1016_j_engappai_2024_107853
crossref_primary_10_1016_j_ress_2022_108715
crossref_primary_10_1016_j_aei_2025_103218
crossref_primary_10_1016_j_buildenv_2022_109641
crossref_primary_10_1016_j_ymssp_2022_109615
crossref_primary_10_1155_2022_5077134
crossref_primary_10_1109_JRFID_2024_3387996
crossref_primary_10_1109_TNNLS_2022_3232147
crossref_primary_10_1016_j_apacoust_2023_109537
crossref_primary_10_1016_j_engappai_2024_107848
crossref_primary_10_1093_jcde_qwad031
crossref_primary_10_1016_j_jestch_2023_101455
crossref_primary_10_1002_rob_22127
crossref_primary_10_3390_e24111578
crossref_primary_10_1016_j_seta_2025_104197
crossref_primary_10_1016_j_eswa_2024_123724
crossref_primary_10_1109_TIM_2023_3345907
crossref_primary_10_1016_j_rcim_2023_102592
crossref_primary_10_1016_j_knosys_2022_108443
crossref_primary_10_3390_s24155002
crossref_primary_10_1016_j_ress_2023_109416
crossref_primary_10_1109_TIM_2024_3504567
crossref_primary_10_1109_ACCESS_2025_3587090
crossref_primary_10_1007_s43621_025_01285_8
crossref_primary_10_1177_09544062231203541
crossref_primary_10_1109_TIM_2024_3376009
crossref_primary_10_1049_elp2_70069
crossref_primary_10_1016_j_simpat_2025_103160
crossref_primary_10_1109_TIM_2023_3250308
crossref_primary_10_1016_j_compind_2022_103767
crossref_primary_10_1016_j_cie_2024_110292
crossref_primary_10_1016_j_ress_2023_109746
crossref_primary_10_1088_1742_6596_2612_1_012002
crossref_primary_10_1016_j_engappai_2024_109142
crossref_primary_10_1109_TIM_2024_3417592
crossref_primary_10_1109_JSEN_2024_3421242
crossref_primary_10_1016_j_ymssp_2023_110427
crossref_primary_10_1088_1361_6501_ad7f76
crossref_primary_10_1016_j_eswa_2022_117716
crossref_primary_10_1016_j_ress_2024_110468
crossref_primary_10_1038_s41598_024_63990_0
crossref_primary_10_1016_j_jmsy_2023_10_010
crossref_primary_10_1016_j_ress_2023_109186
crossref_primary_10_1016_j_engappai_2023_106477
crossref_primary_10_1007_s40032_024_01109_0
crossref_primary_10_1016_j_aei_2024_102624
crossref_primary_10_1016_j_ijpvp_2022_104761
crossref_primary_10_1007_s12553_025_00947_x
crossref_primary_10_1016_j_aei_2024_102620
crossref_primary_10_1097_MD_0000000000037266
crossref_primary_10_3390_su15065259
crossref_primary_10_1007_s00607_024_01399_3
crossref_primary_10_1088_1361_6501_ad8f52
crossref_primary_10_1016_j_ress_2024_110040
crossref_primary_10_1016_j_ymssp_2023_110490
crossref_primary_10_1088_1361_6501_acf517
crossref_primary_10_1109_JAS_2024_124470
crossref_primary_10_1109_TIM_2025_3548074
crossref_primary_10_1016_j_jare_2025_02_029
crossref_primary_10_1088_1361_6501_acd79b
crossref_primary_10_1109_TII_2023_3258966
crossref_primary_10_1177_16878132221129746
crossref_primary_10_1016_j_ress_2025_111537
crossref_primary_10_3390_electronics11111708
crossref_primary_10_1109_JSEN_2024_3496736
crossref_primary_10_1016_j_ress_2022_109040
crossref_primary_10_1016_j_enbuild_2022_112461
crossref_primary_10_1016_j_ymssp_2024_112266
crossref_primary_10_1016_j_ymssp_2024_112023
crossref_primary_10_1109_ACCESS_2023_3331316
crossref_primary_10_1016_j_measurement_2023_113461
crossref_primary_10_1088_1361_6501_ac7036
crossref_primary_10_1038_s41598_025_96462_0
crossref_primary_10_1109_TMECH_2023_3325538
crossref_primary_10_1016_j_ress_2022_108865
crossref_primary_10_1016_j_engappai_2025_110155
crossref_primary_10_1016_j_ress_2022_108626
crossref_primary_10_1016_j_ress_2022_108989
crossref_primary_10_5194_ms_13_803_2022
crossref_primary_10_1016_j_ress_2022_108981
crossref_primary_10_1016_j_ress_2022_109036
crossref_primary_10_1016_j_ymssp_2025_112797
crossref_primary_10_1016_j_ymssp_2023_110255
crossref_primary_10_1016_j_ress_2023_109692
crossref_primary_10_1016_j_engappai_2023_106548
crossref_primary_10_1109_TII_2023_3245677
crossref_primary_10_1007_s10489_025_06278_8
crossref_primary_10_1016_j_cie_2024_110257
crossref_primary_10_1016_j_measurement_2022_112421
crossref_primary_10_1016_j_measurement_2025_118843
crossref_primary_10_1016_j_apm_2023_07_011
crossref_primary_10_1016_j_isatra_2025_05_008
crossref_primary_10_3390_app142210164
crossref_primary_10_1016_j_aei_2024_102536
crossref_primary_10_1016_j_ress_2022_108618
crossref_primary_10_1109_TIM_2023_3300409
crossref_primary_10_3390_math12193124
crossref_primary_10_1016_j_aei_2021_101480
crossref_primary_10_1016_j_jprocont_2024_103261
crossref_primary_10_1016_j_applthermaleng_2024_123245
crossref_primary_10_1016_j_ress_2022_108972
crossref_primary_10_1016_j_knosys_2024_112180
crossref_primary_10_1016_j_compind_2024_104172
crossref_primary_10_1016_j_ress_2023_109542
crossref_primary_10_1177_09544054241266000
crossref_primary_10_1016_j_measurement_2025_116797
crossref_primary_10_1016_j_aei_2025_103364
crossref_primary_10_1080_00207543_2024_2357741
crossref_primary_10_3390_app13148534
crossref_primary_10_1016_j_ress_2022_108969
crossref_primary_10_3390_su15107915
crossref_primary_10_3390_s22218194
crossref_primary_10_1016_j_jmsy_2024_06_004
crossref_primary_10_1016_j_ress_2022_108967
crossref_primary_10_1016_j_ress_2023_109319
crossref_primary_10_1016_j_ress_2024_109976
crossref_primary_10_1007_s10845_024_02458_4
crossref_primary_10_1088_1361_6501_add038
crossref_primary_10_1016_j_jii_2025_100822
crossref_primary_10_1016_j_ymssp_2025_112579
crossref_primary_10_1088_1361_6501_ad437e
crossref_primary_10_1109_TII_2022_3227642
crossref_primary_10_1016_j_eswa_2023_123124
crossref_primary_10_3390_machines10080686
crossref_primary_10_3390_s23188013
crossref_primary_10_1109_TIM_2023_3268456
crossref_primary_10_1088_1361_6501_ace987
crossref_primary_10_1109_TIM_2024_3476708
crossref_primary_10_3390_agriculture12060893
crossref_primary_10_1109_ACCESS_2024_3399393
crossref_primary_10_1016_j_jmsy_2025_03_007
crossref_primary_10_1016_j_eswa_2025_126680
crossref_primary_10_3390_s23167087
crossref_primary_10_1016_j_jmsy_2025_07_006
crossref_primary_10_1088_1361_6501_ad0fd2
crossref_primary_10_1080_00084433_2025_2550802
crossref_primary_10_1007_s40997_024_00783_w
crossref_primary_10_1177_14759217251370358
crossref_primary_10_1080_00207543_2022_2122621
crossref_primary_10_1016_j_ress_2023_109256
crossref_primary_10_1016_j_ress_2023_109372
crossref_primary_10_1007_s00170_023_11385_2
crossref_primary_10_1016_j_knosys_2023_110891
crossref_primary_10_1016_j_ress_2023_109253
crossref_primary_10_1016_j_measurement_2025_116869
crossref_primary_10_1088_1361_6501_adaa90
crossref_primary_10_1007_s00170_024_13472_4
crossref_primary_10_1016_j_ress_2023_109590
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_3390_en16010123
crossref_primary_10_1109_TIM_2025_3527598
crossref_primary_10_1016_j_ress_2023_109468
crossref_primary_10_1016_j_ress_2023_109589
crossref_primary_10_1186_s10033_025_01274_y
crossref_primary_10_1016_j_ress_2022_108533
crossref_primary_10_1109_TII_2022_3182789
crossref_primary_10_1016_j_engappai_2024_108212
crossref_primary_10_1016_j_ress_2022_108890
crossref_primary_10_1016_j_ress_2023_109345
crossref_primary_10_1016_j_eswa_2024_124678
crossref_primary_10_1088_1361_6501_ad5f4c
crossref_primary_10_1109_TIM_2025_3603655
crossref_primary_10_1109_ACCESS_2024_3519704
crossref_primary_10_1109_TIM_2023_3277956
crossref_primary_10_1016_j_knosys_2024_111579
crossref_primary_10_1109_TIM_2025_3604989
crossref_primary_10_1109_JSEN_2023_3301593
crossref_primary_10_1109_JSEN_2024_3514147
crossref_primary_10_1109_TIM_2023_3267376
crossref_primary_10_1016_j_aei_2023_101993
crossref_primary_10_1016_j_energy_2022_125325
crossref_primary_10_1016_j_ress_2022_108525
crossref_primary_10_1016_j_ymssp_2023_110159
crossref_primary_10_1016_j_ress_2023_109479
crossref_primary_10_1108_ECAM_08_2024_1024
crossref_primary_10_1016_j_ress_2021_108187
crossref_primary_10_1007_s10489_023_05010_8
crossref_primary_10_1038_s41598_024_75112_x
crossref_primary_10_1109_JSEN_2024_3505792
crossref_primary_10_1016_j_ress_2023_109171
crossref_primary_10_1016_j_ress_2023_109292
crossref_primary_10_1016_j_ress_2024_110560
crossref_primary_10_1016_j_eswa_2024_123930
crossref_primary_10_1016_j_jmsy_2022_04_006
crossref_primary_10_1016_j_ymssp_2025_112707
crossref_primary_10_3390_en18174637
crossref_primary_10_1016_j_engappai_2025_110663
crossref_primary_10_1016_j_ress_2022_108358
crossref_primary_10_1016_j_ymssp_2025_113359
crossref_primary_10_3390_machines12090604
crossref_primary_10_1016_j_ymssp_2024_111330
crossref_primary_10_3390_app13084905
crossref_primary_10_1177_14759217231188002
crossref_primary_10_3389_frai_2022_811073
crossref_primary_10_1007_s10586_025_05142_1
crossref_primary_10_1016_j_ress_2024_110331
crossref_primary_10_1007_s12008_024_01859_2
crossref_primary_10_1016_j_ress_2024_110454
crossref_primary_10_3390_s23249883
crossref_primary_10_1109_JSAC_2023_3310098
crossref_primary_10_1007_s00170_025_16363_4
crossref_primary_10_1016_j_apor_2025_104414
crossref_primary_10_1177_01423312231190435
crossref_primary_10_1016_j_measurement_2025_117948
crossref_primary_10_3390_machines12100728
crossref_primary_10_1016_j_aei_2024_102963
crossref_primary_10_1109_JSEN_2023_3337290
crossref_primary_10_1016_j_asoc_2025_112785
crossref_primary_10_3390_s22239294
crossref_primary_10_1016_j_rineng_2025_106524
crossref_primary_10_1016_j_enbuild_2025_115567
crossref_primary_10_1016_j_enganabound_2023_04_018
crossref_primary_10_1016_j_ress_2025_110833
crossref_primary_10_1155_2022_8573315
crossref_primary_10_1016_j_eswa_2023_120274
crossref_primary_10_1016_j_jsv_2024_118562
crossref_primary_10_1109_ACCESS_2023_3304700
crossref_primary_10_3390_jmse13071321
crossref_primary_10_1007_s10845_024_02382_7
crossref_primary_10_1177_14759217251372364
crossref_primary_10_1016_j_measurement_2022_110889
crossref_primary_10_1016_j_knosys_2023_111093
crossref_primary_10_1016_j_ress_2023_109704
crossref_primary_10_1016_j_eswa_2023_121338
crossref_primary_10_3390_s23156730
crossref_primary_10_1016_j_ymssp_2023_110625
crossref_primary_10_3390_pr11061730
crossref_primary_10_1016_j_ress_2024_110668
crossref_primary_10_2478_pomr_2023_0061
crossref_primary_10_1016_j_ress_2023_109142
crossref_primary_10_1016_j_procir_2022_05_090
crossref_primary_10_1109_ACCESS_2025_3601349
crossref_primary_10_1016_j_jmsy_2022_11_003
crossref_primary_10_1109_JSEN_2024_3400249
crossref_primary_10_1109_JSYST_2023_3270620
crossref_primary_10_1016_j_est_2023_109230
crossref_primary_10_1016_j_ress_2023_109837
crossref_primary_10_1016_j_future_2024_03_023
crossref_primary_10_1109_TIM_2022_3214628
crossref_primary_10_1016_j_ress_2022_108560
crossref_primary_10_1109_ACCESS_2024_3434591
crossref_primary_10_1088_1361_6501_ac8dae
crossref_primary_10_1016_j_jmsy_2023_07_016
crossref_primary_10_1016_j_ress_2022_108684
crossref_primary_10_1109_TASE_2024_3418972
crossref_primary_10_1007_s10845_023_02301_2
Cites_doi 10.1016/j.knosys.2020.106396
10.1016/j.ymssp.2018.07.044
10.1109/TII.2019.2899679
10.1016/j.knosys.2017.10.024
10.1109/TII.2019.2938572
10.1080/00207543.2018.1443229
10.1080/00207543.2018.1552032
10.1049/iet-smt.2016.0423
10.1007/978-3-030-01424-7_27
10.1109/TPEL.2019.2911594
10.1016/j.ymssp.2019.106587
10.1109/JSEN.2019.2949057
10.1016/j.ymssp.2019.106272
10.1080/00207543.2017.1351644
10.1109/TIE.2017.2745473
10.1109/TII.2018.2864759
10.1109/TII.2017.2672988
10.1109/TIM.2019.2932162
10.1109/JSEN.2019.2936932
10.1007/s00521-019-04097-w
10.1016/j.engappai.2018.09.010
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Nov 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 2021
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2021.107938
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2021_107938
S0951832021004531
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7ST
7TB
8FD
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-381cf9181559c2eb102511a4adec2153de6fc5cc8ed966ba4ac80c368a62766d3
ISICitedReferencesCount 278
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690283800094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Thu Sep 25 02:42:36 EDT 2025
Sat Nov 29 07:07:43 EST 2025
Tue Nov 18 22:08:38 EST 2025
Sat Apr 06 16:25:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Digital twin
Novel sparse de-noising auto-encoder
Deep transfer learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-381cf9181559c2eb102511a4adec2153de6fc5cc8ed966ba4ac80c368a62766d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2583116333
PQPubID 2045406
ParticipantIDs proquest_journals_2583116333
crossref_citationtrail_10_1016_j_ress_2021_107938
crossref_primary_10_1016_j_ress_2021_107938
elsevier_sciencedirect_doi_10_1016_j_ress_2021_107938
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhu, Chen, Shen (bib0017) 2020; 20
Abid, Sallem, Braham (bib0012) 2020; 69
shao, Xia, Han, Zhang, Wan (bib0018) 2020
Jain, Poon, Singh, Spanos, Sanders, Panda (bib0024) 2020; 35
S. Miller, “Predictive Maintenance Using a Digital Twin.”
Wang, Ye, Gao, Li, Zhang (bib0023) 2019; 57
Fang, Peng, Lou, Zhou, Hu, Yan (bib0021) 2019; 15
Shao, McAleer, Yan, Baldi (bib0006) 2019; 15
Tao (bib0020) 2019; 57
Shao, Jiang, Li, Wu (bib0011) 2018; 140
Chen, Gryllias, Li (bib0010) 2019; 133
Ramachandran, Zoph, Le (bib0025) Oct. 2017
Kusiak (bib0001) Jan. 2018; 56
Xia, Li, Liu, Xu, de Silva (bib0009) 2017; 11
Glowacz (bib0005) 2019; 117
Shen, Qi, Wang, Cai, Zhu (bib0007) 2018; 76
Yi, Yan, Liu, Ni, Feng, Liu (bib0022) 2020
Sun, Zhao, Yan, Shao, Chen (bib0003) 2017; 13
Li, Huang, He, Liao, Wang, Li (bib0014) 2020
Shao, Jiang, Zhang, Liang (bib0008) 2018; 65
Lei, Yang, Jiang, Jia, Li, Nandi (bib0004) 2020; 138
(accessed Jun. 01, 2020).
C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A Survey on Deep Transfer Learning BT - Artificial Neural Networks and Machine Learning – ICANN 2018,” 2018, pp. 270–279.
Li, Wan, Dai, Imran, Xia, Celesti (bib0002) 2019; 15
He, Shao, Zhong, Zhao (bib0015) 2020; 207
Wen, Li, Gao (bib0016) 2020; 32
Yan, Shen, Sun, Chen (bib0019) 2020; 20
Kusiak (10.1016/j.ress.2021.107938_bib0001) 2018; 56
Li (10.1016/j.ress.2021.107938_bib0014) 2020
Sun (10.1016/j.ress.2021.107938_bib0003) 2017; 13
Glowacz (10.1016/j.ress.2021.107938_bib0005) 2019; 117
Abid (10.1016/j.ress.2021.107938_bib0012) 2020; 69
Lei (10.1016/j.ress.2021.107938_bib0004) 2020; 138
Wen (10.1016/j.ress.2021.107938_bib0016) 2020; 32
10.1016/j.ress.2021.107938_bib0026
shao (10.1016/j.ress.2021.107938_bib0018) 2020
Li (10.1016/j.ress.2021.107938_bib0002) 2019; 15
Shao (10.1016/j.ress.2021.107938_bib0006) 2019; 15
Yan (10.1016/j.ress.2021.107938_bib0019) 2020; 20
Shen (10.1016/j.ress.2021.107938_bib0007) 2018; 76
Chen (10.1016/j.ress.2021.107938_bib0010) 2019; 133
Fang (10.1016/j.ress.2021.107938_bib0021) 2019; 15
Zhu (10.1016/j.ress.2021.107938_bib0017) 2020; 20
Shao (10.1016/j.ress.2021.107938_bib0008) 2018; 65
Shao (10.1016/j.ress.2021.107938_bib0011) 2018; 140
Xia (10.1016/j.ress.2021.107938_bib0009) 2017; 11
Wang (10.1016/j.ress.2021.107938_bib0023) 2019; 57
10.1016/j.ress.2021.107938_bib0013
Yi (10.1016/j.ress.2021.107938_bib0022) 2020
Ramachandran (10.1016/j.ress.2021.107938_bib0025) 2017
He (10.1016/j.ress.2021.107938_bib0015) 2020; 207
Jain (10.1016/j.ress.2021.107938_bib0024) 2020; 35
Tao (10.1016/j.ress.2021.107938_bib0020) 2019; 57
References_xml – volume: 57
  start-page: 3935
  year: 2019
  end-page: 3953
  ident: bib0020
  article-title: Digital twin-driven product design framework
  publication-title: Int J Prod Res
– volume: 32
  start-page: 6111
  year: 2020
  end-page: 6124
  ident: bib0016
  article-title: A transfer convolutional neural network for fault diagnosis based on ResNet-50
  publication-title: Neural Comput Appl
– year: 2020
  ident: bib0018
  article-title: Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer CNN and thermal images
  publication-title: IEEE Trans Ind Informatics
– volume: 138
  year: 2020
  ident: bib0004
  article-title: Applications of machine learning to machine fault diagnosis: A review and roadmap
  publication-title: Mech Syst Signal Process
– volume: 20
  start-page: 8394
  year: 2020
  end-page: 8402
  ident: bib0017
  article-title: A New Deep Transfer Learning Method for Bearing Fault Diagnosis Under Different Working Conditions
  publication-title: IEEE Sens J
– volume: 117
  start-page: 65
  year: 2019
  end-page: 80
  ident: bib0005
  article-title: Fault diagnosis of single-phase induction motor based on acoustic signals
  publication-title: Mech Syst Signal Process
– volume: 207
  year: 2020
  ident: bib0015
  article-title: Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions
  publication-title: Knowledge-Based Syst
– volume: 69
  start-page: 3506
  year: 2020
  end-page: 3515
  ident: bib0012
  article-title: Robust Interpretable Deep Learning for Intelligent Fault Diagnosis of Induction Motors
  publication-title: IEEE Trans Instrum Meas
– volume: 15
  start-page: 6425
  year: 2019
  end-page: 6435
  ident: bib0021
  article-title: Digital-Twin-Based Job Shop Scheduling Toward Smart Manufacturing
  publication-title: IEEE Trans Ind Informatics
– volume: 76
  start-page: 170
  year: 2018
  end-page: 184
  ident: bib0007
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Eng Appl Artif Intell
– volume: 140
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib0011
  article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine
  publication-title: Knowledge-Based Syst
– reference: (accessed Jun. 01, 2020).
– volume: 15
  start-page: 4225
  year: 2019
  end-page: 4234
  ident: bib0002
  article-title: A Hybrid Computing Solution and Resource Scheduling Strategy for Edge Computing in Smart Manufacturing
  publication-title: IEEE Trans Ind Informatics
– year: 2020
  ident: bib0014
  article-title: A Two-Stage Transfer Adversarial Network for Intelligent Fault Diagnosis of Rotating Machinery with Multiple New Faults
  publication-title: IEEE/ASME Transactions on Mechatronics
– reference: S. Miller, “Predictive Maintenance Using a Digital Twin.”
– year: Oct. 2017
  ident: bib0025
  article-title: Searching for Activation Functions
  publication-title: 6th Int. Conf. Learn. Represent. ICLR 2018 - Work. Track Proc
– volume: 56
  start-page: 508
  year: Jan. 2018
  end-page: 517
  ident: bib0001
  article-title: Smart manufacturing
  publication-title: Int J Prod Res
– volume: 11
  start-page: 687
  year: 2017
  end-page: 695
  ident: bib0009
  article-title: Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder
  publication-title: IET Sci Meas Technol
– volume: 133
  year: 2019
  ident: bib0010
  article-title: Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine
  publication-title: Mech Syst Signal Process.
– volume: 57
  start-page: 3920
  year: 2019
  end-page: 3934
  ident: bib0023
  article-title: Digital Twin for rotating machinery fault diagnosis in smart manufacturing
  publication-title: Int J Prod Res
– volume: 15
  start-page: 2446
  year: 2019
  end-page: 2455
  ident: bib0006
  article-title: Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning
  publication-title: IEEE Trans Ind Informatics
– volume: 65
  start-page: 2727
  year: 2018
  end-page: 2736
  ident: bib0008
  article-title: Electric Locomotive Bearing Fault Diagnosis Using a Novel Convolutional Deep Belief Network
  publication-title: IEEE Trans Ind Electron
– reference: C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A Survey on Deep Transfer Learning BT - Artificial Neural Networks and Machine Learning – ICANN 2018,” 2018, pp. 270–279.
– volume: 20
  start-page: 8374
  year: 2020
  end-page: 8393
  ident: bib0019
  article-title: Knowledge Transfer for Rotary Machine Fault Diagnosis
  publication-title: IEEE Sens J
– year: 2020
  ident: bib0022
  article-title: Digital twin-based smart assembly process design and application framework for complex products and its case study
  publication-title: J Manuf Syst
– volume: 13
  start-page: 1350
  year: 2017
  end-page: 1359
  ident: bib0003
  article-title: Convolutional Discriminative Feature Learning for Induction Motor Fault Diagnosis
  publication-title: IEEE Trans Ind Informatics
– volume: 35
  start-page: 940
  year: 2020
  end-page: 956
  ident: bib0024
  article-title: A digital twin approach for fault diagnosis in distributed photovoltaic systems
  publication-title: IEEE Trans Power Electron
– volume: 207
  year: 2020
  ident: 10.1016/j.ress.2021.107938_bib0015
  article-title: Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2020.106396
– volume: 117
  start-page: 65
  year: 2019
  ident: 10.1016/j.ress.2021.107938_bib0005
  article-title: Fault diagnosis of single-phase induction motor based on acoustic signals
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.07.044
– year: 2020
  ident: 10.1016/j.ress.2021.107938_bib0022
  article-title: Digital twin-based smart assembly process design and application framework for complex products and its case study
  publication-title: J Manuf Syst
– issue: 1
  year: 2020
  ident: 10.1016/j.ress.2021.107938_bib0018
  article-title: Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer CNN and thermal images
  publication-title: IEEE Trans Ind Informatics
– volume: 15
  start-page: 4225
  issue: 7
  year: 2019
  ident: 10.1016/j.ress.2021.107938_bib0002
  article-title: A Hybrid Computing Solution and Resource Scheduling Strategy for Edge Computing in Smart Manufacturing
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2019.2899679
– volume: 140
  start-page: 1
  year: 2018
  ident: 10.1016/j.ress.2021.107938_bib0011
  article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2017.10.024
– year: 2020
  ident: 10.1016/j.ress.2021.107938_bib0014
  article-title: A Two-Stage Transfer Adversarial Network for Intelligent Fault Diagnosis of Rotating Machinery with Multiple New Faults
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 15
  start-page: 6425
  issue: 12
  year: 2019
  ident: 10.1016/j.ress.2021.107938_bib0021
  article-title: Digital-Twin-Based Job Shop Scheduling Toward Smart Manufacturing
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2019.2938572
– volume: 57
  start-page: 3935
  issue: 12
  year: 2019
  ident: 10.1016/j.ress.2021.107938_bib0020
  article-title: Digital twin-driven product design framework
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2018.1443229
– volume: 57
  start-page: 3920
  issue: 12
  year: 2019
  ident: 10.1016/j.ress.2021.107938_bib0023
  article-title: Digital Twin for rotating machinery fault diagnosis in smart manufacturing
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2018.1552032
– volume: 11
  start-page: 687
  issue: 6
  year: 2017
  ident: 10.1016/j.ress.2021.107938_bib0009
  article-title: Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder
  publication-title: IET Sci Meas Technol
  doi: 10.1049/iet-smt.2016.0423
– ident: 10.1016/j.ress.2021.107938_bib0013
  doi: 10.1007/978-3-030-01424-7_27
– volume: 35
  start-page: 940
  issue: 1
  year: 2020
  ident: 10.1016/j.ress.2021.107938_bib0024
  article-title: A digital twin approach for fault diagnosis in distributed photovoltaic systems
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2019.2911594
– volume: 138
  year: 2020
  ident: 10.1016/j.ress.2021.107938_bib0004
  article-title: Applications of machine learning to machine fault diagnosis: A review and roadmap
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.106587
– volume: 20
  start-page: 8374
  issue: 15
  year: 2020
  ident: 10.1016/j.ress.2021.107938_bib0019
  article-title: Knowledge Transfer for Rotary Machine Fault Diagnosis
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2019.2949057
– volume: 133
  year: 2019
  ident: 10.1016/j.ress.2021.107938_bib0010
  article-title: Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine
  publication-title: Mech Syst Signal Process.
  doi: 10.1016/j.ymssp.2019.106272
– volume: 56
  start-page: 508
  issue: 1–2
  year: 2018
  ident: 10.1016/j.ress.2021.107938_bib0001
  article-title: Smart manufacturing
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2017.1351644
– volume: 65
  start-page: 2727
  issue: 3
  year: 2018
  ident: 10.1016/j.ress.2021.107938_bib0008
  article-title: Electric Locomotive Bearing Fault Diagnosis Using a Novel Convolutional Deep Belief Network
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2745473
– ident: 10.1016/j.ress.2021.107938_bib0026
– year: 2017
  ident: 10.1016/j.ress.2021.107938_bib0025
  article-title: Searching for Activation Functions
– volume: 15
  start-page: 2446
  issue: 4
  year: 2019
  ident: 10.1016/j.ress.2021.107938_bib0006
  article-title: Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2018.2864759
– volume: 13
  start-page: 1350
  issue: 3
  year: 2017
  ident: 10.1016/j.ress.2021.107938_bib0003
  article-title: Convolutional Discriminative Feature Learning for Induction Motor Fault Diagnosis
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2017.2672988
– volume: 69
  start-page: 3506
  issue: 6
  year: 2020
  ident: 10.1016/j.ress.2021.107938_bib0012
  article-title: Robust Interpretable Deep Learning for Intelligent Fault Diagnosis of Induction Motors
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2932162
– volume: 20
  start-page: 8394
  issue: 15
  year: 2020
  ident: 10.1016/j.ress.2021.107938_bib0017
  article-title: A New Deep Transfer Learning Method for Bearing Fault Diagnosis Under Different Working Conditions
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2019.2936932
– volume: 32
  start-page: 6111
  issue: 10
  year: 2020
  ident: 10.1016/j.ress.2021.107938_bib0016
  article-title: A transfer convolutional neural network for fault diagnosis based on ResNet-50
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04097-w
– volume: 76
  start-page: 170
  year: 2018
  ident: 10.1016/j.ress.2021.107938_bib0007
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.09.010
SSID ssj0004957
Score 2.7021031
Snippet •A methodology for fault diagnosis with limited available data is achieved.•A digital twin of the machine is used to provide fault condition data for...
Digital twin (DT) is emerging as a key technology for smart manufacturing. The high fidelity DT model of the physical assets can produce system performance...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107938
SubjectTerms Coders
Deep transfer learning
Digital twin
Digital twins
Domains
Fault diagnosis
Learning
Novel sparse de-noising auto-encoder
Reliability engineering
Transfer learning
Working conditions
Title Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
URI https://dx.doi.org/10.1016/j.ress.2021.107938
https://www.proquest.com/docview/2583116333
Volume 215
WOSCitedRecordID wos000690283800094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQc4IJ6iUNAeuFmu6vVrfaygqEVQIbWgSBwsex_BVXCi1CmtxI9nZh-2CaICJC5WYse70cznmdnxzLeEvGQ6qRX4tZCBcwwTGamQp_BVKFGB906j2hTRfHqXn5zw6bT4MJl8970wl_O8bfnVVbH8r6qGc6BsbJ39C3X3g8IJ-AxKhyOoHY5_pPjjnmSzC3S1nneYX8VyOss88tVUT6rVdbA2aQLZzHDfkKD71rQhRNKodhlIpZa4fQQEtWrlt5aYjSNZrGW2HN_XgRpIDQ2ULD10cFFpxzKCKp3astz3TQ_H0y-VSdQeVY1cuNE3UkCvsZJ4qBpam2Rtg6mZ2ThfwSLXuNcn0XwjzVC1ZLORUQjGxb6iUdYW87ww5NljY81s8-cvht_mIM73MEexh9PCKTA9fHBzffHhKU6GczFky0uxCX-b5WkBNnH74Phw-nboqy0sU6z_c67pytYHbs70u8Bmw8WbuOXsHrnrFhz0wALlPpmo9gG5M6KhfEg-jyBDDWRoDxm60LSHDDWQoQ4y9CfIUIQM9ZChHjKPyMc3h2evjkK36UYoYsa7ECI4oQuI-2CpKRh4crMIrZJKKgHCj6XKtEiF4ErCSrmGC4LvizjjVcbyLJPxY7LVLlr1hNCk0LmQhWaZADmrhOssj-r9WlQQVcPQOyTyEiuFY6THjVHmpS89PC9RyiVKubRS3iFBf8_S8rHc-OvUK6J0EaWNFEvAzY337Xqtle7RhuspjyNYvsTx038c9hm5PTwRu2SrW63Vc3JLXHbNxeqFQ98PZXSoCQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+fault+diagnosis+of+machinery+using+digital+twin-assisted+deep+transfer+learning&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Xia%2C+Min&rft.au=Shao%2C+Haidong&rft.au=Williams%2C+Darren&rft.au=Lu%2C+Siliang&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=215&rft_id=info:doi/10.1016%2Fj.ress.2021.107938&rft.externalDocID=S0951832021004531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon