Numerical Approach for Solving Two-Dimensional Time-Fractional Fisher Equation via HABC-N Method
For the two-dimensional time-fractional Fisher equation (2D-TFFE), a hybrid alternating band Crank-Nicolson (HABC-N) method based on the parallel finite difference technique is proposed. The explicit difference method, implicit difference method, and C-N difference method are used simultaneously wit...
Uložené v:
| Vydané v: | Communications on Applied Mathematics and Computation (Online) Ročník 7; číslo 1; s. 315 - 346 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
Springer Nature Singapore
01.02.2025
|
| Predmet: | |
| ISSN: | 2096-6385, 2661-8893 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | For the two-dimensional time-fractional Fisher equation (2D-TFFE), a hybrid alternating band Crank-Nicolson (HABC-N) method based on the parallel finite difference technique is proposed. The explicit difference method, implicit difference method, and C-N difference method are used simultaneously with the alternating band technique to create the HABC-N method. The existence of the solution and unconditional stability for the HABC-N method, as well as its uniqueness, are demonstrated by theoretical study. The HABC-N method’s convergence order is
O
τ
2
-
α
+
h
1
2
+
h
2
2
. The theoretical study is bolstered by numerical experiments, which establish that the 2D-TFFE can be solved using the HABC-N method. |
|---|---|
| ISSN: | 2096-6385 2661-8893 |
| DOI: | 10.1007/s42967-023-00282-w |