Taming the Duplication-Loss-Coalescence Model with Integer Linear Programming
The duplication-loss-coalescence (DLC) parsimony model is invaluable for analyzing the complex scenarios of concurrent duplication loss and deep coalescence events in the evolution of gene families. However, inferring such scenarios for already moderately sized families is prohibitive owing to the c...
Uložené v:
| Vydané v: | Journal of computational biology Ročník 28; číslo 8; s. 758 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.08.2021
|
| Predmet: | |
| ISSN: | 1557-8666, 1557-8666 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The duplication-loss-coalescence (DLC) parsimony model is invaluable for analyzing the complex scenarios of concurrent duplication loss and deep coalescence events in the evolution of gene families. However, inferring such scenarios for already moderately sized families is prohibitive owing to the computational complexity involved. To overcome this stringent limitation, we make the first step by describing a flexible integer linear programming (ILP) formulation for inferring DLC evolutionary scenarios. Then, to make the DLC model more scalable, we introduce four sensibly constrained versions of the model and describe modified versions of our ILP formulation reflecting these constraints. Our simulation studies showcase that our constrained ILP formulations compute evolutionary scenarios that are substantially larger than scenarios computable under our original ILP formulation and the original dynamic programming algorithm by Wu et al. Furthermore, scenarios computed under our constrained DLC models are remarkably accurate compared with corresponding scenarios under the original DLC model, which we also confirm in an empirical study with thousands of gene families. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1557-8666 1557-8666 |
| DOI: | 10.1089/cmb.2021.0011 |