Heap-based optimizer inspired by corporate rank hierarchy for global optimization
•Heap-based optimizer (HBO) inspired by corporate rank hierarchy (CRH) is proposed.•HBO utilizes heap to map the hierarchy and model equations for 3 CRH activities.•A parameter (γ) to escape local optima without lacking exploitation is introduced.•Exploration and exploitation are balanced through se...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 161; s. 113702 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
15.12.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Heap-based optimizer (HBO) inspired by corporate rank hierarchy (CRH) is proposed.•HBO utilizes heap to map the hierarchy and model equations for 3 CRH activities.•A parameter (γ) to escape local optima without lacking exploitation is introduced.•Exploration and exploitation are balanced through self-adaptive parameters.•Performance is evaluated on 97 benchmarks and 3 mechanical engineering problems.
In an organization, a group of people working for a common goal may not achieve their goal unless they organize themselves in a hierarchy called Corporate Rank Hierarchy (CRH). This principle motivates us to map the concept of CRH to propose a new algorithm for optimization that logically arranges the search agents in a hierarchy based on their fitness. The proposed algorithm is named as heap-based optimizer (HBO) because it utilizes the heap data structure to map the concept of CRH. The mathematical model of HBO is built on three pillars: the interaction between the subordinates and their immediate boss, the interaction between the colleagues, and self-contribution of the employees. The proposed algorithm is benchmarked with 97 diverse test functions including 29 CEC-BC-2017 functions with very challenging landscapes against 7 highly-cited optimization algorithms including the winner of CEC-BC-2017 (EBO-CMAR). In the first two experiments, the exploitative and explorative behavior of HBO is evaluated by using 24 unimodal and 44 multimodal functions, respectively. It is shown through experiments and Friedman mean rank test that HBO outperforms and secures 1st rank. In the third experiment, we use 29 CEC-BC-2017 benchmark functions. According to Friedman mean rank test HBO attains 2nd position after EBO-CMAR; however, the difference in ranks of HBO and EBO-CMAR is shown to be statistically insignificant by using Bonferroni method based multiple comparison test. Moreover, it is shown through the Friedman test that the overall rank of HBO is 1st for all 97 benchmarks. In the fourth and the last experiment, the applicability on real-world problems is demonstrated by solving 3 constrained mechanical engineering optimization problems. The performance is shown to be superior or equivalent to the other algorithms, which have been used in the literature. The source code of HBO is publicly available athttps://github.com/qamar-askari/HBO. |
|---|---|
| AbstractList | In an organization, a group of people working for a common goal may not achieve their goal unless they organize themselves in a hierarchy called Corporate Rank Hierarchy (CRH). This principle motivates us to map the concept of CRH to propose a new algorithm for optimization that logically arranges the search agents in a hierarchy based on their fitness. The proposed algorithm is named as heap-based optimizer (HBO) because it utilizes the heap data structure to map the concept of CRH. The mathematical model of HBO is built on three pillars: the interaction between the subordinates and their immediate boss, the interaction between the colleagues, and self-contribution of the employees. The proposed algorithm is benchmarked with 97 diverse test functions including 29 CEC-BC-2017 functions with very challenging landscapes against 7 highly-cited optimization algorithms including the winner of CEC-BC-2017 (EBO-CMAR). In the first two experiments, the exploitative and explorative behavior of HBO is evaluated by using 24 unimodal and 44 multimodal functions, respectively. It is shown through experiments and Friedman mean rank test that HBO outperforms and secures 1st rank. In the third experiment, we use 29 CEC-BC-2017 benchmark functions. According to Friedman mean rank test HBO attains 2nd position after EBO-CMAR; however, the difference in ranks of HBO and EBO-CMAR is shown to be statistically insignificant by using Bonferroni method based multiple comparison test. Moreover, it is shown through the Friedman test that the overall rank of HBO is 1st for all 97 benchmarks. In the fourth and the last experiment, the applicability on real-world problems is demonstrated by solving 3 constrained mechanical engineering optimization problems. The performance is shown to be superior or equivalent to the other algorithms, which have been used in the literature. The source code of HBO is publicly available at https://github.com/qamar-askari/HBO. •Heap-based optimizer (HBO) inspired by corporate rank hierarchy (CRH) is proposed.•HBO utilizes heap to map the hierarchy and model equations for 3 CRH activities.•A parameter (γ) to escape local optima without lacking exploitation is introduced.•Exploration and exploitation are balanced through self-adaptive parameters.•Performance is evaluated on 97 benchmarks and 3 mechanical engineering problems. In an organization, a group of people working for a common goal may not achieve their goal unless they organize themselves in a hierarchy called Corporate Rank Hierarchy (CRH). This principle motivates us to map the concept of CRH to propose a new algorithm for optimization that logically arranges the search agents in a hierarchy based on their fitness. The proposed algorithm is named as heap-based optimizer (HBO) because it utilizes the heap data structure to map the concept of CRH. The mathematical model of HBO is built on three pillars: the interaction between the subordinates and their immediate boss, the interaction between the colleagues, and self-contribution of the employees. The proposed algorithm is benchmarked with 97 diverse test functions including 29 CEC-BC-2017 functions with very challenging landscapes against 7 highly-cited optimization algorithms including the winner of CEC-BC-2017 (EBO-CMAR). In the first two experiments, the exploitative and explorative behavior of HBO is evaluated by using 24 unimodal and 44 multimodal functions, respectively. It is shown through experiments and Friedman mean rank test that HBO outperforms and secures 1st rank. In the third experiment, we use 29 CEC-BC-2017 benchmark functions. According to Friedman mean rank test HBO attains 2nd position after EBO-CMAR; however, the difference in ranks of HBO and EBO-CMAR is shown to be statistically insignificant by using Bonferroni method based multiple comparison test. Moreover, it is shown through the Friedman test that the overall rank of HBO is 1st for all 97 benchmarks. In the fourth and the last experiment, the applicability on real-world problems is demonstrated by solving 3 constrained mechanical engineering optimization problems. The performance is shown to be superior or equivalent to the other algorithms, which have been used in the literature. The source code of HBO is publicly available athttps://github.com/qamar-askari/HBO. |
| ArticleNumber | 113702 |
| Author | Younas, Irfan Saeed, Mehreen Askari, Qamar |
| Author_xml | – sequence: 1 givenname: Qamar orcidid: 0000-0001-7961-3608 surname: Askari fullname: Askari, Qamar email: syedqamar@gift.edu.pk, l165502@lhr.nu.edu.pk organization: Department of Computer Science, GIFT University, Gujranwala, Pakistan – sequence: 2 givenname: Mehreen surname: Saeed fullname: Saeed, Mehreen email: mehreen.saeed@nu.edu.pk organization: Department of Computer Science, National University of Computer and Emerging Sciences, Lahore, Pakistan – sequence: 3 givenname: Irfan surname: Younas fullname: Younas, Irfan email: irfan.younas@nu.edu.pk organization: Department of Computer Science, National University of Computer and Emerging Sciences, Lahore, Pakistan |
| BookMark | eNp9kE1LAzEQhoMo2Fb_gKcFz1uT_UoWvEhRKxRE0HPIJhObdbtZk1Spv97U1YuHngZe3meGeabouLc9IHRB8JxgUl21c_CfYp7hLAYkpzg7QhPCaJ5WtM6P0QTXJU0LQotTNPW-xZhQjOkEPS1BDGkjPKjEDsFszBe4xPR-MC5GzS6R1g3WiQCJE_1bsjbghJPrXaKtS14724jujxTB2P4MnWjReTj_nTP0cnf7vFimq8f7h8XNKpV5xkKaaaUq0VCNG1UWlcIlBgYVyXVZ1zVlSjLQSmAJIIlgmWZK10woURZaY9bkM3Q57h2cfd-CD7y1W9fHkzwrKlKRsiI0trKxJZ313oHmgzMb4XacYL5Xx1u-V8f36vioLkLsHyRN-HkuOGG6w-j1iEJ8_SO64l4a6CWo6FMGrqw5hH8DrLqN8Q |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2021_107942 crossref_primary_10_1007_s00521_022_07000_2 crossref_primary_10_1007_s10586_024_04666_2 crossref_primary_10_1016_j_heliyon_2024_e25848 crossref_primary_10_1007_s12652_025_04951_x crossref_primary_10_1016_j_energy_2022_126473 crossref_primary_10_1109_TCC_2022_3216541 crossref_primary_10_3390_math10224197 crossref_primary_10_1049_gtd2_13070 crossref_primary_10_3390_app13010249 crossref_primary_10_1016_j_egyr_2025_04_061 crossref_primary_10_1007_s10489_020_02164_7 crossref_primary_10_1109_ACCESS_2020_3026821 crossref_primary_10_1007_s00500_021_06101_9 crossref_primary_10_1007_s40430_025_05404_4 crossref_primary_10_1016_j_ins_2022_01_075 crossref_primary_10_1007_s10586_025_05265_5 crossref_primary_10_1007_s11063_021_10471_4 crossref_primary_10_1109_ACCESS_2023_3304889 crossref_primary_10_1038_s41598_024_83589_9 crossref_primary_10_1007_s00500_022_06903_5 crossref_primary_10_1007_s13369_024_09372_0 crossref_primary_10_1016_j_cogsys_2024_101237 crossref_primary_10_1016_j_eswa_2022_118256 crossref_primary_10_1007_s12065_022_00742_x crossref_primary_10_1007_s11227_021_03943_w crossref_primary_10_1108_COMPEL_07_2021_0257 crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_32604_ee_2024_054687 crossref_primary_10_3390_math12030483 crossref_primary_10_1007_s00521_025_11379_z crossref_primary_10_1016_j_knosys_2021_107543 crossref_primary_10_1109_ACCESS_2020_3040479 crossref_primary_10_3390_math10193466 crossref_primary_10_1016_j_advengsoft_2022_103142 crossref_primary_10_1007_s40998_022_00500_w crossref_primary_10_1109_ACCESS_2024_3486743 crossref_primary_10_1016_j_energy_2024_131804 crossref_primary_10_1088_2631_8695_ad3d2f crossref_primary_10_1007_s10489_024_05537_4 crossref_primary_10_1007_s00521_022_07932_9 crossref_primary_10_1016_j_knosys_2020_106728 crossref_primary_10_1007_s10586_024_04328_3 crossref_primary_10_3390_electronics12010113 crossref_primary_10_1109_ACCESS_2022_3177735 crossref_primary_10_1155_2021_9210050 crossref_primary_10_1002_cpe_7009 crossref_primary_10_3390_fractalfract7090690 crossref_primary_10_1016_j_knosys_2022_110206 crossref_primary_10_3390_su142417005 crossref_primary_10_1016_j_knosys_2024_112949 crossref_primary_10_1016_j_knosys_2021_107555 crossref_primary_10_3390_diagnostics13203166 crossref_primary_10_1155_2022_7508836 crossref_primary_10_1016_j_chaos_2023_113363 crossref_primary_10_1109_JSYST_2021_3136778 crossref_primary_10_3390_su13169459 crossref_primary_10_1007_s11831_022_09766_z crossref_primary_10_3390_buildings13041086 crossref_primary_10_1007_s11042_024_18734_7 crossref_primary_10_32604_iasc_2024_053192 crossref_primary_10_1016_j_engappai_2023_107574 crossref_primary_10_1080_19393555_2025_2542170 crossref_primary_10_1002_int_22658 crossref_primary_10_3390_app131810247 crossref_primary_10_1007_s00500_023_09153_1 crossref_primary_10_1016_j_compbiomed_2023_107195 crossref_primary_10_1080_19942060_2024_2322509 crossref_primary_10_1109_ACCESS_2022_3151119 crossref_primary_10_1016_j_asoc_2021_107866 crossref_primary_10_1016_j_bspc_2024_106492 crossref_primary_10_1016_j_istruc_2023_01_032 crossref_primary_10_1111_exsy_12642 crossref_primary_10_3390_biomimetics10090629 crossref_primary_10_1002_aisy_202300746 crossref_primary_10_1080_0954898X_2023_2293895 crossref_primary_10_1016_j_energy_2022_123795 crossref_primary_10_1007_s42979_025_04333_2 crossref_primary_10_32604_cmc_2023_038670 crossref_primary_10_3390_math10132329 crossref_primary_10_1016_j_engappai_2024_109202 crossref_primary_10_1007_s11227_023_05083_9 crossref_primary_10_1007_s11831_025_10228_5 crossref_primary_10_1109_ACCESS_2021_3051573 crossref_primary_10_1007_s10462_021_10075_3 crossref_primary_10_1007_s12065_023_00889_1 crossref_primary_10_3390_math9182302 crossref_primary_10_3390_math10030419 crossref_primary_10_1109_ACCESS_2021_3054053 crossref_primary_10_1016_j_knosys_2022_109215 crossref_primary_10_1016_j_engappai_2022_105622 crossref_primary_10_1007_s10586_025_05328_7 crossref_primary_10_1016_j_matcom_2022_09_010 crossref_primary_10_1016_j_eswa_2021_115178 crossref_primary_10_1016_j_asoc_2023_110252 crossref_primary_10_3390_e24040525 crossref_primary_10_3390_en16052409 crossref_primary_10_1016_j_iot_2023_100683 crossref_primary_10_3390_pr11020498 crossref_primary_10_1007_s12065_022_00762_7 crossref_primary_10_1016_j_ijhydene_2021_01_076 crossref_primary_10_1007_s10462_021_10114_z crossref_primary_10_1007_s10462_024_10747_w crossref_primary_10_1038_s41598_024_77523_2 crossref_primary_10_3390_en14175382 crossref_primary_10_3390_math11143210 crossref_primary_10_1038_s41598_025_99207_1 crossref_primary_10_3390_math10142396 crossref_primary_10_3390_math11112512 crossref_primary_10_1016_j_chaos_2023_113672 crossref_primary_10_1109_ACCESS_2020_3046536 crossref_primary_10_1007_s10586_024_04978_3 crossref_primary_10_1016_j_engappai_2022_105619 crossref_primary_10_1016_j_eswa_2023_119655 crossref_primary_10_1093_jcde_qwad109 crossref_primary_10_1007_s10462_023_10680_4 crossref_primary_10_1016_j_asoc_2022_109794 crossref_primary_10_1093_jcde_qwac131 crossref_primary_10_3390_math9172053 crossref_primary_10_1016_j_compbiomed_2024_108134 crossref_primary_10_1007_s12530_023_09552_7 crossref_primary_10_1016_j_energy_2024_131312 crossref_primary_10_1016_j_enconman_2022_116022 crossref_primary_10_1016_j_matcom_2022_10_007 crossref_primary_10_32604_cmc_2022_021719 crossref_primary_10_1007_s41062_024_01583_6 crossref_primary_10_1016_j_ecmx_2025_101218 crossref_primary_10_37394_23201_2020_19_35 crossref_primary_10_1016_j_eswa_2024_124190 crossref_primary_10_1177_0958305X221140574 crossref_primary_10_1063_5_0073335 crossref_primary_10_1002_int_22617 crossref_primary_10_1002_oca_3051 crossref_primary_10_1016_j_cma_2024_117588 crossref_primary_10_1016_j_matcom_2022_08_020 crossref_primary_10_1038_s41598_023_36066_8 crossref_primary_10_1111_exsy_12843 crossref_primary_10_1049_rpg2_12523 crossref_primary_10_1155_2022_3343505 crossref_primary_10_1007_s00500_023_08925_z crossref_primary_10_1016_j_renene_2025_123995 crossref_primary_10_1109_ACCESS_2022_3216321 crossref_primary_10_1016_j_knosys_2024_111907 crossref_primary_10_32604_cmc_2022_030906 crossref_primary_10_1142_S0218488525500229 crossref_primary_10_1016_j_energy_2022_123351 crossref_primary_10_1016_j_measurement_2024_116254 crossref_primary_10_1016_j_advengsoft_2022_103405 crossref_primary_10_3390_app12125893 crossref_primary_10_1109_ACCESS_2021_3066180 crossref_primary_10_1007_s11831_025_10249_0 crossref_primary_10_1016_j_est_2022_104535 crossref_primary_10_1016_j_compbiomed_2024_108394 crossref_primary_10_1109_ACCESS_2021_3059665 crossref_primary_10_1038_s41598_024_81125_3 crossref_primary_10_1109_ACCESS_2020_3045975 crossref_primary_10_3390_math11153297 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1016_j_eswa_2022_117562 crossref_primary_10_1016_j_eswa_2023_120905 crossref_primary_10_1007_s11042_025_21115_3 crossref_primary_10_1016_j_heliyon_2024_e30018 crossref_primary_10_1016_j_compbiomed_2021_104984 crossref_primary_10_1109_ACCESS_2021_3073276 crossref_primary_10_1016_j_energy_2021_121561 crossref_primary_10_1109_ACCESS_2024_3495518 crossref_primary_10_3390_biomimetics10090560 crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1007_s10586_024_04601_5 crossref_primary_10_1016_j_cma_2022_114616 crossref_primary_10_3233_JHS_230170 crossref_primary_10_1007_s00521_024_09603_3 crossref_primary_10_1016_j_jechem_2023_02_019 crossref_primary_10_1109_ACCESS_2021_3081366 crossref_primary_10_3390_app112110191 crossref_primary_10_1007_s00500_022_07778_2 crossref_primary_10_1016_j_compbiomed_2024_109011 crossref_primary_10_1002_cpe_7766 crossref_primary_10_3390_app13020906 crossref_primary_10_1007_s44444_025_00009_7 crossref_primary_10_1016_j_asoc_2025_113527 crossref_primary_10_1038_s41598_025_04290_z crossref_primary_10_1016_j_displa_2024_102799 crossref_primary_10_1007_s00366_021_01322_w crossref_primary_10_1038_s41598_025_11566_x crossref_primary_10_1016_j_compbiomed_2022_105563 crossref_primary_10_1155_2024_7616065 crossref_primary_10_3390_buildings14092842 crossref_primary_10_3390_biomimetics8040332 crossref_primary_10_1007_s10489_021_03155_y crossref_primary_10_1002_nme_6573 crossref_primary_10_1007_s10462_024_10981_2 crossref_primary_10_1007_s10489_021_02670_2 crossref_primary_10_1093_jcde_qwad096 crossref_primary_10_3390_electronics14010035 crossref_primary_10_1016_j_knosys_2022_108269 crossref_primary_10_1016_j_energy_2023_129034 crossref_primary_10_1093_jcde_qwae060 crossref_primary_10_1016_j_energy_2024_131510 crossref_primary_10_1088_1402_4896_adb706 crossref_primary_10_1049_cmu2_70029 crossref_primary_10_3390_en15134556 crossref_primary_10_1007_s11063_020_10406_5 crossref_primary_10_1631_FITEE_2200237 crossref_primary_10_1016_j_eswa_2025_126592 crossref_primary_10_1109_ACCESS_2022_3183562 crossref_primary_10_3390_su131810419 crossref_primary_10_1016_j_asoc_2021_107900 crossref_primary_10_1007_s00521_022_07835_9 crossref_primary_10_1080_0305215X_2025_2464862 crossref_primary_10_3390_electronics11121903 crossref_primary_10_1016_j_eswa_2022_118222 crossref_primary_10_1109_ACCESS_2020_3044857 crossref_primary_10_3390_math9131477 crossref_primary_10_1016_j_eswa_2025_129195 crossref_primary_10_1016_j_compbiomed_2022_105344 crossref_primary_10_1007_s10489_023_05179_y crossref_primary_10_3390_en16093648 crossref_primary_10_1002_ett_4932 crossref_primary_10_1155_2022_4639208 crossref_primary_10_1007_s13369_023_08217_6 crossref_primary_10_1016_j_eswa_2023_122200 crossref_primary_10_1007_s11831_023_09897_x crossref_primary_10_1016_j_energy_2025_135955 crossref_primary_10_1155_2023_9930954 crossref_primary_10_1007_s00366_021_01471_y crossref_primary_10_1007_s00607_021_00955_5 crossref_primary_10_1016_j_advengsoft_2024_103696 crossref_primary_10_1016_j_cma_2023_116582 crossref_primary_10_1155_2021_1015367 crossref_primary_10_1007_s11227_022_04755_2 crossref_primary_10_1109_ACCESS_2020_3037197 crossref_primary_10_1007_s10586_024_04501_8 crossref_primary_10_3233_JIFS_232227 crossref_primary_10_1038_s41598_024_81742_y crossref_primary_10_1007_s10462_024_11008_6 crossref_primary_10_3390_rs15082076 crossref_primary_10_1109_ACCESS_2022_3153038 crossref_primary_10_1016_j_asoc_2023_110881 crossref_primary_10_1109_ACCESS_2024_3433483 crossref_primary_10_1038_s41598_025_99908_7 crossref_primary_10_1109_ACCESS_2021_3129255 crossref_primary_10_1007_s00500_023_09018_7 crossref_primary_10_1016_j_knosys_2021_107467 crossref_primary_10_1007_s10462_022_10137_0 crossref_primary_10_1016_j_knosys_2022_108517 crossref_primary_10_1007_s00521_024_10009_4 crossref_primary_10_3233_AIS_230408 crossref_primary_10_1007_s11227_023_05331_y crossref_primary_10_1038_s41598_025_92983_w crossref_primary_10_1007_s10462_023_10403_9 crossref_primary_10_1016_j_matcom_2023_04_027 crossref_primary_10_1007_s10489_021_02865_7 crossref_primary_10_1177_0958305X221135020 crossref_primary_10_1016_j_bspc_2023_104965 crossref_primary_10_1016_j_swevo_2023_101459 crossref_primary_10_1016_j_eswa_2023_121218 crossref_primary_10_1007_s12083_025_01918_9 crossref_primary_10_1007_s00500_024_10339_4 crossref_primary_10_1049_rpg2_12475 crossref_primary_10_1016_j_eswa_2023_120242 crossref_primary_10_1002_eng2_12381 crossref_primary_10_3390_math11092217 crossref_primary_10_3390_electronics10030312 crossref_primary_10_1007_s42235_025_00656_1 crossref_primary_10_1016_j_energy_2024_131159 crossref_primary_10_1007_s10639_023_11885_4 crossref_primary_10_1016_j_molliq_2022_120559 crossref_primary_10_1109_ACCESS_2020_3021527 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_3390_math11153312 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1007_s00521_021_06634_y crossref_primary_10_1080_0952813X_2023_2300004 crossref_primary_10_1007_s00500_021_06229_8 crossref_primary_10_1007_s00542_024_05801_0 crossref_primary_10_1016_j_apenergy_2023_122417 crossref_primary_10_3390_math10121991 crossref_primary_10_1007_s00521_024_10694_1 crossref_primary_10_1007_s10586_024_04644_8 crossref_primary_10_1109_JSEN_2024_3508742 crossref_primary_10_1016_j_egyr_2024_04_016 crossref_primary_10_1109_ACCESS_2023_3280564 |
| Cites_doi | 10.1016/j.knosys.2018.11.024 10.1007/s12065-019-00212-x 10.1016/j.ins.2009.03.004 10.1007/s00158-009-0454-5 10.1016/j.mechmachtheory.2006.10.002 10.1016/j.future.2019.02.028 10.1016/j.advengsoft.2013.12.007 10.1016/0022-2569(70)90064-9 10.1109/TEVC.2003.814902 10.1109/NABIC.2009.5393690 10.1016/j.compstruc.2012.07.010 10.1007/978-3-540-72950-1_77 10.1016/j.engappai.2019.08.025 10.1016/j.cnsns.2012.05.010 10.1103/PhysRevLett.89.150201 10.1080/00268976.2011.552444 10.1109/TEVC.2002.804320 10.1016/j.ins.2008.02.014 10.1016/j.future.2019.07.015 10.1007/s40313-016-0242-6 10.1007/978-3-642-12538-6_6 10.1016/j.advengsoft.2005.04.005 10.1016/j.knosys.2019.105190 10.1007/978-3-642-25566-3_17 10.1080/01621459.1937.10503522 10.1016/j.knosys.2015.07.006 10.1109/TEVC.2008.919004 10.14569/IJACSA.2019.0100548 10.1109/4235.771163 10.1016/j.future.2017.10.052 10.1007/s00500-018-3102-4 10.1177/1687814018824930 10.1214/aoms/1177731944 10.1038/scientificamerican0792-66 10.1093/comjnl/bxy133 10.1016/j.asoc.2019.105723 10.1007/s00521-019-04464-7 10.1109/CEC.1999.782657 10.1109/CEC.2017.7969524 10.1016/j.future.2020.03.055 10.1016/j.advengsoft.2015.01.010 10.1109/ACCESS.2019.2918753 10.1016/j.advengsoft.2016.01.008 10.1016/j.swevo.2018.02.013 10.1016/j.eswa.2020.113338 10.1109/TSMCB.2009.2015956 10.1016/j.eswa.2019.05.035 10.1126/science.220.4598.671 10.1007/s00158-008-0238-3 10.1016/j.eswa.2018.08.012 10.1016/j.fcij.2018.03.002 10.1016/j.sbspro.2016.09.057 10.1007/s00521-015-1870-7 10.1016/S0045-7825(01)00323-1 10.1016/j.swevo.2014.02.002 10.1016/j.asoc.2013.12.005 10.1016/j.asoc.2012.11.026 10.1007/s40747-016-0022-8 10.1016/j.knosys.2020.105709 10.1016/j.knosys.2015.12.022 10.1016/j.swevo.2019.03.013 10.1109/ICNN.1995.488968 10.1016/j.asoc.2009.08.031 10.1016/j.eswa.2016.03.047 10.1016/j.cad.2010.12.015 10.1016/j.engappai.2019.01.001 10.1016/j.asoc.2012.05.018 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Dec 15, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Dec 15, 2020 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.113702 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_113702 S0957417420305261 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-2fdd6ab7f0bd546d050e8e613f599978dc8efda0ceec1a82f8df98ada54ff08b3 |
| ISICitedReferencesCount | 296 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576781400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 30 05:18:05 EST 2025 Tue Nov 18 20:55:30 EST 2025 Sat Nov 29 07:08:15 EST 2025 Fri Feb 23 02:47:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Nature-inspired meta-heuristic Social optimization algorithm Corporate hierarchy based optimization Global optimization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-2fdd6ab7f0bd546d050e8e613f599978dc8efda0ceec1a82f8df98ada54ff08b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7961-3608 |
| PQID | 2461615617 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2461615617 crossref_primary_10_1016_j_eswa_2020_113702 crossref_citationtrail_10_1016_j_eswa_2020_113702 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113702 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-15 |
| PublicationDateYYYYMMDD | 2020-12-15 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0155) 2019; 97 Gupta, Tiwari, Nair (b0135) 2007; 42 Fadakar, Ebrahimi (b0100) 2016 Friedman (b0115) 1937; 32 Morais, Mourelle, Nedjah (b0300) 2018 Salih, Alsewari (b0360) 2019 Rashedi, Nezamabadi-pour, Saryazdi (b0335) 2009; 179 Lv, W., Xie, Q., Liu, Z., Zhang, X., Luo, S., & Cheng, S. (2010). Election campaign algorithm. In Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts - towards memetic algorithms. Shastri, Jagetia, Sehgal, Patel, Kulkarni (b0375) 2019 Lampinen, Storn (b0215) 2004 Flores, López, Barrera (b0110) 2011 Coello (b0055) 2002; 191 Satapathy, Naik (b0365) 2016; 2 Wang, L., & po Li, L. (2009). An effective differential evolution with level comparison for constrained engineering design. , . Kirkpatrick, Gelatt, Vecchi (b0195) 1983; 220 Ray, Liew (b0340) 2003; 7 Yao, Liu, Lin (b0425) 1999; 3 (pp. 1942–1948). IEEE, Vol. 4. Masadeh, R., A., B., & Sharieh, A. (2019). Sea lion optimization algorithm. Singh, Elaziz, Xiong (b0385) 2019; 84 Deb, Agrawal, Pratap, Meyarivan (b0070) 2000 Gandomi, Alavi (b0125) 2012; 17 Mirjalili (b0265) 2015; 89 Zhan, Zhang, Li, Chung (b0445) 2009; 39 Muneender, Vinodkumar (b0310) 2012 Huning (b0165) 1976; 62 Kumar, Kulkarni, Satapathy (b0210) 2018; 81 Salgotra, Singh (b0355) 2019; 31 Zar (b0430) 1999 Sadollah, Bahreininejad, Eskandar, Hamdi (b0350) 2013; 13 Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In (pp. 65–74). Springer, Berlin Heidelberg. Borji (b0045) 2007 Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection (Complex adaptive systems). A Bradford Book. Razmjooy, Khalilpour, Ramezani (b0345) 2016; 27 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0150) 2019; 101 (pp. 1835–1842). IEEE. Harifi, Khalilian, Mohammadzadeh, Ebrahimnejad (b0145) 2019; 12 Friedman (b0120) 1940; 11 Jain, Singh, Rani (b0170) 2019; 44 Wang, Cai, Zhou, Fan (b0395) 2008; 37 Atashpaz-Gargari, Lucas (b0030) 2007 Balochian, Baloochian (b0040) 2019; 134 Holland (b0160) 1992; 267 Yadav (b0405) 2019; 48 Zhang, Luo, Wang (b0440) 2008; 178 Melvix (b0245) 2014 Karaboga, Basturk (b0180) 2007 Mirjalili, Mirjalili, Hatamlou (b0280) 2015; 27 Rao, Savsani, Vakharia (b0330) 2011; 43 Alsattar, Zaidan, Zaidan (b0015) 2019 Ramezani, Lotfi (b0325) 2013; 13 Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. In Erol, Eksin (b0090) 2006; 37 Mirjalili (b0260) 2015; 83 Shadravan, Naji, Bardsiri (b0370) 2019; 80 Askari, Younas, Saeed (b0025) 2020 Yang (b0410) 2009 Dhiman, Kumar (b0075) 2019; 165 Ahmadi-Javid (b0005) 2011 (pp. 210–214). IEEE. Mahmoodabadi, Rasekh, Zohari (b0235) 2018; 3 Kumar, A., Misra, R. K., & Singh, D. (2017). Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In Han, Kim (b0140) 2002; 6 Zhao, Qin, Zhang, Ma, Zhang, Song (b0450) 2019; 115 Milton (b0255) 1939; 34 Mirjalili, Mirjalili, Lewis (b0285) 2014; 69 Awad, N.H., P.S.J.L.B.Q., Ali, M. Z. (2017). Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. In Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Moosavian, Roodsari (b0290) 2014; 17 (6), 947–963. Arora, Singh (b0020) 2018; 23 Daskin, Kais (b0065) 2011; 109 Mirjalili (b0270) 2016; 96 Simon (b0380) 2008; 12 Xu, Cui, Zeng (b0400) 2010 Ahmady, Mehrpour, Nikooravesh (b0010) 2016; 230 Faramarzi, Heidarinejad, Stephens, Mirjalili (b0105) 2020; 191 Kashan (b0185) 2014; 16 Brammya, Praveena, Preetha, Ramya, Rajakumar, Binu (b0050) 2019 IEEE. Mirjalili, Lewis (b0275) 2016; 95 Narayanan, Moore (b0320) 1996 Golinski (b0130) 1970; 5 Nabil (b0315) 2016; 57 (5). Crawford, Soto, Cabrera, Salas-Fernández, Paredes (b0060) 2019 Jones (b0175) 2019 Zaránd, Pázmándi, Pál, Zimányi (b0435) 2002; 89 Khishe, Mosavi (b0190) 2020; 149 Zhao, Wang, Zhang (b0455) 2019; 7 Liu, Cai, Wang (b0225) 2010; 10 (pp. 1470–1477). IEEE, Vol. 2. Mezura-Montes, Velázquez-Reyes, Coello (b0250) 2006 Zhu, Hu, Zhu (b0460) 2019; 11 Moosavi, Bardsiri (b0295) 2019; 86 Eskandar, Sadollah, Bahreininejad, Hamdi (b0095) 2012; 110–111 10.1016/j.eswa.2020.113702_b0305 Zar (10.1016/j.eswa.2020.113702_b0430) 1999 Hashim (10.1016/j.eswa.2020.113702_b0150) 2019; 101 Satapathy (10.1016/j.eswa.2020.113702_b0365) 2016; 2 Arora (10.1016/j.eswa.2020.113702_b0020) 2018; 23 Gandomi (10.1016/j.eswa.2020.113702_b0125) 2012; 17 10.1016/j.eswa.2020.113702_b0220 Salih (10.1016/j.eswa.2020.113702_b0360) 2019 Rao (10.1016/j.eswa.2020.113702_b0330) 2011; 43 10.1016/j.eswa.2020.113702_b0420 Ahmady (10.1016/j.eswa.2020.113702_b0010) 2016; 230 Nabil (10.1016/j.eswa.2020.113702_b0315) 2016; 57 Shastri (10.1016/j.eswa.2020.113702_b0375) 2019 10.1016/j.eswa.2020.113702_b0390 Friedman (10.1016/j.eswa.2020.113702_b0115) 1937; 32 Melvix (10.1016/j.eswa.2020.113702_b0245) 2014 Wang (10.1016/j.eswa.2020.113702_b0395) 2008; 37 Alsattar (10.1016/j.eswa.2020.113702_b0015) 2019 Friedman (10.1016/j.eswa.2020.113702_b0120) 1940; 11 Jones (10.1016/j.eswa.2020.113702_b0175) 2019 Moosavi (10.1016/j.eswa.2020.113702_b0295) 2019; 86 Eskandar (10.1016/j.eswa.2020.113702_b0095) 2012; 110–111 Balochian (10.1016/j.eswa.2020.113702_b0040) 2019; 134 Sadollah (10.1016/j.eswa.2020.113702_b0350) 2013; 13 Shadravan (10.1016/j.eswa.2020.113702_b0370) 2019; 80 Crawford (10.1016/j.eswa.2020.113702_b0060) 2019 Deb (10.1016/j.eswa.2020.113702_b0070) 2000 Kirkpatrick (10.1016/j.eswa.2020.113702_b0195) 1983; 220 Mirjalili (10.1016/j.eswa.2020.113702_b0265) 2015; 89 Yao (10.1016/j.eswa.2020.113702_b0425) 1999; 3 Daskin (10.1016/j.eswa.2020.113702_b0065) 2011; 109 Borji (10.1016/j.eswa.2020.113702_b0045) 2007 Dhiman (10.1016/j.eswa.2020.113702_b0075) 2019; 165 Harifi (10.1016/j.eswa.2020.113702_b0145) 2019; 12 Khishe (10.1016/j.eswa.2020.113702_b0190) 2020; 149 Kumar (10.1016/j.eswa.2020.113702_b0210) 2018; 81 Mezura-Montes (10.1016/j.eswa.2020.113702_b0250) 2006 Golinski (10.1016/j.eswa.2020.113702_b0130) 1970; 5 Liu (10.1016/j.eswa.2020.113702_b0225) 2010; 10 10.1016/j.eswa.2020.113702_b0230 10.1016/j.eswa.2020.113702_b0035 10.1016/j.eswa.2020.113702_b0080 Brammya (10.1016/j.eswa.2020.113702_b0050) 2019 Lampinen (10.1016/j.eswa.2020.113702_b0215) 2004 Mirjalili (10.1016/j.eswa.2020.113702_b0270) 2016; 96 Gupta (10.1016/j.eswa.2020.113702_b0135) 2007; 42 Simon (10.1016/j.eswa.2020.113702_b0380) 2008; 12 Zhan (10.1016/j.eswa.2020.113702_b0445) 2009; 39 Ray (10.1016/j.eswa.2020.113702_b0340) 2003; 7 Yang (10.1016/j.eswa.2020.113702_b0410) 2009 Narayanan (10.1016/j.eswa.2020.113702_b0320) 1996 Coello (10.1016/j.eswa.2020.113702_b0055) 2002; 191 10.1016/j.eswa.2020.113702_b0205 Heidari (10.1016/j.eswa.2020.113702_b0155) 2019; 97 Zhang (10.1016/j.eswa.2020.113702_b0440) 2008; 178 Ramezani (10.1016/j.eswa.2020.113702_b0325) 2013; 13 10.1016/j.eswa.2020.113702_b0200 Mahmoodabadi (10.1016/j.eswa.2020.113702_b0235) 2018; 3 10.1016/j.eswa.2020.113702_b0240 10.1016/j.eswa.2020.113702_b0085 Ahmadi-Javid (10.1016/j.eswa.2020.113702_b0005) 2011 Jain (10.1016/j.eswa.2020.113702_b0170) 2019; 44 Yadav (10.1016/j.eswa.2020.113702_b0405) 2019; 48 Morais (10.1016/j.eswa.2020.113702_b0300) 2018 Huning (10.1016/j.eswa.2020.113702_b0165) 1976; 62 Muneender (10.1016/j.eswa.2020.113702_b0310) 2012 Zaránd (10.1016/j.eswa.2020.113702_b0435) 2002; 89 Holland (10.1016/j.eswa.2020.113702_b0160) 1992; 267 Mirjalili (10.1016/j.eswa.2020.113702_b0285) 2014; 69 Kashan (10.1016/j.eswa.2020.113702_b0185) 2014; 16 Zhao (10.1016/j.eswa.2020.113702_b0455) 2019; 7 Zhu (10.1016/j.eswa.2020.113702_b0460) 2019; 11 Faramarzi (10.1016/j.eswa.2020.113702_b0105) 2020; 191 Han (10.1016/j.eswa.2020.113702_b0140) 2002; 6 Zhao (10.1016/j.eswa.2020.113702_b0450) 2019; 115 Moosavian (10.1016/j.eswa.2020.113702_b0290) 2014; 17 Fadakar (10.1016/j.eswa.2020.113702_b0100) 2016 Salgotra (10.1016/j.eswa.2020.113702_b0355) 2019; 31 10.1016/j.eswa.2020.113702_b0415 Rashedi (10.1016/j.eswa.2020.113702_b0335) 2009; 179 Atashpaz-Gargari (10.1016/j.eswa.2020.113702_b0030) 2007 Xu (10.1016/j.eswa.2020.113702_b0400) 2010 Askari (10.1016/j.eswa.2020.113702_b0025) 2020 Singh (10.1016/j.eswa.2020.113702_b0385) 2019; 84 Mirjalili (10.1016/j.eswa.2020.113702_b0280) 2015; 27 Razmjooy (10.1016/j.eswa.2020.113702_b0345) 2016; 27 Karaboga (10.1016/j.eswa.2020.113702_b0180) 2007 Milton (10.1016/j.eswa.2020.113702_b0255) 1939; 34 Mirjalili (10.1016/j.eswa.2020.113702_b0260) 2015; 83 Mirjalili (10.1016/j.eswa.2020.113702_b0275) 2016; 95 Erol (10.1016/j.eswa.2020.113702_b0090) 2006; 37 Flores (10.1016/j.eswa.2020.113702_b0110) 2011 |
| References_xml | – volume: 191 start-page: 1245 year: 2002 end-page: 1287 ident: b0055 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0285 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 23 start-page: 715 year: 2018 end-page: 734 ident: b0020 article-title: Butterfly optimization algorithm: A novel approach for global optimization publication-title: Soft Computing – start-page: 105709 year: 2020 ident: b0025 article-title: Political optimizer: A novel socio-inspired meta-heuristic for global optimization publication-title: Knowledge-Based Systems – year: 2019 ident: b0015 article-title: Novel meta-heuristic bald eagle search optimisation algorithm publication-title: Artificial Intelligence Review – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: b0120 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: The Annals of Mathematical Statistics – start-page: 123 year: 2004 end-page: 166 ident: b0215 article-title: Differential evolution publication-title: New optimization techniques in engineering – volume: 3 start-page: 191 year: 2018 end-page: 199 ident: b0235 article-title: Tga: Team game algorithm publication-title: Future Computing and Informatics Journal – volume: 34 start-page: 109 year: 1939 ident: b0255 article-title: A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association – start-page: 849 year: 2000 end-page: 858 ident: b0070 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II publication-title: Parallel problem solving from nature PPSN VI – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b0155 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems – volume: 10 start-page: 629 year: 2010 end-page: 640 ident: b0225 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Applied Soft Computing – volume: 17 start-page: 14 year: 2014 end-page: 24 ident: b0290 article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks publication-title: Swarm and Evolutionary Computation – year: 2011 ident: b0005 article-title: Anarchic society optimization: A human-inspired method publication-title: 2011 IEEE congress of evolutionary computation (CEC) – volume: 7 start-page: 73182 year: 2019 end-page: 73206 ident: b0455 article-title: Supply-demand-based optimization: A novel economics-inspired algorithm for global optimization publication-title: IEEE Access – reference: (pp. 1470–1477). IEEE, Vol. 2. – reference: Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection (Complex adaptive systems). A Bradford Book. – reference: & – reference: (pp. 210–214). IEEE. – reference: (6), 947–963. – reference: Awad, N.H., P.S.J.L.B.Q., Ali, M. Z. (2017). Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. In – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: b0330 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design – volume: 44 start-page: 148 year: 2019 end-page: 175 ident: b0170 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm and Evolutionary Computation – reference: (5). – volume: 39 start-page: 1362 year: 2009 end-page: 1381 ident: b0445 article-title: Adaptive particle swarm optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b0150 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b0260 article-title: The ant lion optimizer publication-title: Advances in Engineering Software – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: b0075 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowledge-Based Systems – reference: , – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b0335 article-title: GSA: A gravitational search algorithm publication-title: Information Sciences – volume: 62 start-page: 298 year: 1976 end-page: 300 ident: b0165 publication-title: ARSP: Archiv für Rechts- und Sozialphilosophie/ Archives for Philosophy of Law and Social – volume: 42 start-page: 1418 year: 2007 end-page: 1443 ident: b0135 article-title: Multi-objective design optimisation of rolling bearings using genetic algorithms publication-title: Mechanism and Machine Theory – start-page: 583 year: 2010 end-page: 590 ident: b0400 article-title: Social emotional optimization algorithm for nonlinear constrained optimization problems publication-title: Swarm, Evolutionary, and Memetic Computing – start-page: 226 year: 2011 end-page: 237 ident: b0110 article-title: Gravitational interactions optimization publication-title: Lecture notes in computer science – reference: Lv, W., Xie, Q., Liu, Z., Zhang, X., Luo, S., & Cheng, S. (2010). Election campaign algorithm. In – volume: 134 start-page: 178 year: 2019 end-page: 191 ident: b0040 article-title: Social mimic optimization algorithm and engineering applications publication-title: Expert Systems with Applications – year: 2019 ident: b0175 article-title: Organizational theory, design, and change – volume: 16 start-page: 171 year: 2014 end-page: 200 ident: b0185 article-title: League championship algorithm (LCA): An algorithm for global optimization inspired by sport championships publication-title: Applied Soft Computing – year: 2014 ident: b0245 article-title: Greedy politics optimization: Metaheuristic inspired by political strategies adopted during state assembly elections publication-title: 2014 IEEE international advance computing conference (IACC) – volume: 81 start-page: 252 year: 2018 end-page: 272 ident: b0210 article-title: Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology publication-title: Future Generation Computer Systems – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0275 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – start-page: 43 year: 2019 end-page: 52 ident: b0060 article-title: Using a social media inspired optimization algorithm to solve the set covering problem publication-title: International conference on human-computer interaction – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: b0350 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Applied Soft Computing – volume: 110–111 start-page: 151 year: 2012 end-page: 166 ident: b0095 article-title: Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Computers & Structures – volume: 6 start-page: 580 year: 2002 end-page: 593 ident: b0140 article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 115 start-page: 329 year: 2019 end-page: 345 ident: b0450 article-title: A two-stage differential biogeography-based optimization algorithm and its performance analysis publication-title: Expert Systems with Applications – reference: . IEEE. – volume: 191 year: 2020 ident: b0105 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowledge-Based Systems – volume: 48 start-page: 93 year: 2019 end-page: 108 ident: b0405 article-title: Aefa: Artificial electric field algorithm for global optimization publication-title: Swarm and Evolutionary Computation – reference: Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts - towards memetic algorithms. – volume: 11 year: 2019 ident: b0460 article-title: A dynamic adaptive particle swarm optimization and genetic algorithm for different constrained engineering design optimization problems publication-title: Advances in Mechanical Engineering – reference: (pp. 1942–1948). IEEE, Vol. 4. – volume: 5 start-page: 287 year: 1970 end-page: 309 ident: b0130 article-title: Optimal synthesis problems solved by means of nonlinear programming and random methods publication-title: Journal of Mechanisms – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b0265 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems – reference: Wang, L., & po Li, L. (2009). An effective differential evolution with level comparison for constrained engineering design. – volume: 7 start-page: 386 year: 2003 end-page: 396 ident: b0340 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Transactions on Evolutionary Computation – volume: 13 start-page: 2837 year: 2013 end-page: 2856 ident: b0325 article-title: Social-based algorithm (SBA) publication-title: Applied Soft Computing – start-page: 789 year: 2007 end-page: 798 ident: b0180 article-title: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems publication-title: Lecture notes in computer science – volume: 37 start-page: 106 year: 2006 end-page: 111 ident: b0090 article-title: A new optimization method: Big bang–big crunch publication-title: Advances in Engineering Software – volume: 27 start-page: 495 year: 2015 end-page: 513 ident: b0280 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications – start-page: 25 year: 2006 end-page: 32 ident: b0250 article-title: Modified differential evolution for constrained optimization publication-title: 2006 IEEE international conference on evolutionary computation – reference: (pp. 1835–1842). IEEE. – volume: 2 start-page: 173 year: 2016 end-page: 203 ident: b0365 article-title: Social group optimization (SGO): A new population evolutionary optimization technique publication-title: Complex & Intelligent Systems – volume: 32 start-page: 675 year: 1937 end-page: 701 ident: b0115 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association – reference: Kumar, A., Misra, R. K., & Singh, D. (2017). Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: b0125 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation – reference: Masadeh, R., A., B., & Sharieh, A. (2019). Sea lion optimization algorithm. – volume: 37 start-page: 395 year: 2008 end-page: 413 ident: b0395 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Structural and Multidisciplinary Optimization – volume: 230 start-page: 455 year: 2016 end-page: 462 ident: b0010 article-title: Organizational structure publication-title: Procedia - Social and Behavioral Sciences – reference: (pp. 65–74). Springer, Berlin Heidelberg. – year: 1999 ident: b0430 article-title: Biostatistical analysis – volume: 80 start-page: 20 year: 2019 end-page: 34 ident: b0370 article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems publication-title: Engineering Applications of Artificial Intelligence – reference: Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: b0160 article-title: Genetic algorithms publication-title: Scientific American – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b0270 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b0195 article-title: Optimization by simulated annealing publication-title: Science – reference: Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. In – volume: 12 start-page: 211 year: 2019 end-page: 226 ident: b0145 article-title: Emperor penguins colony: A new metaheuristic algorithm for optimization publication-title: Evolutionary Intelligence – volume: 149 start-page: 113338 year: 2020 ident: b0190 article-title: Chimp optimization algorithm publication-title: Expert Systems with Applications – volume: 86 start-page: 165 year: 2019 end-page: 181 ident: b0295 article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm publication-title: Engineering Applications of Artificial Intelligence – year: 2019 ident: b0360 article-title: A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer publication-title: Neural Computing and Applications – reference: Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In – volume: 84 year: 2019 ident: b0385 article-title: Ludo game-based metaheuristics for global and engineering optimization publication-title: Applied Soft Computing – year: 2007 ident: b0030 article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition publication-title: 2007 IEEE congress on evolutionary computation – year: 1996 ident: b0320 article-title: Quantum-inspired genetic algorithms publication-title: Proceedings of IEEE international conference on evolutionary computation – year: 2016 ident: b0100 article-title: A new metaheuristic football game inspired algorithm publication-title: 2016 1st Conference on swarm intelligence and evolutionary computation – volume: 31 start-page: 8837 year: 2019 end-page: 8857 ident: b0355 article-title: The naked mole-rat algorithm publication-title: Neural Computing and Applications – year: 2012 ident: b0310 article-title: Particle swarm optimization with time varying acceleration coefficients for congestion management publication-title: 2012 IEEE conference on sustainable utilization and development in engineering and technology (STUDENT) – volume: 178 start-page: 3043 year: 2008 end-page: 3074 ident: b0440 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Information Sciences – volume: 109 start-page: 761 year: 2011 end-page: 772 ident: b0065 article-title: Group leaders optimization algorithm publication-title: Molecular Physics – start-page: 193 year: 2019 end-page: 214 ident: b0375 article-title: Expectation algorithm (exa): A socio-inspired optimization methodology publication-title: Socio-cultural Inspired Metaheuristics – year: 2019 ident: b0050 article-title: Deer hunting optimization algorithm: A new nature-inspired meta-heuristic paradigm publication-title: The Computer Journal – reference: Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In – start-page: 169 year: 2018 end-page: 180 ident: b0300 article-title: Hitchcock birds inspired algorithm publication-title: Computational collective intelligence – start-page: 61 year: 2007 end-page: 71 ident: b0045 article-title: A new global optimization algorithm inspired by parliamentary political competitions publication-title: Mexican international conference on artificial intelligence – volume: 27 start-page: 419 year: 2016 end-page: 440 ident: b0345 article-title: A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: Theory and its application in PID designing for AVR system publication-title: Journal of Control, Automation and Electrical Systems – reference: . – start-page: 169 year: 2009 end-page: 178 ident: b0410 article-title: Firefly algorithms for multimodal optimization publication-title: Stochastic algorithms: Foundations and applications – volume: 57 start-page: 192 year: 2016 end-page: 203 ident: b0315 article-title: A modified flower pollination algorithm for global optimization publication-title: Expert Systems with Applications – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b0380 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 89 year: 2002 ident: b0435 article-title: Using hysteresis for optimization publication-title: Physical Review Letters – reference: Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: b0425 article-title: Evolutionary programming made faster publication-title: IEEE Transactions on Evolutionary Computation – start-page: 43 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0060 article-title: Using a social media inspired optimization algorithm to solve the set covering problem – year: 2019 ident: 10.1016/j.eswa.2020.113702_b0175 – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0075 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.11.024 – volume: 12 start-page: 211 issue: 2 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0145 article-title: Emperor penguins colony: A new metaheuristic algorithm for optimization publication-title: Evolutionary Intelligence doi: 10.1007/s12065-019-00212-x – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.eswa.2020.113702_b0335 article-title: GSA: A gravitational search algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2009.03.004 – volume: 62 start-page: 298 issue: 2 year: 1976 ident: 10.1016/j.eswa.2020.113702_b0165 publication-title: ARSP: Archiv für Rechts- und Sozialphilosophie/ Archives for Philosophy of Law and Social – ident: 10.1016/j.eswa.2020.113702_b0390 doi: 10.1007/s00158-009-0454-5 – ident: 10.1016/j.eswa.2020.113702_b0230 – volume: 42 start-page: 1418 issue: 10 year: 2007 ident: 10.1016/j.eswa.2020.113702_b0135 article-title: Multi-objective design optimisation of rolling bearings using genetic algorithms publication-title: Mechanism and Machine Theory doi: 10.1016/j.mechmachtheory.2006.10.002 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0155 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – start-page: 123 year: 2004 ident: 10.1016/j.eswa.2020.113702_b0215 article-title: Differential evolution – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2020.113702_b0285 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 5 start-page: 287 issue: 3 year: 1970 ident: 10.1016/j.eswa.2020.113702_b0130 article-title: Optimal synthesis problems solved by means of nonlinear programming and random methods publication-title: Journal of Mechanisms doi: 10.1016/0022-2569(70)90064-9 – ident: 10.1016/j.eswa.2020.113702_b0305 – volume: 7 start-page: 386 issue: 4 year: 2003 ident: 10.1016/j.eswa.2020.113702_b0340 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2003.814902 – year: 2014 ident: 10.1016/j.eswa.2020.113702_b0245 article-title: Greedy politics optimization: Metaheuristic inspired by political strategies adopted during state assembly elections – ident: 10.1016/j.eswa.2020.113702_b0420 doi: 10.1109/NABIC.2009.5393690 – volume: 110–111 start-page: 151 year: 2012 ident: 10.1016/j.eswa.2020.113702_b0095 article-title: Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Computers & Structures doi: 10.1016/j.compstruc.2012.07.010 – start-page: 789 year: 2007 ident: 10.1016/j.eswa.2020.113702_b0180 article-title: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems doi: 10.1007/978-3-540-72950-1_77 – year: 2019 ident: 10.1016/j.eswa.2020.113702_b0360 article-title: A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer publication-title: Neural Computing and Applications – start-page: 849 year: 2000 ident: 10.1016/j.eswa.2020.113702_b0070 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II – volume: 86 start-page: 165 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0295 article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2019.08.025 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 10.1016/j.eswa.2020.113702_b0125 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2012.05.010 – volume: 89 issue: 15 year: 2002 ident: 10.1016/j.eswa.2020.113702_b0435 article-title: Using hysteresis for optimization publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.89.150201 – volume: 109 start-page: 761 issue: 5 year: 2011 ident: 10.1016/j.eswa.2020.113702_b0065 article-title: Group leaders optimization algorithm publication-title: Molecular Physics doi: 10.1080/00268976.2011.552444 – volume: 6 start-page: 580 issue: 6 year: 2002 ident: 10.1016/j.eswa.2020.113702_b0140 article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2002.804320 – volume: 178 start-page: 3043 issue: 15 year: 2008 ident: 10.1016/j.eswa.2020.113702_b0440 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Information Sciences doi: 10.1016/j.ins.2008.02.014 – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0150 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.07.015 – volume: 27 start-page: 419 issue: 4 year: 2016 ident: 10.1016/j.eswa.2020.113702_b0345 article-title: A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: Theory and its application in PID designing for AVR system publication-title: Journal of Control, Automation and Electrical Systems doi: 10.1007/s40313-016-0242-6 – ident: 10.1016/j.eswa.2020.113702_b0415 doi: 10.1007/978-3-642-12538-6_6 – volume: 37 start-page: 106 issue: 2 year: 2006 ident: 10.1016/j.eswa.2020.113702_b0090 article-title: A new optimization method: Big bang–big crunch publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2005.04.005 – start-page: 583 year: 2010 ident: 10.1016/j.eswa.2020.113702_b0400 article-title: Social emotional optimization algorithm for nonlinear constrained optimization problems – volume: 191 year: 2020 ident: 10.1016/j.eswa.2020.113702_b0105 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105190 – start-page: 226 year: 2011 ident: 10.1016/j.eswa.2020.113702_b0110 article-title: Gravitational interactions optimization doi: 10.1007/978-3-642-25566-3_17 – volume: 32 start-page: 675 issue: 200 year: 1937 ident: 10.1016/j.eswa.2020.113702_b0115 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1937.10503522 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.eswa.2020.113702_b0265 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.07.006 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.eswa.2020.113702_b0380 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.919004 – ident: 10.1016/j.eswa.2020.113702_b0240 doi: 10.14569/IJACSA.2019.0100548 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 10.1016/j.eswa.2020.113702_b0425 article-title: Evolutionary programming made faster publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.771163 – year: 1996 ident: 10.1016/j.eswa.2020.113702_b0320 article-title: Quantum-inspired genetic algorithms – volume: 81 start-page: 252 year: 2018 ident: 10.1016/j.eswa.2020.113702_b0210 article-title: Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.10.052 – volume: 23 start-page: 715 issue: 3 year: 2018 ident: 10.1016/j.eswa.2020.113702_b0020 article-title: Butterfly optimization algorithm: A novel approach for global optimization publication-title: Soft Computing doi: 10.1007/s00500-018-3102-4 – volume: 11 issue: 3 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0460 article-title: A dynamic adaptive particle swarm optimization and genetic algorithm for different constrained engineering design optimization problems publication-title: Advances in Mechanical Engineering doi: 10.1177/1687814018824930 – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 10.1016/j.eswa.2020.113702_b0120 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177731944 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.eswa.2020.113702_b0160 article-title: Genetic algorithms publication-title: Scientific American doi: 10.1038/scientificamerican0792-66 – year: 2019 ident: 10.1016/j.eswa.2020.113702_b0050 article-title: Deer hunting optimization algorithm: A new nature-inspired meta-heuristic paradigm publication-title: The Computer Journal doi: 10.1093/comjnl/bxy133 – volume: 84 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0385 article-title: Ludo game-based metaheuristics for global and engineering optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105723 – volume: 31 start-page: 8837 issue: 12 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0355 article-title: The naked mole-rat algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04464-7 – ident: 10.1016/j.eswa.2020.113702_b0035 – year: 2016 ident: 10.1016/j.eswa.2020.113702_b0100 article-title: A new metaheuristic football game inspired algorithm – start-page: 193 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0375 article-title: Expectation algorithm (exa): A socio-inspired optimization methodology – ident: 10.1016/j.eswa.2020.113702_b0080 doi: 10.1109/CEC.1999.782657 – ident: 10.1016/j.eswa.2020.113702_b0205 doi: 10.1109/CEC.2017.7969524 – ident: 10.1016/j.eswa.2020.113702_b0220 doi: 10.1016/j.future.2020.03.055 – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.eswa.2020.113702_b0260 article-title: The ant lion optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.01.010 – volume: 7 start-page: 73182 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0455 article-title: Supply-demand-based optimization: A novel economics-inspired algorithm for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918753 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2020.113702_b0275 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 44 start-page: 148 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0170 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.02.013 – year: 2019 ident: 10.1016/j.eswa.2020.113702_b0015 article-title: Novel meta-heuristic bald eagle search optimisation algorithm publication-title: Artificial Intelligence Review – volume: 149 start-page: 113338 year: 2020 ident: 10.1016/j.eswa.2020.113702_b0190 article-title: Chimp optimization algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113338 – year: 1999 ident: 10.1016/j.eswa.2020.113702_b0430 – volume: 39 start-page: 1362 issue: 6 year: 2009 ident: 10.1016/j.eswa.2020.113702_b0445 article-title: Adaptive particle swarm optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2009.2015956 – ident: 10.1016/j.eswa.2020.113702_b0200 – year: 2012 ident: 10.1016/j.eswa.2020.113702_b0310 article-title: Particle swarm optimization with time varying acceleration coefficients for congestion management – volume: 134 start-page: 178 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0040 article-title: Social mimic optimization algorithm and engineering applications publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.05.035 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.eswa.2020.113702_b0195 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 37 start-page: 395 issue: 4 year: 2008 ident: 10.1016/j.eswa.2020.113702_b0395 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-008-0238-3 – volume: 115 start-page: 329 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0450 article-title: A two-stage differential biogeography-based optimization algorithm and its performance analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.012 – volume: 3 start-page: 191 issue: 2 year: 2018 ident: 10.1016/j.eswa.2020.113702_b0235 article-title: Tga: Team game algorithm publication-title: Future Computing and Informatics Journal doi: 10.1016/j.fcij.2018.03.002 – start-page: 169 year: 2009 ident: 10.1016/j.eswa.2020.113702_b0410 article-title: Firefly algorithms for multimodal optimization – volume: 230 start-page: 455 year: 2016 ident: 10.1016/j.eswa.2020.113702_b0010 article-title: Organizational structure publication-title: Procedia - Social and Behavioral Sciences doi: 10.1016/j.sbspro.2016.09.057 – volume: 27 start-page: 495 issue: 2 year: 2015 ident: 10.1016/j.eswa.2020.113702_b0280 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1870-7 – volume: 191 start-page: 1245 issue: 11–12 year: 2002 ident: 10.1016/j.eswa.2020.113702_b0055 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(01)00323-1 – start-page: 25 year: 2006 ident: 10.1016/j.eswa.2020.113702_b0250 article-title: Modified differential evolution for constrained optimization – volume: 17 start-page: 14 year: 2014 ident: 10.1016/j.eswa.2020.113702_b0290 article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2014.02.002 – volume: 34 start-page: 109 issue: 205 year: 1939 ident: 10.1016/j.eswa.2020.113702_b0255 article-title: A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association – volume: 16 start-page: 171 year: 2014 ident: 10.1016/j.eswa.2020.113702_b0185 article-title: League championship algorithm (LCA): An algorithm for global optimization inspired by sport championships publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.12.005 – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 10.1016/j.eswa.2020.113702_b0350 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.11.026 – volume: 2 start-page: 173 issue: 3 year: 2016 ident: 10.1016/j.eswa.2020.113702_b0365 article-title: Social group optimization (SGO): A new population evolutionary optimization technique publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-016-0022-8 – start-page: 169 year: 2018 ident: 10.1016/j.eswa.2020.113702_b0300 article-title: Hitchcock birds inspired algorithm – start-page: 105709 year: 2020 ident: 10.1016/j.eswa.2020.113702_b0025 article-title: Political optimizer: A novel socio-inspired meta-heuristic for global optimization publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.105709 – year: 2011 ident: 10.1016/j.eswa.2020.113702_b0005 article-title: Anarchic society optimization: A human-inspired method – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.eswa.2020.113702_b0270 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.12.022 – volume: 48 start-page: 93 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0405 article-title: Aefa: Artificial electric field algorithm for global optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2019.03.013 – ident: 10.1016/j.eswa.2020.113702_b0085 doi: 10.1109/ICNN.1995.488968 – volume: 10 start-page: 629 issue: 2 year: 2010 ident: 10.1016/j.eswa.2020.113702_b0225 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.08.031 – year: 2007 ident: 10.1016/j.eswa.2020.113702_b0030 article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition – start-page: 61 year: 2007 ident: 10.1016/j.eswa.2020.113702_b0045 article-title: A new global optimization algorithm inspired by parliamentary political competitions – volume: 57 start-page: 192 year: 2016 ident: 10.1016/j.eswa.2020.113702_b0315 article-title: A modified flower pollination algorithm for global optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.047 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.eswa.2020.113702_b0330 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design doi: 10.1016/j.cad.2010.12.015 – volume: 80 start-page: 20 year: 2019 ident: 10.1016/j.eswa.2020.113702_b0370 article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2019.01.001 – volume: 13 start-page: 2837 issue: 5 year: 2013 ident: 10.1016/j.eswa.2020.113702_b0325 article-title: Social-based algorithm (SBA) publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.05.018 |
| SSID | ssj0017007 |
| Score | 2.6886904 |
| Snippet | •Heap-based optimizer (HBO) inspired by corporate rank hierarchy (CRH) is proposed.•HBO utilizes heap to map the hierarchy and model equations for 3 CRH... In an organization, a group of people working for a common goal may not achieve their goal unless they organize themselves in a hierarchy called Corporate Rank... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113702 |
| SubjectTerms | Algorithms Benchmarks Corporate hierarchy based optimization Corporate structure Data structures Global optimization Global optimization algorithm Mechanical engineering Nature-inspired meta-heuristic Optimization Rank tests Social optimization algorithm Source code |
| Title | Heap-based optimizer inspired by corporate rank hierarchy for global optimization |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.113702 https://www.proquest.com/docview/2461615617 |
| Volume | 161 |
| WOSCitedRecordID | wos000576781400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg48CF34iNgXxAXKpMiZvEznFCnTZUChPd1Jvl-IfWwrIsKTD463mOHbdMUMGBS1SldVq99_n5q_3e-xB6JamQBNb5SGuSRamCmc5MWkZKWoJuaCG6Ou6zMZ1M2GxWfPCpQ20nJ0Cril1fF_V_dTXcA2fb0tl_cHd4KNyA1-B0uILb4fpXjj_Soo7s4qQGlxAPLuY_dJdyXs8bxzalb16sB1awfWDFsK0JXOambxDiR67ctggpe7pZ-v7PfWXc2hl4wE_7Sbga9hNxIUIC8Eeh3ebqO31uE37WY46rLDtujMer34ogXVqHK8Z0-2OhRubsl31GGqWJk-LZ1y7KMjqMcuqkEUMYdk3ZfSBNfhve3U7DYl-332zPKNJJ0tCYrBaz_gB_8p4fno7HfDqaTV_XV5GVGbPH8V5z5TbaJjQrIAxuHxyPZm_DwRONXYV9_6t9nZVLCbz5tX_iMjdW9Y6qTB-ge_4_Bj5w2HiIbunqEbrf63dgH84fo5MVVHCACu6hgsvvOEAFW6jgABUMUMEOKngdKk_Q6eFo-uYo8hIbkRwStoyIUSoXJTVxqbI0V3EWa6aB4hkwTkGZkkwbJWKgUjIRjBimTMGEEllqTMzK4VO0VV1W-hnCeZkMRcx0SUpgRoyIVFJjsizXBTycyB2U9Mbi0veftzIon3mfaLjg1sDcGpg7A--gQRhTu-4rGz-d9T7gnj86XsgBPxvH7fUO434it9z2WQS2DwR_d_Pbz9Hd1VzYQ1vL5ot-ge7Ir8t527z0-PoJp_ydFA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heap-based+optimizer+inspired+by+corporate+rank+hierarchy+for+global+optimization&rft.jtitle=Expert+systems+with+applications&rft.au=Askari%2C+Qamar&rft.au=Saeed%2C+Mehreen&rft.au=Younas%2C+Irfan&rft.date=2020-12-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=161&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2020.113702&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |