Heap-based optimizer inspired by corporate rank hierarchy for global optimization

•Heap-based optimizer (HBO) inspired by corporate rank hierarchy (CRH) is proposed.•HBO utilizes heap to map the hierarchy and model equations for 3 CRH activities.•A parameter (γ) to escape local optima without lacking exploitation is introduced.•Exploration and exploitation are balanced through se...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 161; s. 113702
Hlavní autori: Askari, Qamar, Saeed, Mehreen, Younas, Irfan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.12.2020
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Heap-based optimizer (HBO) inspired by corporate rank hierarchy (CRH) is proposed.•HBO utilizes heap to map the hierarchy and model equations for 3 CRH activities.•A parameter (γ) to escape local optima without lacking exploitation is introduced.•Exploration and exploitation are balanced through self-adaptive parameters.•Performance is evaluated on 97 benchmarks and 3 mechanical engineering problems. In an organization, a group of people working for a common goal may not achieve their goal unless they organize themselves in a hierarchy called Corporate Rank Hierarchy (CRH). This principle motivates us to map the concept of CRH to propose a new algorithm for optimization that logically arranges the search agents in a hierarchy based on their fitness. The proposed algorithm is named as heap-based optimizer (HBO) because it utilizes the heap data structure to map the concept of CRH. The mathematical model of HBO is built on three pillars: the interaction between the subordinates and their immediate boss, the interaction between the colleagues, and self-contribution of the employees. The proposed algorithm is benchmarked with 97 diverse test functions including 29 CEC-BC-2017 functions with very challenging landscapes against 7 highly-cited optimization algorithms including the winner of CEC-BC-2017 (EBO-CMAR). In the first two experiments, the exploitative and explorative behavior of HBO is evaluated by using 24 unimodal and 44 multimodal functions, respectively. It is shown through experiments and Friedman mean rank test that HBO outperforms and secures 1st rank. In the third experiment, we use 29 CEC-BC-2017 benchmark functions. According to Friedman mean rank test HBO attains 2nd position after EBO-CMAR; however, the difference in ranks of HBO and EBO-CMAR is shown to be statistically insignificant by using Bonferroni method based multiple comparison test. Moreover, it is shown through the Friedman test that the overall rank of HBO is 1st for all 97 benchmarks. In the fourth and the last experiment, the applicability on real-world problems is demonstrated by solving 3 constrained mechanical engineering optimization problems. The performance is shown to be superior or equivalent to the other algorithms, which have been used in the literature. The source code of HBO is publicly available athttps://github.com/qamar-askari/HBO.
AbstractList In an organization, a group of people working for a common goal may not achieve their goal unless they organize themselves in a hierarchy called Corporate Rank Hierarchy (CRH). This principle motivates us to map the concept of CRH to propose a new algorithm for optimization that logically arranges the search agents in a hierarchy based on their fitness. The proposed algorithm is named as heap-based optimizer (HBO) because it utilizes the heap data structure to map the concept of CRH. The mathematical model of HBO is built on three pillars: the interaction between the subordinates and their immediate boss, the interaction between the colleagues, and self-contribution of the employees. The proposed algorithm is benchmarked with 97 diverse test functions including 29 CEC-BC-2017 functions with very challenging landscapes against 7 highly-cited optimization algorithms including the winner of CEC-BC-2017 (EBO-CMAR). In the first two experiments, the exploitative and explorative behavior of HBO is evaluated by using 24 unimodal and 44 multimodal functions, respectively. It is shown through experiments and Friedman mean rank test that HBO outperforms and secures 1st rank. In the third experiment, we use 29 CEC-BC-2017 benchmark functions. According to Friedman mean rank test HBO attains 2nd position after EBO-CMAR; however, the difference in ranks of HBO and EBO-CMAR is shown to be statistically insignificant by using Bonferroni method based multiple comparison test. Moreover, it is shown through the Friedman test that the overall rank of HBO is 1st for all 97 benchmarks. In the fourth and the last experiment, the applicability on real-world problems is demonstrated by solving 3 constrained mechanical engineering optimization problems. The performance is shown to be superior or equivalent to the other algorithms, which have been used in the literature. The source code of HBO is publicly available at https://github.com/qamar-askari/HBO.
•Heap-based optimizer (HBO) inspired by corporate rank hierarchy (CRH) is proposed.•HBO utilizes heap to map the hierarchy and model equations for 3 CRH activities.•A parameter (γ) to escape local optima without lacking exploitation is introduced.•Exploration and exploitation are balanced through self-adaptive parameters.•Performance is evaluated on 97 benchmarks and 3 mechanical engineering problems. In an organization, a group of people working for a common goal may not achieve their goal unless they organize themselves in a hierarchy called Corporate Rank Hierarchy (CRH). This principle motivates us to map the concept of CRH to propose a new algorithm for optimization that logically arranges the search agents in a hierarchy based on their fitness. The proposed algorithm is named as heap-based optimizer (HBO) because it utilizes the heap data structure to map the concept of CRH. The mathematical model of HBO is built on three pillars: the interaction between the subordinates and their immediate boss, the interaction between the colleagues, and self-contribution of the employees. The proposed algorithm is benchmarked with 97 diverse test functions including 29 CEC-BC-2017 functions with very challenging landscapes against 7 highly-cited optimization algorithms including the winner of CEC-BC-2017 (EBO-CMAR). In the first two experiments, the exploitative and explorative behavior of HBO is evaluated by using 24 unimodal and 44 multimodal functions, respectively. It is shown through experiments and Friedman mean rank test that HBO outperforms and secures 1st rank. In the third experiment, we use 29 CEC-BC-2017 benchmark functions. According to Friedman mean rank test HBO attains 2nd position after EBO-CMAR; however, the difference in ranks of HBO and EBO-CMAR is shown to be statistically insignificant by using Bonferroni method based multiple comparison test. Moreover, it is shown through the Friedman test that the overall rank of HBO is 1st for all 97 benchmarks. In the fourth and the last experiment, the applicability on real-world problems is demonstrated by solving 3 constrained mechanical engineering optimization problems. The performance is shown to be superior or equivalent to the other algorithms, which have been used in the literature. The source code of HBO is publicly available athttps://github.com/qamar-askari/HBO.
ArticleNumber 113702
Author Younas, Irfan
Saeed, Mehreen
Askari, Qamar
Author_xml – sequence: 1
  givenname: Qamar
  orcidid: 0000-0001-7961-3608
  surname: Askari
  fullname: Askari, Qamar
  email: syedqamar@gift.edu.pk, l165502@lhr.nu.edu.pk
  organization: Department of Computer Science, GIFT University, Gujranwala, Pakistan
– sequence: 2
  givenname: Mehreen
  surname: Saeed
  fullname: Saeed, Mehreen
  email: mehreen.saeed@nu.edu.pk
  organization: Department of Computer Science, National University of Computer and Emerging Sciences, Lahore, Pakistan
– sequence: 3
  givenname: Irfan
  surname: Younas
  fullname: Younas, Irfan
  email: irfan.younas@nu.edu.pk
  organization: Department of Computer Science, National University of Computer and Emerging Sciences, Lahore, Pakistan
BookMark eNp9kE1LAzEQhoMo2Fb_gKcFz1uT_UoWvEhRKxRE0HPIJhObdbtZk1Spv97U1YuHngZe3meGeabouLc9IHRB8JxgUl21c_CfYp7hLAYkpzg7QhPCaJ5WtM6P0QTXJU0LQotTNPW-xZhQjOkEPS1BDGkjPKjEDsFszBe4xPR-MC5GzS6R1g3WiQCJE_1bsjbghJPrXaKtS14724jujxTB2P4MnWjReTj_nTP0cnf7vFimq8f7h8XNKpV5xkKaaaUq0VCNG1UWlcIlBgYVyXVZ1zVlSjLQSmAJIIlgmWZK10woURZaY9bkM3Q57h2cfd-CD7y1W9fHkzwrKlKRsiI0trKxJZ313oHmgzMb4XacYL5Xx1u-V8f36vioLkLsHyRN-HkuOGG6w-j1iEJ8_SO64l4a6CWo6FMGrqw5hH8DrLqN8Q
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107942
crossref_primary_10_1007_s00521_022_07000_2
crossref_primary_10_1007_s10586_024_04666_2
crossref_primary_10_1016_j_heliyon_2024_e25848
crossref_primary_10_1007_s12652_025_04951_x
crossref_primary_10_1016_j_energy_2022_126473
crossref_primary_10_1109_TCC_2022_3216541
crossref_primary_10_3390_math10224197
crossref_primary_10_1049_gtd2_13070
crossref_primary_10_3390_app13010249
crossref_primary_10_1016_j_egyr_2025_04_061
crossref_primary_10_1007_s10489_020_02164_7
crossref_primary_10_1109_ACCESS_2020_3026821
crossref_primary_10_1007_s00500_021_06101_9
crossref_primary_10_1007_s40430_025_05404_4
crossref_primary_10_1016_j_ins_2022_01_075
crossref_primary_10_1007_s10586_025_05265_5
crossref_primary_10_1007_s11063_021_10471_4
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_1038_s41598_024_83589_9
crossref_primary_10_1007_s00500_022_06903_5
crossref_primary_10_1007_s13369_024_09372_0
crossref_primary_10_1016_j_cogsys_2024_101237
crossref_primary_10_1016_j_eswa_2022_118256
crossref_primary_10_1007_s12065_022_00742_x
crossref_primary_10_1007_s11227_021_03943_w
crossref_primary_10_1108_COMPEL_07_2021_0257
crossref_primary_10_1007_s10462_024_10767_6
crossref_primary_10_32604_ee_2024_054687
crossref_primary_10_3390_math12030483
crossref_primary_10_1007_s00521_025_11379_z
crossref_primary_10_1016_j_knosys_2021_107543
crossref_primary_10_1109_ACCESS_2020_3040479
crossref_primary_10_3390_math10193466
crossref_primary_10_1016_j_advengsoft_2022_103142
crossref_primary_10_1007_s40998_022_00500_w
crossref_primary_10_1109_ACCESS_2024_3486743
crossref_primary_10_1016_j_energy_2024_131804
crossref_primary_10_1088_2631_8695_ad3d2f
crossref_primary_10_1007_s10489_024_05537_4
crossref_primary_10_1007_s00521_022_07932_9
crossref_primary_10_1016_j_knosys_2020_106728
crossref_primary_10_1007_s10586_024_04328_3
crossref_primary_10_3390_electronics12010113
crossref_primary_10_1109_ACCESS_2022_3177735
crossref_primary_10_1155_2021_9210050
crossref_primary_10_1002_cpe_7009
crossref_primary_10_3390_fractalfract7090690
crossref_primary_10_1016_j_knosys_2022_110206
crossref_primary_10_3390_su142417005
crossref_primary_10_1016_j_knosys_2024_112949
crossref_primary_10_1016_j_knosys_2021_107555
crossref_primary_10_3390_diagnostics13203166
crossref_primary_10_1155_2022_7508836
crossref_primary_10_1016_j_chaos_2023_113363
crossref_primary_10_1109_JSYST_2021_3136778
crossref_primary_10_3390_su13169459
crossref_primary_10_1007_s11831_022_09766_z
crossref_primary_10_3390_buildings13041086
crossref_primary_10_1007_s11042_024_18734_7
crossref_primary_10_32604_iasc_2024_053192
crossref_primary_10_1016_j_engappai_2023_107574
crossref_primary_10_1080_19393555_2025_2542170
crossref_primary_10_1002_int_22658
crossref_primary_10_3390_app131810247
crossref_primary_10_1007_s00500_023_09153_1
crossref_primary_10_1016_j_compbiomed_2023_107195
crossref_primary_10_1080_19942060_2024_2322509
crossref_primary_10_1109_ACCESS_2022_3151119
crossref_primary_10_1016_j_asoc_2021_107866
crossref_primary_10_1016_j_bspc_2024_106492
crossref_primary_10_1016_j_istruc_2023_01_032
crossref_primary_10_1111_exsy_12642
crossref_primary_10_3390_biomimetics10090629
crossref_primary_10_1002_aisy_202300746
crossref_primary_10_1080_0954898X_2023_2293895
crossref_primary_10_1016_j_energy_2022_123795
crossref_primary_10_1007_s42979_025_04333_2
crossref_primary_10_32604_cmc_2023_038670
crossref_primary_10_3390_math10132329
crossref_primary_10_1016_j_engappai_2024_109202
crossref_primary_10_1007_s11227_023_05083_9
crossref_primary_10_1007_s11831_025_10228_5
crossref_primary_10_1109_ACCESS_2021_3051573
crossref_primary_10_1007_s10462_021_10075_3
crossref_primary_10_1007_s12065_023_00889_1
crossref_primary_10_3390_math9182302
crossref_primary_10_3390_math10030419
crossref_primary_10_1109_ACCESS_2021_3054053
crossref_primary_10_1016_j_knosys_2022_109215
crossref_primary_10_1016_j_engappai_2022_105622
crossref_primary_10_1007_s10586_025_05328_7
crossref_primary_10_1016_j_matcom_2022_09_010
crossref_primary_10_1016_j_eswa_2021_115178
crossref_primary_10_1016_j_asoc_2023_110252
crossref_primary_10_3390_e24040525
crossref_primary_10_3390_en16052409
crossref_primary_10_1016_j_iot_2023_100683
crossref_primary_10_3390_pr11020498
crossref_primary_10_1007_s12065_022_00762_7
crossref_primary_10_1016_j_ijhydene_2021_01_076
crossref_primary_10_1007_s10462_021_10114_z
crossref_primary_10_1007_s10462_024_10747_w
crossref_primary_10_1038_s41598_024_77523_2
crossref_primary_10_3390_en14175382
crossref_primary_10_3390_math11143210
crossref_primary_10_1038_s41598_025_99207_1
crossref_primary_10_3390_math10142396
crossref_primary_10_3390_math11112512
crossref_primary_10_1016_j_chaos_2023_113672
crossref_primary_10_1109_ACCESS_2020_3046536
crossref_primary_10_1007_s10586_024_04978_3
crossref_primary_10_1016_j_engappai_2022_105619
crossref_primary_10_1016_j_eswa_2023_119655
crossref_primary_10_1093_jcde_qwad109
crossref_primary_10_1007_s10462_023_10680_4
crossref_primary_10_1016_j_asoc_2022_109794
crossref_primary_10_1093_jcde_qwac131
crossref_primary_10_3390_math9172053
crossref_primary_10_1016_j_compbiomed_2024_108134
crossref_primary_10_1007_s12530_023_09552_7
crossref_primary_10_1016_j_energy_2024_131312
crossref_primary_10_1016_j_enconman_2022_116022
crossref_primary_10_1016_j_matcom_2022_10_007
crossref_primary_10_32604_cmc_2022_021719
crossref_primary_10_1007_s41062_024_01583_6
crossref_primary_10_1016_j_ecmx_2025_101218
crossref_primary_10_37394_23201_2020_19_35
crossref_primary_10_1016_j_eswa_2024_124190
crossref_primary_10_1177_0958305X221140574
crossref_primary_10_1063_5_0073335
crossref_primary_10_1002_int_22617
crossref_primary_10_1002_oca_3051
crossref_primary_10_1016_j_cma_2024_117588
crossref_primary_10_1016_j_matcom_2022_08_020
crossref_primary_10_1038_s41598_023_36066_8
crossref_primary_10_1111_exsy_12843
crossref_primary_10_1049_rpg2_12523
crossref_primary_10_1155_2022_3343505
crossref_primary_10_1007_s00500_023_08925_z
crossref_primary_10_1016_j_renene_2025_123995
crossref_primary_10_1109_ACCESS_2022_3216321
crossref_primary_10_1016_j_knosys_2024_111907
crossref_primary_10_32604_cmc_2022_030906
crossref_primary_10_1142_S0218488525500229
crossref_primary_10_1016_j_energy_2022_123351
crossref_primary_10_1016_j_measurement_2024_116254
crossref_primary_10_1016_j_advengsoft_2022_103405
crossref_primary_10_3390_app12125893
crossref_primary_10_1109_ACCESS_2021_3066180
crossref_primary_10_1007_s11831_025_10249_0
crossref_primary_10_1016_j_est_2022_104535
crossref_primary_10_1016_j_compbiomed_2024_108394
crossref_primary_10_1109_ACCESS_2021_3059665
crossref_primary_10_1038_s41598_024_81125_3
crossref_primary_10_1109_ACCESS_2020_3045975
crossref_primary_10_3390_math11153297
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1016_j_eswa_2022_117562
crossref_primary_10_1016_j_eswa_2023_120905
crossref_primary_10_1007_s11042_025_21115_3
crossref_primary_10_1016_j_heliyon_2024_e30018
crossref_primary_10_1016_j_compbiomed_2021_104984
crossref_primary_10_1109_ACCESS_2021_3073276
crossref_primary_10_1016_j_energy_2021_121561
crossref_primary_10_1109_ACCESS_2024_3495518
crossref_primary_10_3390_biomimetics10090560
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1007_s10586_024_04601_5
crossref_primary_10_1016_j_cma_2022_114616
crossref_primary_10_3233_JHS_230170
crossref_primary_10_1007_s00521_024_09603_3
crossref_primary_10_1016_j_jechem_2023_02_019
crossref_primary_10_1109_ACCESS_2021_3081366
crossref_primary_10_3390_app112110191
crossref_primary_10_1007_s00500_022_07778_2
crossref_primary_10_1016_j_compbiomed_2024_109011
crossref_primary_10_1002_cpe_7766
crossref_primary_10_3390_app13020906
crossref_primary_10_1007_s44444_025_00009_7
crossref_primary_10_1016_j_asoc_2025_113527
crossref_primary_10_1038_s41598_025_04290_z
crossref_primary_10_1016_j_displa_2024_102799
crossref_primary_10_1007_s00366_021_01322_w
crossref_primary_10_1038_s41598_025_11566_x
crossref_primary_10_1016_j_compbiomed_2022_105563
crossref_primary_10_1155_2024_7616065
crossref_primary_10_3390_buildings14092842
crossref_primary_10_3390_biomimetics8040332
crossref_primary_10_1007_s10489_021_03155_y
crossref_primary_10_1002_nme_6573
crossref_primary_10_1007_s10462_024_10981_2
crossref_primary_10_1007_s10489_021_02670_2
crossref_primary_10_1093_jcde_qwad096
crossref_primary_10_3390_electronics14010035
crossref_primary_10_1016_j_knosys_2022_108269
crossref_primary_10_1016_j_energy_2023_129034
crossref_primary_10_1093_jcde_qwae060
crossref_primary_10_1016_j_energy_2024_131510
crossref_primary_10_1088_1402_4896_adb706
crossref_primary_10_1049_cmu2_70029
crossref_primary_10_3390_en15134556
crossref_primary_10_1007_s11063_020_10406_5
crossref_primary_10_1631_FITEE_2200237
crossref_primary_10_1016_j_eswa_2025_126592
crossref_primary_10_1109_ACCESS_2022_3183562
crossref_primary_10_3390_su131810419
crossref_primary_10_1016_j_asoc_2021_107900
crossref_primary_10_1007_s00521_022_07835_9
crossref_primary_10_1080_0305215X_2025_2464862
crossref_primary_10_3390_electronics11121903
crossref_primary_10_1016_j_eswa_2022_118222
crossref_primary_10_1109_ACCESS_2020_3044857
crossref_primary_10_3390_math9131477
crossref_primary_10_1016_j_eswa_2025_129195
crossref_primary_10_1016_j_compbiomed_2022_105344
crossref_primary_10_1007_s10489_023_05179_y
crossref_primary_10_3390_en16093648
crossref_primary_10_1002_ett_4932
crossref_primary_10_1155_2022_4639208
crossref_primary_10_1007_s13369_023_08217_6
crossref_primary_10_1016_j_eswa_2023_122200
crossref_primary_10_1007_s11831_023_09897_x
crossref_primary_10_1016_j_energy_2025_135955
crossref_primary_10_1155_2023_9930954
crossref_primary_10_1007_s00366_021_01471_y
crossref_primary_10_1007_s00607_021_00955_5
crossref_primary_10_1016_j_advengsoft_2024_103696
crossref_primary_10_1016_j_cma_2023_116582
crossref_primary_10_1155_2021_1015367
crossref_primary_10_1007_s11227_022_04755_2
crossref_primary_10_1109_ACCESS_2020_3037197
crossref_primary_10_1007_s10586_024_04501_8
crossref_primary_10_3233_JIFS_232227
crossref_primary_10_1038_s41598_024_81742_y
crossref_primary_10_1007_s10462_024_11008_6
crossref_primary_10_3390_rs15082076
crossref_primary_10_1109_ACCESS_2022_3153038
crossref_primary_10_1016_j_asoc_2023_110881
crossref_primary_10_1109_ACCESS_2024_3433483
crossref_primary_10_1038_s41598_025_99908_7
crossref_primary_10_1109_ACCESS_2021_3129255
crossref_primary_10_1007_s00500_023_09018_7
crossref_primary_10_1016_j_knosys_2021_107467
crossref_primary_10_1007_s10462_022_10137_0
crossref_primary_10_1016_j_knosys_2022_108517
crossref_primary_10_1007_s00521_024_10009_4
crossref_primary_10_3233_AIS_230408
crossref_primary_10_1007_s11227_023_05331_y
crossref_primary_10_1038_s41598_025_92983_w
crossref_primary_10_1007_s10462_023_10403_9
crossref_primary_10_1016_j_matcom_2023_04_027
crossref_primary_10_1007_s10489_021_02865_7
crossref_primary_10_1177_0958305X221135020
crossref_primary_10_1016_j_bspc_2023_104965
crossref_primary_10_1016_j_swevo_2023_101459
crossref_primary_10_1016_j_eswa_2023_121218
crossref_primary_10_1007_s12083_025_01918_9
crossref_primary_10_1007_s00500_024_10339_4
crossref_primary_10_1049_rpg2_12475
crossref_primary_10_1016_j_eswa_2023_120242
crossref_primary_10_1002_eng2_12381
crossref_primary_10_3390_math11092217
crossref_primary_10_3390_electronics10030312
crossref_primary_10_1007_s42235_025_00656_1
crossref_primary_10_1016_j_energy_2024_131159
crossref_primary_10_1007_s10639_023_11885_4
crossref_primary_10_1016_j_molliq_2022_120559
crossref_primary_10_1109_ACCESS_2020_3021527
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_3390_math11153312
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1007_s00521_021_06634_y
crossref_primary_10_1080_0952813X_2023_2300004
crossref_primary_10_1007_s00500_021_06229_8
crossref_primary_10_1007_s00542_024_05801_0
crossref_primary_10_1016_j_apenergy_2023_122417
crossref_primary_10_3390_math10121991
crossref_primary_10_1007_s00521_024_10694_1
crossref_primary_10_1007_s10586_024_04644_8
crossref_primary_10_1109_JSEN_2024_3508742
crossref_primary_10_1016_j_egyr_2024_04_016
crossref_primary_10_1109_ACCESS_2023_3280564
Cites_doi 10.1016/j.knosys.2018.11.024
10.1007/s12065-019-00212-x
10.1016/j.ins.2009.03.004
10.1007/s00158-009-0454-5
10.1016/j.mechmachtheory.2006.10.002
10.1016/j.future.2019.02.028
10.1016/j.advengsoft.2013.12.007
10.1016/0022-2569(70)90064-9
10.1109/TEVC.2003.814902
10.1109/NABIC.2009.5393690
10.1016/j.compstruc.2012.07.010
10.1007/978-3-540-72950-1_77
10.1016/j.engappai.2019.08.025
10.1016/j.cnsns.2012.05.010
10.1103/PhysRevLett.89.150201
10.1080/00268976.2011.552444
10.1109/TEVC.2002.804320
10.1016/j.ins.2008.02.014
10.1016/j.future.2019.07.015
10.1007/s40313-016-0242-6
10.1007/978-3-642-12538-6_6
10.1016/j.advengsoft.2005.04.005
10.1016/j.knosys.2019.105190
10.1007/978-3-642-25566-3_17
10.1080/01621459.1937.10503522
10.1016/j.knosys.2015.07.006
10.1109/TEVC.2008.919004
10.14569/IJACSA.2019.0100548
10.1109/4235.771163
10.1016/j.future.2017.10.052
10.1007/s00500-018-3102-4
10.1177/1687814018824930
10.1214/aoms/1177731944
10.1038/scientificamerican0792-66
10.1093/comjnl/bxy133
10.1016/j.asoc.2019.105723
10.1007/s00521-019-04464-7
10.1109/CEC.1999.782657
10.1109/CEC.2017.7969524
10.1016/j.future.2020.03.055
10.1016/j.advengsoft.2015.01.010
10.1109/ACCESS.2019.2918753
10.1016/j.advengsoft.2016.01.008
10.1016/j.swevo.2018.02.013
10.1016/j.eswa.2020.113338
10.1109/TSMCB.2009.2015956
10.1016/j.eswa.2019.05.035
10.1126/science.220.4598.671
10.1007/s00158-008-0238-3
10.1016/j.eswa.2018.08.012
10.1016/j.fcij.2018.03.002
10.1016/j.sbspro.2016.09.057
10.1007/s00521-015-1870-7
10.1016/S0045-7825(01)00323-1
10.1016/j.swevo.2014.02.002
10.1016/j.asoc.2013.12.005
10.1016/j.asoc.2012.11.026
10.1007/s40747-016-0022-8
10.1016/j.knosys.2020.105709
10.1016/j.knosys.2015.12.022
10.1016/j.swevo.2019.03.013
10.1109/ICNN.1995.488968
10.1016/j.asoc.2009.08.031
10.1016/j.eswa.2016.03.047
10.1016/j.cad.2010.12.015
10.1016/j.engappai.2019.01.001
10.1016/j.asoc.2012.05.018
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113702
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113702
S0957417420305261
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-2fdd6ab7f0bd546d050e8e613f599978dc8efda0ceec1a82f8df98ada54ff08b3
ISICitedReferencesCount 296
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576781400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 30 05:18:05 EST 2025
Tue Nov 18 20:55:30 EST 2025
Sat Nov 29 07:08:15 EST 2025
Fri Feb 23 02:47:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nature-inspired meta-heuristic
Social optimization algorithm
Corporate hierarchy based optimization
Global optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-2fdd6ab7f0bd546d050e8e613f599978dc8efda0ceec1a82f8df98ada54ff08b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7961-3608
PQID 2461615617
PQPubID 2045477
ParticipantIDs proquest_journals_2461615617
crossref_primary_10_1016_j_eswa_2020_113702
crossref_citationtrail_10_1016_j_eswa_2020_113702
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113702
PublicationCentury 2000
PublicationDate 2020-12-15
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0155) 2019; 97
Gupta, Tiwari, Nair (b0135) 2007; 42
Fadakar, Ebrahimi (b0100) 2016
Friedman (b0115) 1937; 32
Morais, Mourelle, Nedjah (b0300) 2018
Salih, Alsewari (b0360) 2019
Rashedi, Nezamabadi-pour, Saryazdi (b0335) 2009; 179
Lv, W., Xie, Q., Liu, Z., Zhang, X., Luo, S., & Cheng, S. (2010). Election campaign algorithm. In
Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts - towards memetic algorithms.
Shastri, Jagetia, Sehgal, Patel, Kulkarni (b0375) 2019
Lampinen, Storn (b0215) 2004
Flores, López, Barrera (b0110) 2011
Coello (b0055) 2002; 191
Satapathy, Naik (b0365) 2016; 2
Wang, L., & po Li, L. (2009). An effective differential evolution with level comparison for constrained engineering design.
,
.
Kirkpatrick, Gelatt, Vecchi (b0195) 1983; 220
Ray, Liew (b0340) 2003; 7
Yao, Liu, Lin (b0425) 1999; 3
(pp. 1942–1948). IEEE, Vol. 4.
Masadeh, R., A., B., & Sharieh, A. (2019). Sea lion optimization algorithm.
Singh, Elaziz, Xiong (b0385) 2019; 84
Deb, Agrawal, Pratap, Meyarivan (b0070) 2000
Gandomi, Alavi (b0125) 2012; 17
Mirjalili (b0265) 2015; 89
Zhan, Zhang, Li, Chung (b0445) 2009; 39
Muneender, Vinodkumar (b0310) 2012
Huning (b0165) 1976; 62
Kumar, Kulkarni, Satapathy (b0210) 2018; 81
Salgotra, Singh (b0355) 2019; 31
Zar (b0430) 1999
Sadollah, Bahreininejad, Eskandar, Hamdi (b0350) 2013; 13
Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In
Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In
(pp. 65–74). Springer, Berlin Heidelberg.
Borji (b0045) 2007
Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection (Complex adaptive systems). A Bradford Book.
Razmjooy, Khalilpour, Ramezani (b0345) 2016; 27
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0150) 2019; 101
(pp. 1835–1842). IEEE.
Harifi, Khalilian, Mohammadzadeh, Ebrahimnejad (b0145) 2019; 12
Friedman (b0120) 1940; 11
Jain, Singh, Rani (b0170) 2019; 44
Wang, Cai, Zhou, Fan (b0395) 2008; 37
Atashpaz-Gargari, Lucas (b0030) 2007
Balochian, Baloochian (b0040) 2019; 134
Holland (b0160) 1992; 267
Yadav (b0405) 2019; 48
Zhang, Luo, Wang (b0440) 2008; 178
Melvix (b0245) 2014
Karaboga, Basturk (b0180) 2007
Mirjalili, Mirjalili, Hatamlou (b0280) 2015; 27
Rao, Savsani, Vakharia (b0330) 2011; 43
Alsattar, Zaidan, Zaidan (b0015) 2019
Ramezani, Lotfi (b0325) 2013; 13
Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In
Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. In
Erol, Eksin (b0090) 2006; 37
Mirjalili (b0260) 2015; 83
Shadravan, Naji, Bardsiri (b0370) 2019; 80
Askari, Younas, Saeed (b0025) 2020
Yang (b0410) 2009
Dhiman, Kumar (b0075) 2019; 165
Ahmadi-Javid (b0005) 2011
(pp. 210–214). IEEE.
Mahmoodabadi, Rasekh, Zohari (b0235) 2018; 3
Kumar, A., Misra, R. K., & Singh, D. (2017). Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In
Han, Kim (b0140) 2002; 6
Zhao, Qin, Zhang, Ma, Zhang, Song (b0450) 2019; 115
Milton (b0255) 1939; 34
Mirjalili, Mirjalili, Lewis (b0285) 2014; 69
Awad, N.H., P.S.J.L.B.Q., Ali, M. Z. (2017). Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. In
Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization.
Moosavian, Roodsari (b0290) 2014; 17
(6), 947–963.
Arora, Singh (b0020) 2018; 23
Daskin, Kais (b0065) 2011; 109
Mirjalili (b0270) 2016; 96
Simon (b0380) 2008; 12
Xu, Cui, Zeng (b0400) 2010
Ahmady, Mehrpour, Nikooravesh (b0010) 2016; 230
Faramarzi, Heidarinejad, Stephens, Mirjalili (b0105) 2020; 191
Kashan (b0185) 2014; 16
Brammya, Praveena, Preetha, Ramya, Rajakumar, Binu (b0050) 2019
IEEE.
Mirjalili, Lewis (b0275) 2016; 95
Narayanan, Moore (b0320) 1996
Golinski (b0130) 1970; 5
Nabil (b0315) 2016; 57
(5).
Crawford, Soto, Cabrera, Salas-Fernández, Paredes (b0060) 2019
Jones (b0175) 2019
Zaránd, Pázmándi, Pál, Zimányi (b0435) 2002; 89
Khishe, Mosavi (b0190) 2020; 149
Zhao, Wang, Zhang (b0455) 2019; 7
Liu, Cai, Wang (b0225) 2010; 10
(pp. 1470–1477). IEEE, Vol. 2.
Mezura-Montes, Velázquez-Reyes, Coello (b0250) 2006
Zhu, Hu, Zhu (b0460) 2019; 11
Moosavi, Bardsiri (b0295) 2019; 86
Eskandar, Sadollah, Bahreininejad, Hamdi (b0095) 2012; 110–111
10.1016/j.eswa.2020.113702_b0305
Zar (10.1016/j.eswa.2020.113702_b0430) 1999
Hashim (10.1016/j.eswa.2020.113702_b0150) 2019; 101
Satapathy (10.1016/j.eswa.2020.113702_b0365) 2016; 2
Arora (10.1016/j.eswa.2020.113702_b0020) 2018; 23
Gandomi (10.1016/j.eswa.2020.113702_b0125) 2012; 17
10.1016/j.eswa.2020.113702_b0220
Salih (10.1016/j.eswa.2020.113702_b0360) 2019
Rao (10.1016/j.eswa.2020.113702_b0330) 2011; 43
10.1016/j.eswa.2020.113702_b0420
Ahmady (10.1016/j.eswa.2020.113702_b0010) 2016; 230
Nabil (10.1016/j.eswa.2020.113702_b0315) 2016; 57
Shastri (10.1016/j.eswa.2020.113702_b0375) 2019
10.1016/j.eswa.2020.113702_b0390
Friedman (10.1016/j.eswa.2020.113702_b0115) 1937; 32
Melvix (10.1016/j.eswa.2020.113702_b0245) 2014
Wang (10.1016/j.eswa.2020.113702_b0395) 2008; 37
Alsattar (10.1016/j.eswa.2020.113702_b0015) 2019
Friedman (10.1016/j.eswa.2020.113702_b0120) 1940; 11
Jones (10.1016/j.eswa.2020.113702_b0175) 2019
Moosavi (10.1016/j.eswa.2020.113702_b0295) 2019; 86
Eskandar (10.1016/j.eswa.2020.113702_b0095) 2012; 110–111
Balochian (10.1016/j.eswa.2020.113702_b0040) 2019; 134
Sadollah (10.1016/j.eswa.2020.113702_b0350) 2013; 13
Shadravan (10.1016/j.eswa.2020.113702_b0370) 2019; 80
Crawford (10.1016/j.eswa.2020.113702_b0060) 2019
Deb (10.1016/j.eswa.2020.113702_b0070) 2000
Kirkpatrick (10.1016/j.eswa.2020.113702_b0195) 1983; 220
Mirjalili (10.1016/j.eswa.2020.113702_b0265) 2015; 89
Yao (10.1016/j.eswa.2020.113702_b0425) 1999; 3
Daskin (10.1016/j.eswa.2020.113702_b0065) 2011; 109
Borji (10.1016/j.eswa.2020.113702_b0045) 2007
Dhiman (10.1016/j.eswa.2020.113702_b0075) 2019; 165
Harifi (10.1016/j.eswa.2020.113702_b0145) 2019; 12
Khishe (10.1016/j.eswa.2020.113702_b0190) 2020; 149
Kumar (10.1016/j.eswa.2020.113702_b0210) 2018; 81
Mezura-Montes (10.1016/j.eswa.2020.113702_b0250) 2006
Golinski (10.1016/j.eswa.2020.113702_b0130) 1970; 5
Liu (10.1016/j.eswa.2020.113702_b0225) 2010; 10
10.1016/j.eswa.2020.113702_b0230
10.1016/j.eswa.2020.113702_b0035
10.1016/j.eswa.2020.113702_b0080
Brammya (10.1016/j.eswa.2020.113702_b0050) 2019
Lampinen (10.1016/j.eswa.2020.113702_b0215) 2004
Mirjalili (10.1016/j.eswa.2020.113702_b0270) 2016; 96
Gupta (10.1016/j.eswa.2020.113702_b0135) 2007; 42
Simon (10.1016/j.eswa.2020.113702_b0380) 2008; 12
Zhan (10.1016/j.eswa.2020.113702_b0445) 2009; 39
Ray (10.1016/j.eswa.2020.113702_b0340) 2003; 7
Yang (10.1016/j.eswa.2020.113702_b0410) 2009
Narayanan (10.1016/j.eswa.2020.113702_b0320) 1996
Coello (10.1016/j.eswa.2020.113702_b0055) 2002; 191
10.1016/j.eswa.2020.113702_b0205
Heidari (10.1016/j.eswa.2020.113702_b0155) 2019; 97
Zhang (10.1016/j.eswa.2020.113702_b0440) 2008; 178
Ramezani (10.1016/j.eswa.2020.113702_b0325) 2013; 13
10.1016/j.eswa.2020.113702_b0200
Mahmoodabadi (10.1016/j.eswa.2020.113702_b0235) 2018; 3
10.1016/j.eswa.2020.113702_b0240
10.1016/j.eswa.2020.113702_b0085
Ahmadi-Javid (10.1016/j.eswa.2020.113702_b0005) 2011
Jain (10.1016/j.eswa.2020.113702_b0170) 2019; 44
Yadav (10.1016/j.eswa.2020.113702_b0405) 2019; 48
Morais (10.1016/j.eswa.2020.113702_b0300) 2018
Huning (10.1016/j.eswa.2020.113702_b0165) 1976; 62
Muneender (10.1016/j.eswa.2020.113702_b0310) 2012
Zaránd (10.1016/j.eswa.2020.113702_b0435) 2002; 89
Holland (10.1016/j.eswa.2020.113702_b0160) 1992; 267
Mirjalili (10.1016/j.eswa.2020.113702_b0285) 2014; 69
Kashan (10.1016/j.eswa.2020.113702_b0185) 2014; 16
Zhao (10.1016/j.eswa.2020.113702_b0455) 2019; 7
Zhu (10.1016/j.eswa.2020.113702_b0460) 2019; 11
Faramarzi (10.1016/j.eswa.2020.113702_b0105) 2020; 191
Han (10.1016/j.eswa.2020.113702_b0140) 2002; 6
Zhao (10.1016/j.eswa.2020.113702_b0450) 2019; 115
Moosavian (10.1016/j.eswa.2020.113702_b0290) 2014; 17
Fadakar (10.1016/j.eswa.2020.113702_b0100) 2016
Salgotra (10.1016/j.eswa.2020.113702_b0355) 2019; 31
10.1016/j.eswa.2020.113702_b0415
Rashedi (10.1016/j.eswa.2020.113702_b0335) 2009; 179
Atashpaz-Gargari (10.1016/j.eswa.2020.113702_b0030) 2007
Xu (10.1016/j.eswa.2020.113702_b0400) 2010
Askari (10.1016/j.eswa.2020.113702_b0025) 2020
Singh (10.1016/j.eswa.2020.113702_b0385) 2019; 84
Mirjalili (10.1016/j.eswa.2020.113702_b0280) 2015; 27
Razmjooy (10.1016/j.eswa.2020.113702_b0345) 2016; 27
Karaboga (10.1016/j.eswa.2020.113702_b0180) 2007
Milton (10.1016/j.eswa.2020.113702_b0255) 1939; 34
Mirjalili (10.1016/j.eswa.2020.113702_b0260) 2015; 83
Mirjalili (10.1016/j.eswa.2020.113702_b0275) 2016; 95
Erol (10.1016/j.eswa.2020.113702_b0090) 2006; 37
Flores (10.1016/j.eswa.2020.113702_b0110) 2011
References_xml – volume: 191
  start-page: 1245
  year: 2002
  end-page: 1287
  ident: b0055
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0285
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 23
  start-page: 715
  year: 2018
  end-page: 734
  ident: b0020
  article-title: Butterfly optimization algorithm: A novel approach for global optimization
  publication-title: Soft Computing
– start-page: 105709
  year: 2020
  ident: b0025
  article-title: Political optimizer: A novel socio-inspired meta-heuristic for global optimization
  publication-title: Knowledge-Based Systems
– year: 2019
  ident: b0015
  article-title: Novel meta-heuristic bald eagle search optimisation algorithm
  publication-title: Artificial Intelligence Review
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: b0120
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: The Annals of Mathematical Statistics
– start-page: 123
  year: 2004
  end-page: 166
  ident: b0215
  article-title: Differential evolution
  publication-title: New optimization techniques in engineering
– volume: 3
  start-page: 191
  year: 2018
  end-page: 199
  ident: b0235
  article-title: Tga: Team game algorithm
  publication-title: Future Computing and Informatics Journal
– volume: 34
  start-page: 109
  year: 1939
  ident: b0255
  article-title: A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
– start-page: 849
  year: 2000
  end-page: 858
  ident: b0070
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: Parallel problem solving from nature PPSN VI
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b0155
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
– volume: 10
  start-page: 629
  year: 2010
  end-page: 640
  ident: b0225
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Applied Soft Computing
– volume: 17
  start-page: 14
  year: 2014
  end-page: 24
  ident: b0290
  article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks
  publication-title: Swarm and Evolutionary Computation
– year: 2011
  ident: b0005
  article-title: Anarchic society optimization: A human-inspired method
  publication-title: 2011 IEEE congress of evolutionary computation (CEC)
– volume: 7
  start-page: 73182
  year: 2019
  end-page: 73206
  ident: b0455
  article-title: Supply-demand-based optimization: A novel economics-inspired algorithm for global optimization
  publication-title: IEEE Access
– reference: (pp. 1470–1477). IEEE, Vol. 2.
– reference: Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection (Complex adaptive systems). A Bradford Book.
– reference: &
– reference: (pp. 210–214). IEEE.
– reference: (6), 947–963.
– reference: Awad, N.H., P.S.J.L.B.Q., Ali, M. Z. (2017). Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. In
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b0330
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
– volume: 44
  start-page: 148
  year: 2019
  end-page: 175
  ident: b0170
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm and Evolutionary Computation
– reference: (5).
– volume: 39
  start-page: 1362
  year: 2009
  end-page: 1381
  ident: b0445
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b0150
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: b0260
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
– volume: 165
  start-page: 169
  year: 2019
  end-page: 196
  ident: b0075
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowledge-Based Systems
– reference: ,
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0335
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
– volume: 62
  start-page: 298
  year: 1976
  end-page: 300
  ident: b0165
  publication-title: ARSP: Archiv für Rechts- und Sozialphilosophie/ Archives for Philosophy of Law and Social
– volume: 42
  start-page: 1418
  year: 2007
  end-page: 1443
  ident: b0135
  article-title: Multi-objective design optimisation of rolling bearings using genetic algorithms
  publication-title: Mechanism and Machine Theory
– start-page: 583
  year: 2010
  end-page: 590
  ident: b0400
  article-title: Social emotional optimization algorithm for nonlinear constrained optimization problems
  publication-title: Swarm, Evolutionary, and Memetic Computing
– start-page: 226
  year: 2011
  end-page: 237
  ident: b0110
  article-title: Gravitational interactions optimization
  publication-title: Lecture notes in computer science
– reference: Lv, W., Xie, Q., Liu, Z., Zhang, X., Luo, S., & Cheng, S. (2010). Election campaign algorithm. In
– volume: 134
  start-page: 178
  year: 2019
  end-page: 191
  ident: b0040
  article-title: Social mimic optimization algorithm and engineering applications
  publication-title: Expert Systems with Applications
– year: 2019
  ident: b0175
  article-title: Organizational theory, design, and change
– volume: 16
  start-page: 171
  year: 2014
  end-page: 200
  ident: b0185
  article-title: League championship algorithm (LCA): An algorithm for global optimization inspired by sport championships
  publication-title: Applied Soft Computing
– year: 2014
  ident: b0245
  article-title: Greedy politics optimization: Metaheuristic inspired by political strategies adopted during state assembly elections
  publication-title: 2014 IEEE international advance computing conference (IACC)
– volume: 81
  start-page: 252
  year: 2018
  end-page: 272
  ident: b0210
  article-title: Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology
  publication-title: Future Generation Computer Systems
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0275
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– start-page: 43
  year: 2019
  end-page: 52
  ident: b0060
  article-title: Using a social media inspired optimization algorithm to solve the set covering problem
  publication-title: International conference on human-computer interaction
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: b0350
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Applied Soft Computing
– volume: 110–111
  start-page: 151
  year: 2012
  end-page: 166
  ident: b0095
  article-title: Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Computers & Structures
– volume: 6
  start-page: 580
  year: 2002
  end-page: 593
  ident: b0140
  article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 115
  start-page: 329
  year: 2019
  end-page: 345
  ident: b0450
  article-title: A two-stage differential biogeography-based optimization algorithm and its performance analysis
  publication-title: Expert Systems with Applications
– reference: . IEEE.
– volume: 191
  year: 2020
  ident: b0105
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowledge-Based Systems
– volume: 48
  start-page: 93
  year: 2019
  end-page: 108
  ident: b0405
  article-title: Aefa: Artificial electric field algorithm for global optimization
  publication-title: Swarm and Evolutionary Computation
– reference: Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts - towards memetic algorithms.
– volume: 11
  year: 2019
  ident: b0460
  article-title: A dynamic adaptive particle swarm optimization and genetic algorithm for different constrained engineering design optimization problems
  publication-title: Advances in Mechanical Engineering
– reference: (pp. 1942–1948). IEEE, Vol. 4.
– volume: 5
  start-page: 287
  year: 1970
  end-page: 309
  ident: b0130
  article-title: Optimal synthesis problems solved by means of nonlinear programming and random methods
  publication-title: Journal of Mechanisms
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b0265
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
– reference: Wang, L., & po Li, L. (2009). An effective differential evolution with level comparison for constrained engineering design.
– volume: 7
  start-page: 386
  year: 2003
  end-page: 396
  ident: b0340
  article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 13
  start-page: 2837
  year: 2013
  end-page: 2856
  ident: b0325
  article-title: Social-based algorithm (SBA)
  publication-title: Applied Soft Computing
– start-page: 789
  year: 2007
  end-page: 798
  ident: b0180
  article-title: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems
  publication-title: Lecture notes in computer science
– volume: 37
  start-page: 106
  year: 2006
  end-page: 111
  ident: b0090
  article-title: A new optimization method: Big bang–big crunch
  publication-title: Advances in Engineering Software
– volume: 27
  start-page: 495
  year: 2015
  end-page: 513
  ident: b0280
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
– start-page: 25
  year: 2006
  end-page: 32
  ident: b0250
  article-title: Modified differential evolution for constrained optimization
  publication-title: 2006 IEEE international conference on evolutionary computation
– reference: (pp. 1835–1842). IEEE.
– volume: 2
  start-page: 173
  year: 2016
  end-page: 203
  ident: b0365
  article-title: Social group optimization (SGO): A new population evolutionary optimization technique
  publication-title: Complex & Intelligent Systems
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: b0115
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
– reference: Kumar, A., Misra, R. K., & Singh, D. (2017). Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4845
  ident: b0125
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– reference: Masadeh, R., A., B., & Sharieh, A. (2019). Sea lion optimization algorithm.
– volume: 37
  start-page: 395
  year: 2008
  end-page: 413
  ident: b0395
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Structural and Multidisciplinary Optimization
– volume: 230
  start-page: 455
  year: 2016
  end-page: 462
  ident: b0010
  article-title: Organizational structure
  publication-title: Procedia - Social and Behavioral Sciences
– reference: (pp. 65–74). Springer, Berlin Heidelberg.
– year: 1999
  ident: b0430
  article-title: Biostatistical analysis
– volume: 80
  start-page: 20
  year: 2019
  end-page: 34
  ident: b0370
  article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: b0160
  article-title: Genetic algorithms
  publication-title: Scientific American
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b0270
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b0195
  article-title: Optimization by simulated annealing
  publication-title: Science
– reference: Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. In
– volume: 12
  start-page: 211
  year: 2019
  end-page: 226
  ident: b0145
  article-title: Emperor penguins colony: A new metaheuristic algorithm for optimization
  publication-title: Evolutionary Intelligence
– volume: 149
  start-page: 113338
  year: 2020
  ident: b0190
  article-title: Chimp optimization algorithm
  publication-title: Expert Systems with Applications
– volume: 86
  start-page: 165
  year: 2019
  end-page: 181
  ident: b0295
  article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm
  publication-title: Engineering Applications of Artificial Intelligence
– year: 2019
  ident: b0360
  article-title: A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer
  publication-title: Neural Computing and Applications
– reference: Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In
– volume: 84
  year: 2019
  ident: b0385
  article-title: Ludo game-based metaheuristics for global and engineering optimization
  publication-title: Applied Soft Computing
– year: 2007
  ident: b0030
  article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
  publication-title: 2007 IEEE congress on evolutionary computation
– year: 1996
  ident: b0320
  article-title: Quantum-inspired genetic algorithms
  publication-title: Proceedings of IEEE international conference on evolutionary computation
– year: 2016
  ident: b0100
  article-title: A new metaheuristic football game inspired algorithm
  publication-title: 2016 1st Conference on swarm intelligence and evolutionary computation
– volume: 31
  start-page: 8837
  year: 2019
  end-page: 8857
  ident: b0355
  article-title: The naked mole-rat algorithm
  publication-title: Neural Computing and Applications
– year: 2012
  ident: b0310
  article-title: Particle swarm optimization with time varying acceleration coefficients for congestion management
  publication-title: 2012 IEEE conference on sustainable utilization and development in engineering and technology (STUDENT)
– volume: 178
  start-page: 3043
  year: 2008
  end-page: 3074
  ident: b0440
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Information Sciences
– volume: 109
  start-page: 761
  year: 2011
  end-page: 772
  ident: b0065
  article-title: Group leaders optimization algorithm
  publication-title: Molecular Physics
– start-page: 193
  year: 2019
  end-page: 214
  ident: b0375
  article-title: Expectation algorithm (exa): A socio-inspired optimization methodology
  publication-title: Socio-cultural Inspired Metaheuristics
– year: 2019
  ident: b0050
  article-title: Deer hunting optimization algorithm: A new nature-inspired meta-heuristic paradigm
  publication-title: The Computer Journal
– reference: Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In
– start-page: 169
  year: 2018
  end-page: 180
  ident: b0300
  article-title: Hitchcock birds inspired algorithm
  publication-title: Computational collective intelligence
– start-page: 61
  year: 2007
  end-page: 71
  ident: b0045
  article-title: A new global optimization algorithm inspired by parliamentary political competitions
  publication-title: Mexican international conference on artificial intelligence
– volume: 27
  start-page: 419
  year: 2016
  end-page: 440
  ident: b0345
  article-title: A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: Theory and its application in PID designing for AVR system
  publication-title: Journal of Control, Automation and Electrical Systems
– reference: .
– start-page: 169
  year: 2009
  end-page: 178
  ident: b0410
  article-title: Firefly algorithms for multimodal optimization
  publication-title: Stochastic algorithms: Foundations and applications
– volume: 57
  start-page: 192
  year: 2016
  end-page: 203
  ident: b0315
  article-title: A modified flower pollination algorithm for global optimization
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b0380
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 89
  year: 2002
  ident: b0435
  article-title: Using hysteresis for optimization
  publication-title: Physical Review Letters
– reference: Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization.
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: b0425
  article-title: Evolutionary programming made faster
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 43
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0060
  article-title: Using a social media inspired optimization algorithm to solve the set covering problem
– year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0175
– volume: 165
  start-page: 169
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0075
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.11.024
– volume: 12
  start-page: 211
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0145
  article-title: Emperor penguins colony: A new metaheuristic algorithm for optimization
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-019-00212-x
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2020.113702_b0335
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 62
  start-page: 298
  issue: 2
  year: 1976
  ident: 10.1016/j.eswa.2020.113702_b0165
  publication-title: ARSP: Archiv für Rechts- und Sozialphilosophie/ Archives for Philosophy of Law and Social
– ident: 10.1016/j.eswa.2020.113702_b0390
  doi: 10.1007/s00158-009-0454-5
– ident: 10.1016/j.eswa.2020.113702_b0230
– volume: 42
  start-page: 1418
  issue: 10
  year: 2007
  ident: 10.1016/j.eswa.2020.113702_b0135
  article-title: Multi-objective design optimisation of rolling bearings using genetic algorithms
  publication-title: Mechanism and Machine Theory
  doi: 10.1016/j.mechmachtheory.2006.10.002
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0155
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– start-page: 123
  year: 2004
  ident: 10.1016/j.eswa.2020.113702_b0215
  article-title: Differential evolution
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2020.113702_b0285
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 5
  start-page: 287
  issue: 3
  year: 1970
  ident: 10.1016/j.eswa.2020.113702_b0130
  article-title: Optimal synthesis problems solved by means of nonlinear programming and random methods
  publication-title: Journal of Mechanisms
  doi: 10.1016/0022-2569(70)90064-9
– ident: 10.1016/j.eswa.2020.113702_b0305
– volume: 7
  start-page: 386
  issue: 4
  year: 2003
  ident: 10.1016/j.eswa.2020.113702_b0340
  article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.814902
– year: 2014
  ident: 10.1016/j.eswa.2020.113702_b0245
  article-title: Greedy politics optimization: Metaheuristic inspired by political strategies adopted during state assembly elections
– ident: 10.1016/j.eswa.2020.113702_b0420
  doi: 10.1109/NABIC.2009.5393690
– volume: 110–111
  start-page: 151
  year: 2012
  ident: 10.1016/j.eswa.2020.113702_b0095
  article-title: Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2012.07.010
– start-page: 789
  year: 2007
  ident: 10.1016/j.eswa.2020.113702_b0180
  article-title: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems
  doi: 10.1007/978-3-540-72950-1_77
– year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0360
  article-title: A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer
  publication-title: Neural Computing and Applications
– start-page: 849
  year: 2000
  ident: 10.1016/j.eswa.2020.113702_b0070
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
– volume: 86
  start-page: 165
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0295
  article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.08.025
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 10.1016/j.eswa.2020.113702_b0125
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 89
  issue: 15
  year: 2002
  ident: 10.1016/j.eswa.2020.113702_b0435
  article-title: Using hysteresis for optimization
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.89.150201
– volume: 109
  start-page: 761
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2020.113702_b0065
  article-title: Group leaders optimization algorithm
  publication-title: Molecular Physics
  doi: 10.1080/00268976.2011.552444
– volume: 6
  start-page: 580
  issue: 6
  year: 2002
  ident: 10.1016/j.eswa.2020.113702_b0140
  article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2002.804320
– volume: 178
  start-page: 3043
  issue: 15
  year: 2008
  ident: 10.1016/j.eswa.2020.113702_b0440
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2008.02.014
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0150
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.07.015
– volume: 27
  start-page: 419
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2020.113702_b0345
  article-title: A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: Theory and its application in PID designing for AVR system
  publication-title: Journal of Control, Automation and Electrical Systems
  doi: 10.1007/s40313-016-0242-6
– ident: 10.1016/j.eswa.2020.113702_b0415
  doi: 10.1007/978-3-642-12538-6_6
– volume: 37
  start-page: 106
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2020.113702_b0090
  article-title: A new optimization method: Big bang–big crunch
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2005.04.005
– start-page: 583
  year: 2010
  ident: 10.1016/j.eswa.2020.113702_b0400
  article-title: Social emotional optimization algorithm for nonlinear constrained optimization problems
– volume: 191
  year: 2020
  ident: 10.1016/j.eswa.2020.113702_b0105
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105190
– start-page: 226
  year: 2011
  ident: 10.1016/j.eswa.2020.113702_b0110
  article-title: Gravitational interactions optimization
  doi: 10.1007/978-3-642-25566-3_17
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 10.1016/j.eswa.2020.113702_b0115
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1937.10503522
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.eswa.2020.113702_b0265
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.07.006
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.eswa.2020.113702_b0380
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.919004
– ident: 10.1016/j.eswa.2020.113702_b0240
  doi: 10.14569/IJACSA.2019.0100548
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.eswa.2020.113702_b0425
  article-title: Evolutionary programming made faster
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.771163
– year: 1996
  ident: 10.1016/j.eswa.2020.113702_b0320
  article-title: Quantum-inspired genetic algorithms
– volume: 81
  start-page: 252
  year: 2018
  ident: 10.1016/j.eswa.2020.113702_b0210
  article-title: Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.10.052
– volume: 23
  start-page: 715
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2020.113702_b0020
  article-title: Butterfly optimization algorithm: A novel approach for global optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3102-4
– volume: 11
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0460
  article-title: A dynamic adaptive particle swarm optimization and genetic algorithm for different constrained engineering design optimization problems
  publication-title: Advances in Mechanical Engineering
  doi: 10.1177/1687814018824930
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 10.1016/j.eswa.2020.113702_b0120
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177731944
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.eswa.2020.113702_b0160
  article-title: Genetic algorithms
  publication-title: Scientific American
  doi: 10.1038/scientificamerican0792-66
– year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0050
  article-title: Deer hunting optimization algorithm: A new nature-inspired meta-heuristic paradigm
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/bxy133
– volume: 84
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0385
  article-title: Ludo game-based metaheuristics for global and engineering optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105723
– volume: 31
  start-page: 8837
  issue: 12
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0355
  article-title: The naked mole-rat algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04464-7
– ident: 10.1016/j.eswa.2020.113702_b0035
– year: 2016
  ident: 10.1016/j.eswa.2020.113702_b0100
  article-title: A new metaheuristic football game inspired algorithm
– start-page: 193
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0375
  article-title: Expectation algorithm (exa): A socio-inspired optimization methodology
– ident: 10.1016/j.eswa.2020.113702_b0080
  doi: 10.1109/CEC.1999.782657
– ident: 10.1016/j.eswa.2020.113702_b0205
  doi: 10.1109/CEC.2017.7969524
– ident: 10.1016/j.eswa.2020.113702_b0220
  doi: 10.1016/j.future.2020.03.055
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.eswa.2020.113702_b0260
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 7
  start-page: 73182
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0455
  article-title: Supply-demand-based optimization: A novel economics-inspired algorithm for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918753
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2020.113702_b0275
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 44
  start-page: 148
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0170
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.02.013
– year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0015
  article-title: Novel meta-heuristic bald eagle search optimisation algorithm
  publication-title: Artificial Intelligence Review
– volume: 149
  start-page: 113338
  year: 2020
  ident: 10.1016/j.eswa.2020.113702_b0190
  article-title: Chimp optimization algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113338
– year: 1999
  ident: 10.1016/j.eswa.2020.113702_b0430
– volume: 39
  start-page: 1362
  issue: 6
  year: 2009
  ident: 10.1016/j.eswa.2020.113702_b0445
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2009.2015956
– ident: 10.1016/j.eswa.2020.113702_b0200
– year: 2012
  ident: 10.1016/j.eswa.2020.113702_b0310
  article-title: Particle swarm optimization with time varying acceleration coefficients for congestion management
– volume: 134
  start-page: 178
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0040
  article-title: Social mimic optimization algorithm and engineering applications
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.05.035
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.eswa.2020.113702_b0195
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 37
  start-page: 395
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2020.113702_b0395
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-008-0238-3
– volume: 115
  start-page: 329
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0450
  article-title: A two-stage differential biogeography-based optimization algorithm and its performance analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.012
– volume: 3
  start-page: 191
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2020.113702_b0235
  article-title: Tga: Team game algorithm
  publication-title: Future Computing and Informatics Journal
  doi: 10.1016/j.fcij.2018.03.002
– start-page: 169
  year: 2009
  ident: 10.1016/j.eswa.2020.113702_b0410
  article-title: Firefly algorithms for multimodal optimization
– volume: 230
  start-page: 455
  year: 2016
  ident: 10.1016/j.eswa.2020.113702_b0010
  article-title: Organizational structure
  publication-title: Procedia - Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2016.09.057
– volume: 27
  start-page: 495
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2020.113702_b0280
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1870-7
– volume: 191
  start-page: 1245
  issue: 11–12
  year: 2002
  ident: 10.1016/j.eswa.2020.113702_b0055
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(01)00323-1
– start-page: 25
  year: 2006
  ident: 10.1016/j.eswa.2020.113702_b0250
  article-title: Modified differential evolution for constrained optimization
– volume: 17
  start-page: 14
  year: 2014
  ident: 10.1016/j.eswa.2020.113702_b0290
  article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2014.02.002
– volume: 34
  start-page: 109
  issue: 205
  year: 1939
  ident: 10.1016/j.eswa.2020.113702_b0255
  article-title: A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
– volume: 16
  start-page: 171
  year: 2014
  ident: 10.1016/j.eswa.2020.113702_b0185
  article-title: League championship algorithm (LCA): An algorithm for global optimization inspired by sport championships
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.12.005
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2020.113702_b0350
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.11.026
– volume: 2
  start-page: 173
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2020.113702_b0365
  article-title: Social group optimization (SGO): A new population evolutionary optimization technique
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-016-0022-8
– start-page: 169
  year: 2018
  ident: 10.1016/j.eswa.2020.113702_b0300
  article-title: Hitchcock birds inspired algorithm
– start-page: 105709
  year: 2020
  ident: 10.1016/j.eswa.2020.113702_b0025
  article-title: Political optimizer: A novel socio-inspired meta-heuristic for global optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105709
– year: 2011
  ident: 10.1016/j.eswa.2020.113702_b0005
  article-title: Anarchic society optimization: A human-inspired method
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.eswa.2020.113702_b0270
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 48
  start-page: 93
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0405
  article-title: Aefa: Artificial electric field algorithm for global optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.03.013
– ident: 10.1016/j.eswa.2020.113702_b0085
  doi: 10.1109/ICNN.1995.488968
– volume: 10
  start-page: 629
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2020.113702_b0225
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.08.031
– year: 2007
  ident: 10.1016/j.eswa.2020.113702_b0030
  article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
– start-page: 61
  year: 2007
  ident: 10.1016/j.eswa.2020.113702_b0045
  article-title: A new global optimization algorithm inspired by parliamentary political competitions
– volume: 57
  start-page: 192
  year: 2016
  ident: 10.1016/j.eswa.2020.113702_b0315
  article-title: A modified flower pollination algorithm for global optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.047
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2020.113702_b0330
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2010.12.015
– volume: 80
  start-page: 20
  year: 2019
  ident: 10.1016/j.eswa.2020.113702_b0370
  article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.01.001
– volume: 13
  start-page: 2837
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2020.113702_b0325
  article-title: Social-based algorithm (SBA)
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.05.018
SSID ssj0017007
Score 2.6886904
Snippet •Heap-based optimizer (HBO) inspired by corporate rank hierarchy (CRH) is proposed.•HBO utilizes heap to map the hierarchy and model equations for 3 CRH...
In an organization, a group of people working for a common goal may not achieve their goal unless they organize themselves in a hierarchy called Corporate Rank...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113702
SubjectTerms Algorithms
Benchmarks
Corporate hierarchy based optimization
Corporate structure
Data structures
Global optimization
Global optimization algorithm
Mechanical engineering
Nature-inspired meta-heuristic
Optimization
Rank tests
Social optimization algorithm
Source code
Title Heap-based optimizer inspired by corporate rank hierarchy for global optimization
URI https://dx.doi.org/10.1016/j.eswa.2020.113702
https://www.proquest.com/docview/2461615617
Volume 161
WOSCitedRecordID wos000576781400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWg5cCFb0RLQT5wWxnl286xQkUtEhUVRdqbZce22KVNV8lCC7-ecTzxLota0QOXKIpsy_K8jF-cmTeEvDFcFLWxmtm8SFiRacNE7lJWwVZbadjxhEqGYhP8-FhMp_UnzC7ph3ICvG3F1VW9-K-mhmdgbJ86ewtzx0HhAdyD0eEKZofrPxn-0KoF85uTmVyAPzif_bJDyPli1gW22aB4sZ34gu0TXwzbL0GI3ESBEOy5Mts8huzZbon6z2Nm3No_8Iif_psKOewn6lzFAODPyobD1Y_2qw_4Wfc5IbPsqHOIVzyKyIawjpCMGc8UOSvSUHYnutcgto4OMk1zPqRY_-27wzHC_K3tL70gVDbUm8HGfwplb2xgMaxwjFibSz-G9GPIMMZdsp3xsga3t71_dDD9EH808SRk1I8zx7yqEAK4OZPruMvGLj5Qk9NH5AF-U9D9gIXH5I5tn5CHY70Oiu77KTlZQYNGaNARGlT_pBEa1EODRmhQgAYN0KDr0HhGvrw_OH13yLCkBmvyTCxZ5oyplOYu0aYsKpOUiRUWKJ2Dxam5MI2wzqgEqFOTKpE5YVwtlFFl4VwidP6cbLUXrX1BKFDvOi0bBd-_VSG8ciBPa-OM1kb4pjskHRdLNqg378uenMnrzbRDJrHPIqit3Ni6HG0gkS8GHigBUjf22xsNJvHF7aXXVQR2D4R-91aTeEnur16FPbK17L7bV-Re82M567vXCLffJ1iY4Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heap-based+optimizer+inspired+by+corporate+rank+hierarchy+for+global+optimization&rft.jtitle=Expert+systems+with+applications&rft.au=Askari%2C+Qamar&rft.au=Saeed%2C+Mehreen&rft.au=Younas%2C+Irfan&rft.date=2020-12-15&rft.issn=0957-4174&rft.volume=161&rft.spage=113702&rft_id=info:doi/10.1016%2Fj.eswa.2020.113702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2020_113702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon