Exploring structure-function coupling in alzheimer’s disease: bridging neuroimaging, AI, and policy for future insights

[...]while the study focuses on static SFC metrics, it does not address dynamic network adaptations—such as time-varying functional connectivity or compensatory reorganization—that may influence cognitive resilience. Auto ML technology Just Add Data Bio generated three AD biosignatures using SVM (mi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of nuclear medicine and molecular imaging Ročník 52; číslo 13; s. 5202 - 5203
Hlavní autoři: Wang, Xun, Jiang, Yixin, Dong, Yifan, Zhu, Qian, Zhao, Yan, Zhang, Shuo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2025
Springer Nature B.V
Témata:
ISSN:1619-7070, 1619-7089, 1619-7089
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:[...]while the study focuses on static SFC metrics, it does not address dynamic network adaptations—such as time-varying functional connectivity or compensatory reorganization—that may influence cognitive resilience. Auto ML technology Just Add Data Bio generated three AD biosignatures using SVM (miRNA, AUC 0.975), Random Forests (mRNA, AUC 0.846), and Ridge Logistic Regression (protein, AUC 0.921) on low-sample blood omics data) [5]. [...]federated learning frameworks could harmonize data from multi-center, addressing current limitations in sample size and diversity [6]. GFAP as a potential biomarker for Alzheimer’s disease: A systematic review and Meta-Analysis.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
content type line 14
content type line 23
ISSN:1619-7070
1619-7089
1619-7089
DOI:10.1007/s00259-025-07389-7