A batch informed sampling-based algorithm for fast anytime asymptotically-optimal motion planning in cluttered environments

•Present an anytime asymptotically-optimal motion planning algorithm.•A strategy is proposed that balances the “lazy” and “non-lazy” optimal search.•Analyze the swift convergence and computational complexity for the algorithm.•The proposed algorithm is comprehensively evaluated by rigorous experimen...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 144; s. 113124
Hlavní autori: Xu, Jing, Song, Kechen, Dong, Hongwen, Yan, Yunhui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.04.2020
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Present an anytime asymptotically-optimal motion planning algorithm.•A strategy is proposed that balances the “lazy” and “non-lazy” optimal search.•Analyze the swift convergence and computational complexity for the algorithm.•The proposed algorithm is comprehensively evaluated by rigorous experiments. Practical applications favor anytime asymptotically-optimal algorithms that find and improve an initial solution toward the optimal solution as quickly as possible due to the algorithms may be terminated at any time. We present Batch-to-batch Informed Fast Marching Tree (BBI-FMT*), an anytime asymptotically-optimal sampling-based algorithm that is designed for solving complex motion planning problems. The proposed algorithm has the ability to fast find an initial low-cost solution by the batch sampling-based incremental search and the “lazy” optimal search, then it employs the batch informed sampling-based incremental search and the anytime optimal search to quickly improve the tree and achieve the optimal solution. The proposed anytime optimal search strategy integrates the “lazy” and “non-lazy” optimal search to efficiently improve the tree to the minimum-cost spanning tree in cluttered environments. This paper theoretically analyzes the proposed algorithm in depth and evaluates it by numerical experiments under a few challenging scenarios. The experimental results show that BBI-FMT* outperforms the state-of-the-art algorithms in the self-adaptability, robustness, convergence rate, and success rate of the planning. The proposed algorithm can be widely applied to intelligent robots with expert systems to improve the efficiency and stability of the motion planning and navigation modules which are the core modules in the expert systems.
AbstractList Practical applications favor anytime asymptotically-optimal algorithms that find and improve an initial solution toward the optimal solution as quickly as possible due to the algorithms may be terminated at any time. We present Batch-to-batch Informed Fast Marching Tree (BBI-FMT*), an anytime asymptotically-optimal sampling-based algorithm that is designed for solving complex motion planning problems. The proposed algorithm has the ability to fast find an initial low-cost solution by the batch sampling-based incremental search and the "lazy" optimal search, then it employs the batch informed sampling-based incremental search and the anytime optimal search to quickly improve the tree and achieve the optimal solution. The proposed anytime optimal search strategy integrates the "lazy" and "non-lazy" optimal search to efficiently improve the tree to the minimum-cost spanning tree in cluttered environments. This paper theoretically analyzes the proposed algorithm in depth and evaluates it by numerical experiments under a few challenging scenarios. The experimental results show that BBI-FMT* outperforms the state-of-the-art algorithms in the self-adaptability, robustness, convergence rate, and success rate of the planning. The proposed algorithm can be widely applied to intelligent robots with expert systems to improve the efficiency and stability of the motion planning and navigation modules which are the core modules in the expert systems.
•Present an anytime asymptotically-optimal motion planning algorithm.•A strategy is proposed that balances the “lazy” and “non-lazy” optimal search.•Analyze the swift convergence and computational complexity for the algorithm.•The proposed algorithm is comprehensively evaluated by rigorous experiments. Practical applications favor anytime asymptotically-optimal algorithms that find and improve an initial solution toward the optimal solution as quickly as possible due to the algorithms may be terminated at any time. We present Batch-to-batch Informed Fast Marching Tree (BBI-FMT*), an anytime asymptotically-optimal sampling-based algorithm that is designed for solving complex motion planning problems. The proposed algorithm has the ability to fast find an initial low-cost solution by the batch sampling-based incremental search and the “lazy” optimal search, then it employs the batch informed sampling-based incremental search and the anytime optimal search to quickly improve the tree and achieve the optimal solution. The proposed anytime optimal search strategy integrates the “lazy” and “non-lazy” optimal search to efficiently improve the tree to the minimum-cost spanning tree in cluttered environments. This paper theoretically analyzes the proposed algorithm in depth and evaluates it by numerical experiments under a few challenging scenarios. The experimental results show that BBI-FMT* outperforms the state-of-the-art algorithms in the self-adaptability, robustness, convergence rate, and success rate of the planning. The proposed algorithm can be widely applied to intelligent robots with expert systems to improve the efficiency and stability of the motion planning and navigation modules which are the core modules in the expert systems.
ArticleNumber 113124
Author Yan, Yunhui
Xu, Jing
Song, Kechen
Dong, Hongwen
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0001-6257-8770
  surname: Xu
  fullname: Xu, Jing
  email: 1610099@stu.neu.edu.cn
– sequence: 2
  givenname: Kechen
  orcidid: 0000-0002-7636-3460
  surname: Song
  fullname: Song, Kechen
  email: songkc@me.neu.edu.cn
– sequence: 3
  givenname: Hongwen
  surname: Dong
  fullname: Dong, Hongwen
  email: 1810108@stu.neu.edu.cn
– sequence: 4
  givenname: Yunhui
  orcidid: 0000-0001-7121-2367
  surname: Yan
  fullname: Yan, Yunhui
  email: yanyh@mail.neu.edu.cn
BookMark eNp9kEtLxDAUhYMoOD7-gKuA6455tE0KbkR8wYAbXYc0vdUMaVKTjDL4580wrly4utzHdy7nnKBDHzwgdEHJkhLaXq2XkL70khHaLSnllNUHaEGl4FUrOn6IFqRrRFVTUR-jk5TWhFBBiFig7xvc62zesfVjiBMMOOlpdta_Vb1OpdXuLUSb3ydc9njUKWPtt9lOgHXaTnMO2Rrt3LYKc5lqh6cyCR7PTntfdIoyNm6TM8QiB_7TxuAn8DmdoaNRuwTnv_UUvd7fvdw-Vqvnh6fbm1VlOJO5YlwIVstBQiepoJ0hTctFw7um1Vy0grN-kH0tQY6iHseO1U1jhp4Z6EVbD5Sfosu97hzDxwZSVuuwib68VIy3rBMF4OWK7a9MDClFGNUci5-4VZSoXchqrXYhq13Iah9ygeQfyNisd_5z1Nb9j17vUSjWPy1ElYwFb2CwEUxWQ7D_4T90WZv4
CitedBy_id crossref_primary_10_1109_TIM_2022_3212036
crossref_primary_10_1016_j_eswa_2022_118624
crossref_primary_10_1016_j_eswa_2024_125206
crossref_primary_10_1109_TII_2023_3240935
crossref_primary_10_1016_j_eswa_2023_120545
crossref_primary_10_1038_s41598_025_09992_y
crossref_primary_10_3390_s22239203
crossref_primary_10_1016_j_eswa_2022_119137
crossref_primary_10_3390_drones8120760
Cites_doi 10.1016/j.oceaneng.2018.09.016
10.1126/science.153.3731.34
10.1109/TSSC.1968.300136
10.1109/TRO.2018.2830331
10.1089/soro.2017.0009
10.1177/0278364918779555
10.1090/S0002-9904-1954-09848-8
10.1016/j.aej.2018.10.011
10.1016/j.eswa.2019.01.032
10.1177/0278364915616866
10.1177/0278364915577958
10.1109/MRA.2012.2205651
10.1145/359156.359164
10.1007/BF01386390
10.1177/027836402320556421
10.1016/j.eswa.2018.01.035
10.1016/j.robot.2018.06.013
10.1109/ROBOT.1996.509171
10.1109/ACCESS.2018.2871222
10.1177/02783640122067453
10.1002/rob.21686
10.1088/1748-3190/aaeb13
10.1109/ACCESS.2014.2302442
10.1177/0278364911406761
10.1016/j.robot.2017.05.007
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Apr 15, 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Apr 15, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2019.113124
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2019_113124
S0957417419308413
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-2377248d8e981719c0563753956a376732bd8b48e8f74ff92455cdb2ceb764d13
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514218700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 06:19:05 EST 2025
Sat Nov 29 07:07:23 EST 2025
Tue Nov 18 22:12:49 EST 2025
Fri Feb 23 02:49:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Motion planning
Asymptotic optimality
Optimal path planning
Anytime algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-2377248d8e981719c0563753956a376732bd8b48e8f74ff92455cdb2ceb764d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6257-8770
0000-0002-7636-3460
0000-0001-7121-2367
PQID 2362974553
PQPubID 2045477
ParticipantIDs proquest_journals_2362974553
crossref_primary_10_1016_j_eswa_2019_113124
crossref_citationtrail_10_1016_j_eswa_2019_113124
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_113124
PublicationCentury 2000
PublicationDate 2020-04-15
PublicationDateYYYYMMDD 2020-04-15
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Dijkstra (bib0006) 1959; 1
Oh, Sohn, Jang, Jun, Cho (bib0021) 2017; 34
Tahir, Qureshi, Ayaz, Nawaz (bib0027) 2018; 108
Troy, Shawna, Amato (bib0028) 2018; 37
Salzman, Halperin (bib0023) 2015
Wan, Zhang, Vahidi (bib0029) 2017
Gammell, Barfoot, Srinivasa (bib0009) 2018; 34
Alejandro, Juan, Manuel, Antonio (bib0001) 2018; 99
Hsu, Kindel, Latombe, Rock (bib0011) 2002; 21
LaValle, Kuffner Jr (bib0017) 2001; 20
Bellman (bib0004) 1966; 153
Starek, Gomez, Schmerling, Janson, Moreno, Pavone (bib0025) 2015
Zhang, Wang, Zheng, Yu (bib0031) 2018; 6
Deng, Xin, Zhong, Mistry (bib0005) 2017; 95
Sucan, Moll, Kavraki (bib0026) 2012; 19
Karaman, Frazzoli (bib0015) 2011; 30
Mohamed, Elgamal, Elsharkawy (bib0020) 2018; 57
Alterovitz, Patil, Derbakova (bib0002) 2011
Janson, Schmerling, Clark, Pavone (bib0013) 2015; 34
Kavraki, Svestka, Latombe, Overmars (bib0016) 1996; 12
Perez, Karaman, Shkolnik, Frazzoli, Teller, Walter (bib0022) 2011
Singh, Sharma, Sutton, Hatton, Khan (bib0024) 2018; 169
Lozano-Pérez, Wesley (bib0018) 1979; 22
Hart, Nilsson, Raphael (bib0010) 1968; 4
Ferguson, Stentz (bib0008) 2007
Elbanhawi, Simic (bib0007) 2014; 2
Martín, Barrientos, del Cerro (bib0019) 2018; 5
Jeong, Lee, Kim (bib0014) 2019; 123
Bellman (bib0003) 1954; 60
Zhang, Cheng, Zhao (bib0030) 2018; 14
Huynh, Karaman, Frazzoli (bib0012) 2016; 35
Troy (10.1016/j.eswa.2019.113124_bib0028) 2018; 37
Huynh (10.1016/j.eswa.2019.113124_bib0012) 2016; 35
Perez (10.1016/j.eswa.2019.113124_sbref0022) 2011
Jeong (10.1016/j.eswa.2019.113124_bib0014) 2019; 123
LaValle (10.1016/j.eswa.2019.113124_bib0017) 2001; 20
Sucan (10.1016/j.eswa.2019.113124_bib0026) 2012; 19
Elbanhawi (10.1016/j.eswa.2019.113124_bib0007) 2014; 2
Mohamed (10.1016/j.eswa.2019.113124_bib0020) 2018; 57
Alterovitz (10.1016/j.eswa.2019.113124_bib0002) 2011
Salzman (10.1016/j.eswa.2019.113124_bib0023) 2015
Zhang (10.1016/j.eswa.2019.113124_bib0030) 2018; 14
Alejandro (10.1016/j.eswa.2019.113124_bib0001) 2018; 99
Hart (10.1016/j.eswa.2019.113124_bib0010) 1968; 4
Janson (10.1016/j.eswa.2019.113124_bib0013) 2015; 34
Martín (10.1016/j.eswa.2019.113124_bib0019) 2018; 5
Deng (10.1016/j.eswa.2019.113124_bib0005) 2017; 95
Bellman (10.1016/j.eswa.2019.113124_bib0003) 1954; 60
Bellman (10.1016/j.eswa.2019.113124_bib0004) 1966; 153
Tahir (10.1016/j.eswa.2019.113124_bib0027) 2018; 108
Ferguson (10.1016/j.eswa.2019.113124_sbref0008) 2007
Hsu (10.1016/j.eswa.2019.113124_bib0011) 2002; 21
Kavraki (10.1016/j.eswa.2019.113124_bib0016) 1996; 12
Starek (10.1016/j.eswa.2019.113124_bib0025) 2015
Gammell (10.1016/j.eswa.2019.113124_bib0009) 2018; 34
Lozano-Pérez (10.1016/j.eswa.2019.113124_bib0018) 1979; 22
Zhang (10.1016/j.eswa.2019.113124_bib0031) 2018; 6
Dijkstra (10.1016/j.eswa.2019.113124_bib0006) 1959; 1
Oh (10.1016/j.eswa.2019.113124_bib0021) 2017; 34
Wan (10.1016/j.eswa.2019.113124_bib0029) 2017
Singh (10.1016/j.eswa.2019.113124_bib0024) 2018; 169
Karaman (10.1016/j.eswa.2019.113124_bib0015) 2011; 30
References_xml – volume: 34
  start-page: 966
  year: 2018
  end-page: 984
  ident: bib0009
  article-title: Informed sampling for asymptotically optimal path planning
  publication-title: IEEE Transactions on Robotics
– volume: 30
  start-page: 846
  year: 2011
  end-page: 894
  ident: bib0015
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: The International Journal of Robotics Research
– volume: 5
  start-page: 242
  year: 2018
  end-page: 257
  ident: bib0019
  article-title: The natural-CCD algorithm, a novel method to solve the inverse kinematics of hyper-redundant and soft robots
  publication-title: Soft Robotics
– start-page: 4167
  year: 2015
  end-page: 4172
  ident: bib0023
  article-title: Asymptotically-optimal motion planning using
  publication-title: Proceedings of the IEEE international conference on robotics & automation
– start-page: 4307
  year: 2011
  end-page: 4313
  ident: bib0022
  article-title: Asymptotically-optimal path planning for manipulation using incremental sampling-based algorithms
  publication-title: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems
– start-page: 2072
  year: 2015
  end-page: 2078
  ident: bib0025
  article-title: An asymptotically-optimal sampling-based algorithm for bi-directional motion planning
  publication-title: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS)
– volume: 108
  start-page: 13
  year: 2018
  end-page: 27
  ident: bib0027
  article-title: Potentially guided bidirecti-onalized RRT* for fast optimal path planning in cluttered environments
  publication-title: Robotics Autonomous Systems
– volume: 20
  start-page: 378
  year: 2001
  end-page: 400
  ident: bib0017
  article-title: Randomized kinodynamic planning
  publication-title: The International Journal of Robotics Research
– volume: 169
  start-page: 187
  year: 2018
  end-page: 201
  ident: bib0024
  article-title: A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a mar-itime environment containing dynamic obstacles and ocean currents
  publication-title: Ocean Engineering
– volume: 2
  start-page: 56
  year: 2014
  end-page: 77
  ident: bib0007
  article-title: Sampling-based robot motion planning: A review
  publication-title: IEEE Access : Practical Innovations, Open Solutions
– volume: 153
  start-page: 34
  year: 1966
  end-page: 37
  ident: bib0004
  article-title: Dynamic programming
  publication-title: Science (New York, N.Y.)
– volume: 57
  start-page: 4103
  year: 2018
  end-page: 4112
  ident: bib0020
  article-title: Dynamic analysis with optimum trajectory planning of multiple degree-of-freedom surgical micro-robot
  publication-title: Alexandria Engineering Journal
– start-page: 1310
  year: 2007
  end-page: 1315
  ident: bib0008
  article-title: Anytime, dynamic planning in high-dimensional search spaces
  publication-title: Proceedings IEEE international conference on robotics and automation
– volume: 4
  start-page: 100
  year: 1968
  end-page: 107
  ident: bib0010
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Transactions on Systems Science Cybernetics
– volume: 99
  start-page: 141
  year: 2018
  end-page: 154
  ident: bib0001
  article-title: Quad-RRT: A real-time GPU-based global path planner in large-scale real environments
  publication-title: Expert Systems with Applications
– volume: 12
  year: 1996
  ident: bib0016
  article-title: Probabilistic roadmaps for path planning in high-dimensional configuration spaces
  publication-title: IEEE Transacrions on Robotics Automation
– volume: 21
  start-page: 233
  year: 2002
  end-page: 255
  ident: bib0011
  article-title: Randomized kinodynamic motion planning with moving obstacles
  publication-title: The International Journal of Robotics Research
– start-page: 3706
  year: 2011
  end-page: 3712
  ident: bib0002
  article-title: Rapidly-exploring roadmaps: Weighing exploration vs. refinement in optimal motion planning
  publication-title: international conference on robotics and automation
– volume: 37
  start-page: 779
  year: 2018
  end-page: 817
  ident: bib0028
  article-title: Sampling-based motion planning with reachable volumes for high-degree-of-freedom manipulators
  publication-title: The International Journal of Robotics Research
– volume: 22
  start-page: 560
  year: 1979
  end-page: 570
  ident: bib0018
  article-title: An algorithm for planning collision-free paths among polyhedral obstacles
  publication-title: Communications of the ACM
– volume: 14
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib0030
  article-title: Optimal trajectory generation for time-to-contact based aerial robotic perching
  publication-title: Bioinspiration Biomimetics
– volume: 6
  start-page: 53296
  year: 2018
  end-page: 53306
  ident: bib0031
  article-title: Path planning of industrial robot Based on improved rrt algorithm in complex environments
  publication-title: IEEE Access : Practical Innovations, Open Solutions
– volume: 123
  start-page: 82
  year: 2019
  end-page: 90
  ident: bib0014
  article-title: Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution and convergence rate
  publication-title: Expert Systems with Applications
– volume: 19
  start-page: 72
  year: 2012
  end-page: 82
  ident: bib0026
  article-title: The open motion planning library
  publication-title: IEEE Robotics Automation Magazine
– volume: 60
  start-page: 503
  year: 1954
  end-page: 515
  ident: bib0003
  article-title: The theory of dynamic programming
  publication-title: Bulletin of the American Mathematical Society
– volume: 34
  start-page: 874
  year: 2017
  end-page: 896
  ident: bib0021
  article-title: Technical overview of team DRC‐Hubo@ UNLV's approach to the 2015 darpa robotics challenge finals
  publication-title: Journal of Field Robotics
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: bib0006
  article-title: A note on two problems in connexion with graphs
  publication-title: Numerische mathematik
– volume: 34
  start-page: 883
  year: 2015
  end-page: 921
  ident: bib0013
  article-title: Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions
  publication-title: The International Journal of Robotics Research
– start-page: 1
  year: 2017
  end-page: 9
  ident: bib0029
  article-title: Probabilistic anticipation and control in autonomous car following
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 95
  start-page: 13
  year: 2017
  end-page: 24
  ident: bib0005
  article-title: Gait and trajectory rolling planning and control of hexapod robots for disaster rescue applications
  publication-title: Robotics Autonomous Systems
– volume: 35
  start-page: 305
  year: 2016
  end-page: 333
  ident: bib0012
  article-title: An incremental sampling-based algorithm for stochastic optimal control
  publication-title: The International Journal of Robotics Research
– volume: 169
  start-page: 187
  year: 2018
  ident: 10.1016/j.eswa.2019.113124_bib0024
  article-title: A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a mar-itime environment containing dynamic obstacles and ocean currents
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2018.09.016
– volume: 153
  start-page: 34
  issue: 3731
  year: 1966
  ident: 10.1016/j.eswa.2019.113124_bib0004
  article-title: Dynamic programming
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.153.3731.34
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 10.1016/j.eswa.2019.113124_bib0010
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Transactions on Systems Science Cybernetics
  doi: 10.1109/TSSC.1968.300136
– volume: 34
  start-page: 966
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2019.113124_bib0009
  article-title: Informed sampling for asymptotically optimal path planning
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2018.2830331
– volume: 5
  start-page: 242
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2019.113124_bib0019
  article-title: The natural-CCD algorithm, a novel method to solve the inverse kinematics of hyper-redundant and soft robots
  publication-title: Soft Robotics
  doi: 10.1089/soro.2017.0009
– volume: 37
  start-page: 779
  issue: 7
  year: 2018
  ident: 10.1016/j.eswa.2019.113124_bib0028
  article-title: Sampling-based motion planning with reachable volumes for high-degree-of-freedom manipulators
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364918779555
– volume: 60
  start-page: 503
  issue: 6
  year: 1954
  ident: 10.1016/j.eswa.2019.113124_bib0003
  article-title: The theory of dynamic programming
  publication-title: Bulletin of the American Mathematical Society
  doi: 10.1090/S0002-9904-1954-09848-8
– volume: 57
  start-page: 4103
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2019.113124_bib0020
  article-title: Dynamic analysis with optimum trajectory planning of multiple degree-of-freedom surgical micro-robot
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2018.10.011
– start-page: 1310
  year: 2007
  ident: 10.1016/j.eswa.2019.113124_sbref0008
  article-title: Anytime, dynamic planning in high-dimensional search spaces
– volume: 123
  start-page: 82
  year: 2019
  ident: 10.1016/j.eswa.2019.113124_bib0014
  article-title: Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution and convergence rate
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.01.032
– volume: 35
  start-page: 305
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2019.113124_bib0012
  article-title: An incremental sampling-based algorithm for stochastic optimal control
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364915616866
– volume: 34
  start-page: 883
  issue: 7
  year: 2015
  ident: 10.1016/j.eswa.2019.113124_bib0013
  article-title: Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364915577958
– volume: 19
  start-page: 72
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2019.113124_bib0026
  article-title: The open motion planning library
  publication-title: IEEE Robotics Automation Magazine
  doi: 10.1109/MRA.2012.2205651
– volume: 22
  start-page: 560
  issue: 10
  year: 1979
  ident: 10.1016/j.eswa.2019.113124_bib0018
  article-title: An algorithm for planning collision-free paths among polyhedral obstacles
  publication-title: Communications of the ACM
  doi: 10.1145/359156.359164
– start-page: 4167
  year: 2015
  ident: 10.1016/j.eswa.2019.113124_bib0023
  article-title: Asymptotically-optimal motion planning using lower bounds on cost
– volume: 1
  start-page: 269
  issue: 1
  year: 1959
  ident: 10.1016/j.eswa.2019.113124_bib0006
  article-title: A note on two problems in connexion with graphs
  publication-title: Numerische mathematik
  doi: 10.1007/BF01386390
– volume: 21
  start-page: 233
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2019.113124_bib0011
  article-title: Randomized kinodynamic motion planning with moving obstacles
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/027836402320556421
– volume: 99
  start-page: 141
  year: 2018
  ident: 10.1016/j.eswa.2019.113124_bib0001
  article-title: Quad-RRT: A real-time GPU-based global path planner in large-scale real environments
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.01.035
– start-page: 4307
  year: 2011
  ident: 10.1016/j.eswa.2019.113124_sbref0022
  article-title: Asymptotically-optimal path planning for manipulation using incremental sampling-based algorithms
– volume: 108
  start-page: 13
  year: 2018
  ident: 10.1016/j.eswa.2019.113124_bib0027
  article-title: Potentially guided bidirecti-onalized RRT* for fast optimal path planning in cluttered environments
  publication-title: Robotics Autonomous Systems
  doi: 10.1016/j.robot.2018.06.013
– volume: 12
  issue: 4
  year: 1996
  ident: 10.1016/j.eswa.2019.113124_bib0016
  article-title: Probabilistic roadmaps for path planning in high-dimensional configuration spaces
  publication-title: IEEE Transacrions on Robotics Automation
  doi: 10.1109/ROBOT.1996.509171
– volume: 6
  start-page: 53296
  year: 2018
  ident: 10.1016/j.eswa.2019.113124_bib0031
  article-title: Path planning of industrial robot Based on improved rrt algorithm in complex environments
  publication-title: IEEE Access : Practical Innovations, Open Solutions
  doi: 10.1109/ACCESS.2018.2871222
– volume: 20
  start-page: 378
  issue: 5
  year: 2001
  ident: 10.1016/j.eswa.2019.113124_bib0017
  article-title: Randomized kinodynamic planning
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/02783640122067453
– volume: 34
  start-page: 874
  issue: 5
  year: 2017
  ident: 10.1016/j.eswa.2019.113124_bib0021
  article-title: Technical overview of team DRC‐Hubo@ UNLV's approach to the 2015 darpa robotics challenge finals
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21686
– volume: 14
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2019.113124_bib0030
  article-title: Optimal trajectory generation for time-to-contact based aerial robotic perching
  publication-title: Bioinspiration Biomimetics
  doi: 10.1088/1748-3190/aaeb13
– volume: 2
  start-page: 56
  year: 2014
  ident: 10.1016/j.eswa.2019.113124_bib0007
  article-title: Sampling-based robot motion planning: A review
  publication-title: IEEE Access : Practical Innovations, Open Solutions
  doi: 10.1109/ACCESS.2014.2302442
– volume: 30
  start-page: 846
  issue: 7
  year: 2011
  ident: 10.1016/j.eswa.2019.113124_bib0015
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364911406761
– volume: 95
  start-page: 13
  year: 2017
  ident: 10.1016/j.eswa.2019.113124_bib0005
  article-title: Gait and trajectory rolling planning and control of hexapod robots for disaster rescue applications
  publication-title: Robotics Autonomous Systems
  doi: 10.1016/j.robot.2017.05.007
– start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.eswa.2019.113124_bib0029
  article-title: Probabilistic anticipation and control in autonomous car following
  publication-title: IEEE Transactions on Control Systems Technology
– start-page: 3706
  year: 2011
  ident: 10.1016/j.eswa.2019.113124_bib0002
  article-title: Rapidly-exploring roadmaps: Weighing exploration vs. refinement in optimal motion planning
– start-page: 2072
  year: 2015
  ident: 10.1016/j.eswa.2019.113124_bib0025
  article-title: An asymptotically-optimal sampling-based algorithm for bi-directional motion planning
  publication-title: IEEE
SSID ssj0017007
Score 2.3576877
Snippet •Present an anytime asymptotically-optimal motion planning algorithm.•A strategy is proposed that balances the “lazy” and “non-lazy” optimal search.•Analyze...
Practical applications favor anytime asymptotically-optimal algorithms that find and improve an initial solution toward the optimal solution as quickly as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113124
SubjectTerms Algorithms
Anytime algorithm
Asymptotic optimality
Asymptotic properties
Cost analysis
Expert systems
Graph theory
Modules
Motion planning
Motion stability
Optimal path planning
Robustness (mathematics)
Sampling
Searching
Title A batch informed sampling-based algorithm for fast anytime asymptotically-optimal motion planning in cluttered environments
URI https://dx.doi.org/10.1016/j.eswa.2019.113124
https://www.proquest.com/docview/2362974553
Volume 144
WOSCitedRecordID wos000514218700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELaqjgde-I0YDOQH3ipPdezUzmMFQ-OHJiSG1D1FiZNsndK0atJtFX8E_zJ3sZ12AyZA4iWt3Map-n2x7y539xHyesizoVQiZyHcPOCgCM6iRGaMhybNktBEWdr2mf2kjo70ZBJ97vW--1qYi1JVlb66ihb_FWoYA7CxdPYv4O4mhQF4D6DDEWCH4x8BPx6ksLxiIAPtUbAn6wSzxqtThjtWNkjK0_ly2pzN2gzDIqkxx3yNGvODpF7PFs28DW-XazaH5WSG1SWt0g8KTrf6RhgiMWUrcA3TbVfKXQvzYw_lxnWK9jV0W0_LPdKTVUskv4NisMdlCX_MgVAdd9-60UN4vdwMn9gA7smqOltNt0MYAeaTMlvEaeNqvrZmk8hkA5SKSW41fPZzuzxrJdhIWU3Fbv22DSR_2gtsWOJ8P68vscEUj1C_hgdys_N1-Yhf8GJ4LTBnh1qiCvJOoMJI98nO-P3B5EP3YEoNbQW-_3GuDsumDN680u9snRu7fmvKHD8g95wPQseWOw9JL68ekfte34O65f4x-TamLZWopxK9TiXaUYnC5xSpRB2V6K-pRC2VqKcSzEw7KtFtKj0hX98dHL85ZE6sgxkR6IYFAvw0qTOdR5orHhmwrAX4wuB_J9gxSARpplOpc10oWRTg9oehydLA5KkayYyLp6Rfzav8GaGRlGkgCy4zKWQqZBINRRGMUlOAt2-U3iXc_62xcZ3sUVCljH3K4nmMUMQIRWyh2CWD7pyF7eNy67dDj1bsLFFrYcZArlvP2_PQxm5JqOMAbETw2sNQPP_HaV-Qu5vbZo_0m-Uqf0numItmWi9fOYr-AI2Wva8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+batch+informed+sampling-based+algorithm+for+fast+anytime+asymptotically-optimal+motion+planning+in+cluttered+environments&rft.jtitle=Expert+systems+with+applications&rft.au=Xu%2C+Jing&rft.au=Song%2C+Kechen&rft.au=Dong%2C+Hongwen&rft.au=Yan%2C+Yunhui&rft.date=2020-04-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=144&rft_id=info:doi/10.1016%2Fj.eswa.2019.113124&rft.externalDocID=S0957417419308413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon