Prediction of pipe failures in water supply networks using logistic regression and support vector classification

•Prediction of >85% of pipe failures using both algorithms, LR and SVC.•Excellent abilities to avoid false classifications (AUCs).•Importance of training set balance in binary classification problems. Companies in charge of water supply networks are making a huge effort to optimally plan the annu...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety Vol. 196; p. 106754
Main Authors: Robles-Velasco, Alicia, Cortés, Pablo, Muñuzuri, Jesús, Onieva, Luis
Format: Journal Article
Language:English
Published: Barking Elsevier Ltd 01.04.2020
Elsevier BV
Subjects:
ISSN:0951-8320, 1879-0836
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Prediction of >85% of pipe failures using both algorithms, LR and SVC.•Excellent abilities to avoid false classifications (AUCs).•Importance of training set balance in binary classification problems. Companies in charge of water supply networks are making a huge effort to optimally plan the annual replacements of pipes. This would save costs, enable a higher quality of service and a sustainable management of infrastructure. This study presents a methodology to predict pipe failures in water supply networks. Logistic regression and support vector classification are chosen as predictive systems. Both provide a failure probability associated with each sample which is increasingly required by companies that manage these infrastructures. Furthermore, several pre-processing techniques that seek to improve the accuracy of predictions are addressed. The proposed methodology is illustrated with the real case of a Spanish city. This is an extensive water supply network whose recorded data contains 4,393 pipe failures. The results obtained state that the number of unexpected failures might be significantly reduced. Around 30% of failures could have been prevented by replacing only 3% of the network's pipes per year, which is a realistic and feasible option. As a future line of research, the objective must be to develop a global tool that incorporates the failure probability and its consequence, generating the optimal pipe replacement plan.
AbstractList •Prediction of >85% of pipe failures using both algorithms, LR and SVC.•Excellent abilities to avoid false classifications (AUCs).•Importance of training set balance in binary classification problems. Companies in charge of water supply networks are making a huge effort to optimally plan the annual replacements of pipes. This would save costs, enable a higher quality of service and a sustainable management of infrastructure. This study presents a methodology to predict pipe failures in water supply networks. Logistic regression and support vector classification are chosen as predictive systems. Both provide a failure probability associated with each sample which is increasingly required by companies that manage these infrastructures. Furthermore, several pre-processing techniques that seek to improve the accuracy of predictions are addressed. The proposed methodology is illustrated with the real case of a Spanish city. This is an extensive water supply network whose recorded data contains 4,393 pipe failures. The results obtained state that the number of unexpected failures might be significantly reduced. Around 30% of failures could have been prevented by replacing only 3% of the network's pipes per year, which is a realistic and feasible option. As a future line of research, the objective must be to develop a global tool that incorporates the failure probability and its consequence, generating the optimal pipe replacement plan.
Companies in charge of water supply networks are making a huge effort to optimally plan the annual replacements of pipes. This would save costs, enable a higher quality of service and a sustainable management of infrastructure. This study presents a methodology to predict pipe failures in water supply networks. Logistic regression and support vector classification are chosen as predictive systems. Both provide a failure probability associated with each sample which is increasingly required by companies that manage these infrastructures. Furthermore, several pre-processing techniques that seek to improve the accuracy of predictions are addressed. The proposed methodology is illustrated with the real case of a Spanish city. This is an extensive water supply network whose recorded data contains 4,393 pipe failures. The results obtained state that the number of unexpected failures might be significantly reduced. Around 30% of failures could have been prevented by replacing only 3% of the network's pipes per year, which is a realistic and feasible option. As a future line of research, the objective must be to develop a global tool that incorporates the failure probability and its consequence, generating the optimal pipe replacement plan.
ArticleNumber 106754
Author Cortés, Pablo
Onieva, Luis
Robles-Velasco, Alicia
Muñuzuri, Jesús
Author_xml – sequence: 1
  givenname: Alicia
  surname: Robles-Velasco
  fullname: Robles-Velasco, Alicia
  email: arobles2@us.es
  organization: Dpto. de Organización Industrial y Gestión de Empresas II. ETSI. Universidad de Sevilla. C/ Camino de los Descubrimientos S/N, 41092 Sevilla (Spain)
– sequence: 2
  givenname: Pablo
  surname: Cortés
  fullname: Cortés, Pablo
  organization: Dpto. de Organización Industrial y Gestión de Empresas II. ETSI. Universidad de Sevilla. C/ Camino de los Descubrimientos S/N, 41092 Sevilla (Spain)
– sequence: 3
  givenname: Jesús
  surname: Muñuzuri
  fullname: Muñuzuri, Jesús
  organization: Dpto. de Organización Industrial y Gestión de Empresas II. ETSI. Universidad de Sevilla. C/ Camino de los Descubrimientos S/N, 41092 Sevilla (Spain)
– sequence: 4
  givenname: Luis
  surname: Onieva
  fullname: Onieva, Luis
  organization: Dpto. de Organización Industrial y Gestión de Empresas II. ETSI. Universidad de Sevilla. C/ Camino de los Descubrimientos S/N, 41092 Sevilla (Spain)
BookMark eNp9kUlLBDEUhIMoOC5_wFPAc49ZJkuDFxE3EPSg5xDTr4eMbdImacV_b9rx5MFTIKmv6r3KAdoNMQBCJ5QsKaHybLNMkPOSEdrWC6nEagctqFZtQzSXu2hBWkEbzRnZRwc5bwghq1aoBRofE3TeFR8Djj0e_Qi4t36Yqh_2AX_aAgnnaRyHLxygfMb0mvGUfVjjIa59Lt7hBOs5fvawoftRx1TwB7gSE3aDrW-9d3ZOOUJ7vR0yHP-eh-j5-urp8ra5f7i5u7y4bxxnujS005YLyyVILZUUYBWXhDreQg-WCa61Ak5Y376QngBTXFtBWOfEquV0BfwQnW59xxTfJ8jFbOKUQo00jCuqpKREVJXeqlyKOSfojfPlZ86SaguGEjP3azZmXtDM_ZptvxVlf9Ax-Tebvv6HzrcQ1NU_PCSTnYfg6h-k2pbpov8P_wapAJh7
CitedBy_id crossref_primary_10_1007_s11269_022_03080_w
crossref_primary_10_1038_s41598_024_69109_9
crossref_primary_10_1016_j_cose_2023_103107
crossref_primary_10_1016_j_dajour_2023_100240
crossref_primary_10_1061__ASCE_CF_1943_5509_0001747
crossref_primary_10_1016_j_ress_2025_111338
crossref_primary_10_1016_j_ress_2023_109088
crossref_primary_10_3390_w15081509
crossref_primary_10_7235_HORT_20240022
crossref_primary_10_1016_j_ress_2025_111320
crossref_primary_10_1016_j_ress_2023_109260
crossref_primary_10_1016_j_iintel_2023_100044
crossref_primary_10_1061__ASCE_IS_1943_555X_0000730
crossref_primary_10_1080_1573062X_2023_2209063
crossref_primary_10_1016_j_oceaneng_2024_117873
crossref_primary_10_1016_j_ress_2020_106921
crossref_primary_10_1016_j_engfailanal_2025_109896
crossref_primary_10_3390_w16223328
crossref_primary_10_1139_er_2021_0046
crossref_primary_10_3390_su13158226
crossref_primary_10_1016_j_eswa_2022_118413
crossref_primary_10_3390_en13112990
crossref_primary_10_1016_j_compchemeng_2025_109378
crossref_primary_10_1016_j_envres_2021_111454
crossref_primary_10_1061_JWRMD5_WRENG_5896
crossref_primary_10_35377_saucis___1462721
crossref_primary_10_1007_s11269_022_03377_w
crossref_primary_10_1016_j_ress_2021_108281
crossref_primary_10_1061_JWRMD5_WRENG_6866
crossref_primary_10_1007_s11803_025_2300_1
crossref_primary_10_1016_j_ress_2025_110913
crossref_primary_10_3390_w12041153
crossref_primary_10_1038_s41598_023_38620_w
crossref_primary_10_1080_15732479_2023_2165118
crossref_primary_10_2478_amns_2023_1_00195
crossref_primary_10_1016_j_wroa_2025_100316
crossref_primary_10_1038_s41598_024_69855_w
crossref_primary_10_1038_s41598_023_33548_7
crossref_primary_10_1186_s40068_024_00334_x
crossref_primary_10_3390_infrastructures7100136
crossref_primary_10_2166_ws_2021_255
crossref_primary_10_5004_dwt_2021_27674
crossref_primary_10_3390_w16142017
crossref_primary_10_1016_j_ress_2021_107525
crossref_primary_10_1061_JWRMD5_WRENG_6334
crossref_primary_10_3390_w16020202
crossref_primary_10_1038_s41545_022_00165_2
crossref_primary_10_3390_app10155179
crossref_primary_10_1080_1573062X_2021_1893363
crossref_primary_10_3390_buildings13041006
crossref_primary_10_3390_en17143511
crossref_primary_10_1007_s00500_021_05706_4
crossref_primary_10_1109_JSEN_2021_3121506
crossref_primary_10_1057_s41272_025_00541_w
crossref_primary_10_3390_s24216982
crossref_primary_10_1016_j_ast_2025_110136
crossref_primary_10_1186_s40537_022_00573_8
crossref_primary_10_1016_j_ress_2021_108185
crossref_primary_10_3390_w14142174
crossref_primary_10_1089_3dp_2021_0252
crossref_primary_10_1016_j_autcon_2025_106159
crossref_primary_10_1371_journal_pwat_0000127
crossref_primary_10_1016_j_procbio_2024_07_030
crossref_primary_10_1061_JPCFEV_CFENG_5149
crossref_primary_10_1016_j_strusafe_2020_102047
crossref_primary_10_2166_ws_2022_315
crossref_primary_10_1016_j_ress_2021_108119
crossref_primary_10_1061_JWRMD5_WRENG_6958
crossref_primary_10_1061_JWRMD5_WRENG_6263
crossref_primary_10_1080_09617353_2024_2369961
crossref_primary_10_1093_jrsssc_qlae030
crossref_primary_10_1108_IJSI_07_2025_0157
crossref_primary_10_1080_17445302_2021_2005357
crossref_primary_10_1111_mice_13493
crossref_primary_10_1016_j_ress_2025_111401
crossref_primary_10_3390_w16101455
crossref_primary_10_1016_j_eswa_2021_116051
crossref_primary_10_1016_j_fuel_2021_120470
crossref_primary_10_3390_en14113305
crossref_primary_10_1061_JCCEE5_CPENG_6393
crossref_primary_10_1016_j_ymssp_2023_110897
crossref_primary_10_1016_j_ress_2023_109611
crossref_primary_10_1016_j_ress_2021_108248
crossref_primary_10_1007_s11831_025_10251_6
crossref_primary_10_1061_JWRMD5_WRENG_6665
crossref_primary_10_1016_j_apm_2021_08_012
crossref_primary_10_1016_j_scs_2021_103104
crossref_primary_10_1016_j_ress_2021_107967
crossref_primary_10_2166_ws_2022_019
crossref_primary_10_1080_23789689_2025_2470504
crossref_primary_10_1177_16878140211072410
crossref_primary_10_1016_j_jup_2022_101407
crossref_primary_10_1061_JPSEA2_PSENG_1464
crossref_primary_10_1007_s13201_023_02013_1
crossref_primary_10_1016_j_scitotenv_2023_163562
crossref_primary_10_1016_j_ijepes_2025_110783
crossref_primary_10_1061_JWRMD5_WRENG_6655
crossref_primary_10_1016_j_asoc_2021_107731
crossref_primary_10_3390_su17125263
crossref_primary_10_1109_ACCESS_2025_3543136
crossref_primary_10_1016_j_engfailanal_2023_107731
crossref_primary_10_3390_polym13162825
crossref_primary_10_1016_j_saa_2022_121249
crossref_primary_10_3390_s23115015
crossref_primary_10_1007_s00366_020_01104_w
crossref_primary_10_1016_j_psep_2025_106812
crossref_primary_10_1016_j_tust_2024_105958
crossref_primary_10_1061__ASCE_PS_1949_1204_0000511
crossref_primary_10_1002_cepa_2075
crossref_primary_10_1007_s11269_021_02911_6
Cites_doi 10.1016/j.ins.2014.03.110
10.1016/S1462-0758(00)00053-4
10.1016/j.watres.2018.11.066
10.1007/s11269-009-9441-2
10.1016/j.engfailanal.2015.07.036
10.1016/j.aei.2010.09.001
10.1016/j.ress.2019.02.001
10.1016/j.hbrcj.2014.03.002
10.1016/j.mcm.2009.12.033
10.2166/ws.2018.078
10.1016/j.patrec.2005.10.010
10.1016/j.ress.2008.03.011
10.1007/s12205-014-0537-8
10.1016/j.ress.2014.04.024
10.1016/j.ress.2015.06.011
10.1016/S1462-0758(01)00033-4
10.1016/j.compenvurbsys.2008.12.001
10.1016/j.ijcip.2019.05.002
10.1016/j.ejor.2014.06.033
10.1007/s00521-017-2987-7
10.1080/1573062X.2011.644566
10.1016/j.tust.2019.04.019
10.1109/JPROC.2017.2761740
10.2166/hydro.2011.029
10.1016/j.ress.2009.07.004
10.1016/j.proeng.2015.08.853
10.1007/s11269-016-1241-x
10.1016/j.soildyn.2019.105758
10.1016/j.proeng.2017.03.217
10.1016/j.ress.2011.03.010
10.1139/l85-030
10.1016/j.asoc.2018.11.045
10.1061/(ASCE)PS.1949-1204.0000037
10.1007/s11269-014-0895-5
10.1016/j.ipm.2009.03.002
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Apr 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 2020
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2019.106754
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2019_106754
S095183201930417X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-1d8a35a36e686765ea73601c39efea253887e302f9b0f0e2738a502dc549314e3
ISICitedReferencesCount 136
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515213900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 04:27:16 EDT 2025
Sat Nov 29 07:07:52 EST 2025
Tue Nov 18 21:13:51 EST 2025
Fri Feb 23 02:49:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Logistic regression
Support vector classification
Pipe failures
Predictive algorithms
Water supply networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-1d8a35a36e686765ea73601c39efea253887e302f9b0f0e2738a502dc549314e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2371766105
PQPubID 2045406
ParticipantIDs proquest_journals_2371766105
crossref_citationtrail_10_1016_j_ress_2019_106754
crossref_primary_10_1016_j_ress_2019_106754
elsevier_sciencedirect_doi_10_1016_j_ress_2019_106754
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Géron (bib0047) 2017
Hudak, Sadler, Hunter (bib0026) 1998; 145
Kleiner, Rajani (bib0012) 2012; 14
Fan, Chang, Hsieh, Wang, Lin (bib0041) 2008; 9
Xu, Chen, Li, Ma (bib0018) 2011; 96
McCullagh, Nelder (bib0040) 1989
Christodoulou, Deligianni, Aslani, Agathokleous (bib0009) 2009; 33
Baracos, Hurst, Legget (bib0027) 1955; 47
Toprak (bib0023) 2019; 125
Tang, Parsons, Jude (bib0031) 2019; 186
Najafi (bib0025) 2005
Lin, Weng, Keerthi (bib0042) 2008; 9
Sokolova, Lapalme (bib0048) 2009; 45
[Accessed: 03-Jan-2019].
AEAS, “XIV estudio nacional de suministro de agua potable y saneamiento en españa,” 2016. [Online]. Available
Kutyłowska (bib0034) 2018; 19
Sattar, Gharabaghi, McBean (bib0021) 2016; 30
Christodoulou, Deligianni (bib0038) 2010; 24
Lin, Yuan (bib0030) 2019
Kettler, Goulter (bib0020) 1985; 12
Yamijala, Guikema, Brumbelow (bib0008) 2009; 94
Liu, Zio (bib0035) 2019; 75
Al-Zahrani, Abo-Monasar, Sadiq (bib0004) 2016; 65
Amaitik, Buckingham (bib0029) 2018
De Oliveira, Garrett, Soibelman (bib0014) 2011; 25
Farmani, Kakoudakis, Behzadian, Butler (bib0039) 2017; 186
Chang, Lin, Tieleman (bib0045) 2008; 307
Vapnik (bib0043) 1998
Aydogdu, Firat (bib0046) 2015; 29
Li, Wang, Wu, Sun, Jing (bib0005) 2015; 119
Marzouk, Hamid, El-Said (bib0015) 2014; 11
Maldonado, Pérez, Weber, Labbé (bib0044) 2014; 279
Jafar, Shahrour, Juran (bib0010) 2010; 51
Engelhardt, Skipworth, Savic, Saul, Walters (bib0024) 2000; 2
Royce, Seth, Henneman (bib0006) 2014; 130
Shirzad, Tabesh, Farmani (bib0019) 2014; 18
Kleiner, Rajani (bib0007) 2001; 3
Sattar, Ertuğrul, Gharabaghi, McBean, Cao (bib0022) 2019; 31
Debón, Carrión, Cabrera, Solano (bib0011) 2010; 95
Fares, Zayed (bib0017) 2010; 1
Pietrucha-Urbanik (bib0003) 2015; 57
Kutyłowska (bib0032) 2016; 23
Fawcett (bib0049) 2006; 27
Fares, Zayed (bib0037) 2009
Sze, Chen, Yang, Emer (bib0033) 2017; 105
Kabir, Tesfamariam, Sadiq (bib0013) 2015; 142
St. Clair, Sinha (bib0002) 2012; 9
Pu, Apel, Xu (bib0036) 2019; 90
Kabir, Tesfamariam, Francisque, Sadiq (bib0016) 2015; 240
Wang, zhong Zheng, Li, Shen (bib0028) 2019; 26
Lin (10.1016/j.ress.2019.106754_bib0030) 2019
Géron (10.1016/j.ress.2019.106754_bib0047) 2017
Wang (10.1016/j.ress.2019.106754_bib0028) 2019; 26
Tang (10.1016/j.ress.2019.106754_bib0031) 2019; 186
Shirzad (10.1016/j.ress.2019.106754_bib0019) 2014; 18
Liu (10.1016/j.ress.2019.106754_bib0035) 2019; 75
Sokolova (10.1016/j.ress.2019.106754_bib0048) 2009; 45
McCullagh (10.1016/j.ress.2019.106754_bib0040) 1989
Najafi (10.1016/j.ress.2019.106754_bib0025) 2005
Fan (10.1016/j.ress.2019.106754_bib0041) 2008; 9
Royce (10.1016/j.ress.2019.106754_bib0006) 2014; 130
Sze (10.1016/j.ress.2019.106754_bib0033) 2017; 105
Al-Zahrani (10.1016/j.ress.2019.106754_bib0004) 2016; 65
Kleiner (10.1016/j.ress.2019.106754_bib0007) 2001; 3
Debón (10.1016/j.ress.2019.106754_bib0011) 2010; 95
Sattar (10.1016/j.ress.2019.106754_bib0021) 2016; 30
Christodoulou (10.1016/j.ress.2019.106754_bib0038) 2010; 24
De Oliveira (10.1016/j.ress.2019.106754_bib0014) 2011; 25
Kleiner (10.1016/j.ress.2019.106754_bib0012) 2012; 14
Chang (10.1016/j.ress.2019.106754_bib0045) 2008; 307
Toprak (10.1016/j.ress.2019.106754_bib0023) 2019; 125
Kabir (10.1016/j.ress.2019.106754_bib0016) 2015; 240
Kabir (10.1016/j.ress.2019.106754_bib0013) 2015; 142
Pu (10.1016/j.ress.2019.106754_bib0036) 2019; 90
Fares (10.1016/j.ress.2019.106754_bib0017) 2010; 1
Xu (10.1016/j.ress.2019.106754_bib0018) 2011; 96
Fares (10.1016/j.ress.2019.106754_bib0037) 2009
Pietrucha-Urbanik (10.1016/j.ress.2019.106754_bib0003) 2015; 57
Amaitik (10.1016/j.ress.2019.106754_bib0029) 2018
Jafar (10.1016/j.ress.2019.106754_bib0010) 2010; 51
Christodoulou (10.1016/j.ress.2019.106754_bib0009) 2009; 33
Engelhardt (10.1016/j.ress.2019.106754_bib0024) 2000; 2
Kutyłowska (10.1016/j.ress.2019.106754_bib0034) 2018; 19
Aydogdu (10.1016/j.ress.2019.106754_bib0046) 2015; 29
10.1016/j.ress.2019.106754_bib0001
Yamijala (10.1016/j.ress.2019.106754_bib0008) 2009; 94
Fawcett (10.1016/j.ress.2019.106754_bib0049) 2006; 27
Li (10.1016/j.ress.2019.106754_bib0005) 2015; 119
Hudak (10.1016/j.ress.2019.106754_bib0026) 1998; 145
Maldonado (10.1016/j.ress.2019.106754_bib0044) 2014; 279
Lin (10.1016/j.ress.2019.106754_bib0042) 2008; 9
Kutyłowska (10.1016/j.ress.2019.106754_bib0032) 2016; 23
Marzouk (10.1016/j.ress.2019.106754_bib0015) 2014; 11
St. Clair (10.1016/j.ress.2019.106754_bib0002) 2012; 9
Baracos (10.1016/j.ress.2019.106754_bib0027) 1955; 47
Vapnik (10.1016/j.ress.2019.106754_bib0043) 1998
Farmani (10.1016/j.ress.2019.106754_bib0039) 2017; 186
Kettler (10.1016/j.ress.2019.106754_bib0020) 1985; 12
Sattar (10.1016/j.ress.2019.106754_bib0022) 2019; 31
References_xml – volume: 25
  start-page: 380
  year: 2011
  end-page: 389
  ident: bib0014
  article-title: A density-based spatial clustering approach for defining local indicators of drinking water distribution pipe breakage
  publication-title: Adv Eng Inform
– volume: 18
  start-page: 941
  year: 2014
  end-page: 948
  ident: bib0019
  article-title: A comparison between performance of support vector regression and artificial neural network in prediction of pipe burst rate in water distribution networks
  publication-title: KSCE J Civ Eng
– reference: . [Accessed: 03-Jan-2019].
– volume: 14
  start-page: 659
  year: 2012
  end-page: 681
  ident: bib0012
  article-title: Comparison of four models to rank failure likelihood of individual pipes
  publication-title: J. Hydroinformatics
– volume: 96
  start-page: 942
  year: 2011
  end-page: 948
  ident: bib0018
  article-title: Pipe break prediction based on evolutionary data-driven methods with brief recorded data
  publication-title: Reliab Eng Syst Saf
– volume: 19
  start-page: 264
  year: 2018
  end-page: 273
  ident: bib0034
  article-title: Forecasting failure rate of water pipes
  publication-title: Water Sci Technol Water Supply
– volume: 12
  start-page: 286
  year: 1985
  end-page: 293
  ident: bib0020
  article-title: An analysis of pipe breakage in urban water distribution networks
  publication-title: Can J Civ Eng
– volume: 105
  start-page: 2295
  year: 2017
  end-page: 2329
  ident: bib0033
  article-title: Efficient processing of deep neural networks: a tutorial and survey
  publication-title: Proc. IEEE
– volume: 31
  start-page: 157
  year: 2019
  end-page: 169
  ident: bib0022
  article-title: Extreme learning machine model for water network management
  publication-title: Neural Comput Appl
– volume: 9
  start-page: 85
  year: 2012
  end-page: 112
  ident: bib0002
  article-title: State-of-the-technology review on water pipe condition, deterioration and failure rate prediction models!
  publication-title: Urban Water J
– year: 2017
  ident: bib0047
  article-title: Hands-on machine learning with scikit-learn and tensorflow
– volume: 94
  start-page: 282
  year: 2009
  end-page: 293
  ident: bib0008
  article-title: Statistical models for the analysis of water distribution system pipe break data
  publication-title: Reliab Eng Syst Saf
– volume: 3
  start-page: 151
  year: 2001
  end-page: 164
  ident: bib0007
  article-title: Comprehensive review of structural deterioration of water mains: physically based models
  publication-title: Urban Water
– volume: 186
  start-page: 24
  year: 2019
  end-page: 36
  ident: bib0031
  article-title: Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system
  publication-title: Reliab Eng Syst Saf
– volume: 57
  start-page: 137
  year: 2015
  end-page: 142
  ident: bib0003
  article-title: Failure analysis and assessment on the exemplary water supply network
  publication-title: Eng Fail Anal
– year: 2005
  ident: bib0025
  article-title: Trenchless technology: pipeline and utility design, construction, and renewal
– volume: 1
  start-page: 53
  year: 2010
  end-page: 62
  ident: bib0017
  article-title: Hierarchical fuzzy expert system for risk of failure of water mains
  publication-title: J Pipeline Syst Eng Pract
– volume: 30
  start-page: 1635
  year: 2016
  end-page: 1651
  ident: bib0021
  article-title: Prediction of timing of watermain failure using gene expression models
  publication-title: Water Resour Manag
– volume: 9
  start-page: 627
  year: 2008
  end-page: 650
  ident: bib0042
  article-title: Trust region Newton methods for large-scale logistic regression
  publication-title: J. Mach. Learn. Res.
– reference: AEAS, “XIV estudio nacional de suministro de agua potable y saneamiento en españa,” 2016. [Online]. Available:
– volume: 75
  start-page: 702
  year: 2019
  end-page: 711
  ident: bib0035
  article-title: Integration of feature vector selection and support vector machine for classification of imbalanced data
  publication-title: Appl Soft Comput J
– volume: 9
  start-page: 1871
  year: 2008
  end-page: 1874
  ident: bib0041
  article-title: LIBLINEAR: a library for large linear classification
  publication-title: J Mach Learn Res
– volume: 142
  start-page: 498
  year: 2015
  end-page: 514
  ident: bib0013
  article-title: Predicting water main failures using Bayesian model averaging and survival modelling approach
  publication-title: Reliab Eng Syst Saf
– volume: 186
  start-page: 117
  year: 2017
  end-page: 126
  ident: bib0039
  article-title: Pipe failure prediction in water distribution systems considering static and dynamic factors
  publication-title: Procedia Eng
– volume: 26
  year: 2019
  ident: bib0028
  article-title: Systemic vulnerability assessment of urban water distribution networks considering failure scenario uncertainty
  publication-title: Int J Crit Infrastruct Prot
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: bib0048
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf Process Manag
– volume: 240
  start-page: 220
  year: 2015
  end-page: 234
  ident: bib0016
  article-title: Evaluating risk of water mains failure using a Bayesian belief network model
  publication-title: Eur J Oper Res
– volume: 90
  start-page: 12
  year: 2019
  end-page: 18
  ident: bib0036
  article-title: Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier
  publication-title: Tunn Undergr Sp Technol
– volume: 23
  start-page: 147
  year: 2016
  end-page: 160
  ident: bib0032
  article-title: Prediction of water conduits failure rate – Comparison of support vector machine and neural network
  publication-title: Ecol Chem Eng A
– start-page: 296
  year: 2019
  end-page: 309
  ident: bib0030
  article-title: A two-time-scale point process model of water main breaks for infrastructure asset management
  publication-title: Water Res
– volume: 47
  start-page: 195
  year: 1955
  end-page: 206
  ident: bib0027
  article-title: Effects of physical environment on cast-iron pipe
  publication-title: J Am Water Work Assoc
– volume: 33
  start-page: 138
  year: 2009
  end-page: 149
  ident: bib0009
  article-title: Risk-based asset management of water piping networks using neurofuzzy systems
  publication-title: Comput Environ Urban Syst
– volume: 29
  start-page: 1575
  year: 2015
  end-page: 1590
  ident: bib0046
  article-title: Estimation of failure rate in water distribution network using fuzzy clustering and ls-svm methods
  publication-title: Water Resour Manag
– volume: 11
  start-page: 114
  year: 2014
  end-page: 128
  ident: bib0015
  article-title: A methodology for prioritizing water mains rehabilitation in Egypt
  publication-title: HBRC J
– volume: 279
  start-page: 163
  year: 2014
  end-page: 175
  ident: bib0044
  article-title: Feature selection for support vector machines via mixed integer linear programming
  publication-title: Inf Sci (Ny)
– volume: 145
  start-page: 15
  year: 1998
  end-page: 20
  ident: bib0026
  article-title: Analyzing underground water-pipe breaks in residual soils
  publication-title: Water Eng Manag
– volume: 119
  start-page: 53
  year: 2015
  end-page: 62
  ident: bib0005
  article-title: Non-hydraulic factors analysis of pipe burst in water distribution systems
  publication-title: Procedia Eng
– volume: 24
  start-page: 139
  year: 2010
  end-page: 156
  ident: bib0038
  article-title: Neurofuzzy decision framework for the management of water distribution networks
  publication-title: Water Resour Manag
– year: 1989
  ident: bib0040
  article-title: Generalized linear models
– volume: 95
  start-page: 43
  year: 2010
  end-page: 48
  ident: bib0011
  article-title: Comparing risk of failure models in water supply networks using ROC curves
  publication-title: Reliab Eng Syst Saf
– volume: 65
  start-page: 145
  year: 2016
  end-page: 161
  ident: bib0004
  article-title: Risk-based prioritization of water main failure using fuzzy synthetic evaluation technique
  publication-title: J Water Supply Res Technol—AQUA
– start-page: 1125
  year: 2009
  end-page: 1134
  ident: bib0037
  article-title: Risk assessment for water mains using fuzzy approach
  publication-title: 2009 Construction Research Congress
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib0049
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
– volume: 51
  start-page: 1170
  year: 2010
  end-page: 1180
  ident: bib0010
  article-title: Application of artificial neural networks (ANN) to model the failure of urban water mains
  publication-title: Math Comput Model
– volume: 125
  year: 2019
  ident: bib0023
  article-title: Segmented pipeline damage predictions using liquefaction vulnerability parameters
  publication-title: Soil Dyn Earthq Eng
– start-page: 30
  year: 2018
  end-page: 40
  ident: bib0029
  article-title: Developing a hierarchical fuzzy rule-based model with weighted linguistic rules: a case study of water pipes condition prediction
  publication-title: Proceeding Computer Conference 2017
– volume: 130
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0006
  article-title: Bayesian belief networks for predicting drinking water distribution system pipe breaks
  publication-title: Reliab Eng Syst Saf
– year: 1998
  ident: bib0043
  article-title: Statistical learning theory
– volume: 307
  start-page: 1
  year: 2008
  end-page: 39
  ident: bib0045
  article-title: LIBSVM : a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
– volume: 2
  start-page: 153
  year: 2000
  end-page: 170
  ident: bib0024
  article-title: Rehabilitation strategies for water distribution networks: a literature review with a UK perspective
  publication-title: Urban Water
– volume: 145
  start-page: 15
  issue: 12
  year: 1998
  ident: 10.1016/j.ress.2019.106754_bib0026
  article-title: Analyzing underground water-pipe breaks in residual soils
  publication-title: Water Eng Manag
– volume: 279
  start-page: 163
  year: 2014
  ident: 10.1016/j.ress.2019.106754_bib0044
  article-title: Feature selection for support vector machines via mixed integer linear programming
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2014.03.110
– volume: 2
  start-page: 153
  issue: 2
  year: 2000
  ident: 10.1016/j.ress.2019.106754_bib0024
  article-title: Rehabilitation strategies for water distribution networks: a literature review with a UK perspective
  publication-title: Urban Water
  doi: 10.1016/S1462-0758(00)00053-4
– start-page: 296
  year: 2019
  ident: 10.1016/j.ress.2019.106754_bib0030
  article-title: A two-time-scale point process model of water main breaks for infrastructure asset management
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.11.066
– volume: 24
  start-page: 139
  issue: 1
  year: 2010
  ident: 10.1016/j.ress.2019.106754_bib0038
  article-title: Neurofuzzy decision framework for the management of water distribution networks
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-009-9441-2
– ident: 10.1016/j.ress.2019.106754_bib0001
– volume: 57
  start-page: 137
  year: 2015
  ident: 10.1016/j.ress.2019.106754_bib0003
  article-title: Failure analysis and assessment on the exemplary water supply network
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2015.07.036
– volume: 25
  start-page: 380
  issue: 2
  year: 2011
  ident: 10.1016/j.ress.2019.106754_bib0014
  article-title: A density-based spatial clustering approach for defining local indicators of drinking water distribution pipe breakage
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2010.09.001
– year: 2017
  ident: 10.1016/j.ress.2019.106754_bib0047
– volume: 186
  start-page: 24
  issue: August 2017
  year: 2019
  ident: 10.1016/j.ress.2019.106754_bib0031
  article-title: Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.02.001
– volume: 9
  start-page: 627
  year: 2008
  ident: 10.1016/j.ress.2019.106754_bib0042
  article-title: Trust region Newton methods for large-scale logistic regression
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 114
  issue: 1
  year: 2014
  ident: 10.1016/j.ress.2019.106754_bib0015
  article-title: A methodology for prioritizing water mains rehabilitation in Egypt
  publication-title: HBRC J
  doi: 10.1016/j.hbrcj.2014.03.002
– volume: 23
  start-page: 147
  issue: 2
  year: 2016
  ident: 10.1016/j.ress.2019.106754_bib0032
  article-title: Prediction of water conduits failure rate – Comparison of support vector machine and neural network
  publication-title: Ecol Chem Eng A
– volume: 51
  start-page: 1170
  issue: 9–10
  year: 2010
  ident: 10.1016/j.ress.2019.106754_bib0010
  article-title: Application of artificial neural networks (ANN) to model the failure of urban water mains
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2009.12.033
– volume: 19
  start-page: 264
  issue: 1
  year: 2018
  ident: 10.1016/j.ress.2019.106754_bib0034
  article-title: Forecasting failure rate of water pipes
  publication-title: Water Sci Technol Water Supply
  doi: 10.2166/ws.2018.078
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.ress.2019.106754_bib0049
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 94
  start-page: 282
  issue: 2
  year: 2009
  ident: 10.1016/j.ress.2019.106754_bib0008
  article-title: Statistical models for the analysis of water distribution system pipe break data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2008.03.011
– volume: 18
  start-page: 941
  issue: 4
  year: 2014
  ident: 10.1016/j.ress.2019.106754_bib0019
  article-title: A comparison between performance of support vector regression and artificial neural network in prediction of pipe burst rate in water distribution networks
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-014-0537-8
– year: 1998
  ident: 10.1016/j.ress.2019.106754_bib0043
– volume: 130
  start-page: 1
  year: 2014
  ident: 10.1016/j.ress.2019.106754_bib0006
  article-title: Bayesian belief networks for predicting drinking water distribution system pipe breaks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.04.024
– start-page: 1125
  year: 2009
  ident: 10.1016/j.ress.2019.106754_bib0037
  article-title: Risk assessment for water mains using fuzzy approach
– volume: 142
  start-page: 498
  year: 2015
  ident: 10.1016/j.ress.2019.106754_bib0013
  article-title: Predicting water main failures using Bayesian model averaging and survival modelling approach
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.06.011
– start-page: 30
  year: 2018
  ident: 10.1016/j.ress.2019.106754_bib0029
  article-title: Developing a hierarchical fuzzy rule-based model with weighted linguistic rules: a case study of water pipes condition prediction
– volume: 3
  start-page: 151
  issue: 3
  year: 2001
  ident: 10.1016/j.ress.2019.106754_bib0007
  article-title: Comprehensive review of structural deterioration of water mains: physically based models
  publication-title: Urban Water
  doi: 10.1016/S1462-0758(01)00033-4
– volume: 33
  start-page: 138
  issue: 2
  year: 2009
  ident: 10.1016/j.ress.2019.106754_bib0009
  article-title: Risk-based asset management of water piping networks using neurofuzzy systems
  publication-title: Comput Environ Urban Syst
  doi: 10.1016/j.compenvurbsys.2008.12.001
– volume: 26
  year: 2019
  ident: 10.1016/j.ress.2019.106754_bib0028
  article-title: Systemic vulnerability assessment of urban water distribution networks considering failure scenario uncertainty
  publication-title: Int J Crit Infrastruct Prot
  doi: 10.1016/j.ijcip.2019.05.002
– volume: 240
  start-page: 220
  issue: 1
  year: 2015
  ident: 10.1016/j.ress.2019.106754_bib0016
  article-title: Evaluating risk of water mains failure using a Bayesian belief network model
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2014.06.033
– year: 1989
  ident: 10.1016/j.ress.2019.106754_bib0040
– volume: 31
  start-page: 157
  issue: 1
  year: 2019
  ident: 10.1016/j.ress.2019.106754_bib0022
  article-title: Extreme learning machine model for water network management
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2987-7
– volume: 9
  start-page: 85
  issue: 2
  year: 2012
  ident: 10.1016/j.ress.2019.106754_bib0002
  article-title: State-of-the-technology review on water pipe condition, deterioration and failure rate prediction models!
  publication-title: Urban Water J
  doi: 10.1080/1573062X.2011.644566
– volume: 9
  start-page: 1871
  year: 2008
  ident: 10.1016/j.ress.2019.106754_bib0041
  article-title: LIBLINEAR: a library for large linear classification
  publication-title: J Mach Learn Res
– volume: 90
  start-page: 12
  issue: May 2018
  year: 2019
  ident: 10.1016/j.ress.2019.106754_bib0036
  article-title: Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2019.04.019
– year: 2005
  ident: 10.1016/j.ress.2019.106754_bib0025
– volume: 65
  start-page: 145
  issue: 2
  year: 2016
  ident: 10.1016/j.ress.2019.106754_bib0004
  article-title: Risk-based prioritization of water main failure using fuzzy synthetic evaluation technique
  publication-title: J Water Supply Res Technol—AQUA
– volume: 105
  start-page: 2295
  issue: 12
  year: 2017
  ident: 10.1016/j.ress.2019.106754_bib0033
  article-title: Efficient processing of deep neural networks: a tutorial and survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2761740
– volume: 307
  start-page: 1
  year: 2008
  ident: 10.1016/j.ress.2019.106754_bib0045
  article-title: LIBSVM : a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
– volume: 14
  start-page: 659
  issue: 3
  year: 2012
  ident: 10.1016/j.ress.2019.106754_bib0012
  article-title: Comparison of four models to rank failure likelihood of individual pipes
  publication-title: J. Hydroinformatics
  doi: 10.2166/hydro.2011.029
– volume: 95
  start-page: 43
  issue: 1
  year: 2010
  ident: 10.1016/j.ress.2019.106754_bib0011
  article-title: Comparing risk of failure models in water supply networks using ROC curves
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2009.07.004
– volume: 119
  start-page: 53
  issue: 1
  year: 2015
  ident: 10.1016/j.ress.2019.106754_bib0005
  article-title: Non-hydraulic factors analysis of pipe burst in water distribution systems
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2015.08.853
– volume: 47
  start-page: 195
  issue: 12
  year: 1955
  ident: 10.1016/j.ress.2019.106754_bib0027
  article-title: Effects of physical environment on cast-iron pipe
  publication-title: J Am Water Work Assoc
– volume: 30
  start-page: 1635
  issue: 5
  year: 2016
  ident: 10.1016/j.ress.2019.106754_bib0021
  article-title: Prediction of timing of watermain failure using gene expression models
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-016-1241-x
– volume: 125
  year: 2019
  ident: 10.1016/j.ress.2019.106754_bib0023
  article-title: Segmented pipeline damage predictions using liquefaction vulnerability parameters
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2019.105758
– volume: 186
  start-page: 117
  year: 2017
  ident: 10.1016/j.ress.2019.106754_bib0039
  article-title: Pipe failure prediction in water distribution systems considering static and dynamic factors
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2017.03.217
– volume: 96
  start-page: 942
  issue: 8
  year: 2011
  ident: 10.1016/j.ress.2019.106754_bib0018
  article-title: Pipe break prediction based on evolutionary data-driven methods with brief recorded data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2011.03.010
– volume: 12
  start-page: 286
  year: 1985
  ident: 10.1016/j.ress.2019.106754_bib0020
  article-title: An analysis of pipe breakage in urban water distribution networks
  publication-title: Can J Civ Eng
  doi: 10.1139/l85-030
– volume: 75
  start-page: 702
  year: 2019
  ident: 10.1016/j.ress.2019.106754_bib0035
  article-title: Integration of feature vector selection and support vector machine for classification of imbalanced data
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2018.11.045
– volume: 1
  start-page: 53
  issue: 1
  year: 2010
  ident: 10.1016/j.ress.2019.106754_bib0017
  article-title: Hierarchical fuzzy expert system for risk of failure of water mains
  publication-title: J Pipeline Syst Eng Pract
  doi: 10.1061/(ASCE)PS.1949-1204.0000037
– volume: 29
  start-page: 1575
  issue: 5
  year: 2015
  ident: 10.1016/j.ress.2019.106754_bib0046
  article-title: Estimation of failure rate in water distribution network using fuzzy clustering and ls-svm methods
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0895-5
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.ress.2019.106754_bib0048
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2009.03.002
SSID ssj0004957
Score 2.6254454
Snippet •Prediction of >85% of pipe failures using both algorithms, LR and SVC.•Excellent abilities to avoid false classifications (AUCs).•Importance of training set...
Companies in charge of water supply networks are making a huge effort to optimally plan the annual replacements of pipes. This would save costs, enable a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106754
SubjectTerms Classification
Failure
Logistic regression
Networks
Optimization
Pipe failures
Pipes
Predictive algorithms
Reliability engineering
Statistical analysis
Support vector classification
Sustainability management
Water shortages
Water supply
Water supply networks
Water supply systems
Title Prediction of pipe failures in water supply networks using logistic regression and support vector classification
URI https://dx.doi.org/10.1016/j.ress.2019.106754
https://www.proquest.com/docview/2371766105
Volume 196
WOSCitedRecordID wos000515213900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RKMgHblGqJN7E8XFBRVBVpYdS7S1yEgelWmWjze7S8sP4fcz4kewuakUPXKLIsS3L82U8Hs98JuRDwKtcxlz4LI9jfxwLCb9UWfqqhOWG5TLh2uF2ecrPztLpVJyPRr9dLsx6xpsmvb4W7X8VNZSBsDF19h7i7juFAngHocMTxA7PfxL8-QLPXpwh2Nat8ipZY_S5Dn39KZEWscPLPG-8xgSBd95KuwxMOpAmdf5h4mNNqDLWBjPdW2sXv1egxY0hRoNUHcW3mtWG-PvGUwPTocaX4Yz2OllZ6hGbfjZTnX-poMvCZtygo6U_GsGL7vVZvr1QIJ_NB4zgl4_h6tfKpMufgMrDkkm_T_jW1GqtzePTVb3l4YiCjcAY56oMfdA8wZbWFpt6F4nwDBn1X0uC8U5cHeG0YSifOBoqb_Nv76yLfbSiC4S7yrCPDPvITB8PyH7EYwHadH_y9Xh6MmTkCsMx60Zu07VMZOHuSG4ziXaMA23xXDwlT-xWhU4MxJ6RkWqek8cbBJYvSDuAjc4rimCjDmy0bqgGGzVgow5sVIONOrDRAWwUwEYt2KgBG90G20vy_fPxxacvvr3Dwy9YlC79sEwliyVLVJImPImV5CwJwoIJVSkZwXKbcsWCqBJ5UAUKE8VkHERlEY8FC8eKvSJ7zbxRrwktch5GiRwHJWxZlAoEtK3KJK_A5JdVGR6Q0E1jVliCe7xnZZbdLsAD4vVtWkPvcmft2EknswaqMTwzANud7Q6dKDOrKeA740jOCvubN_caxFvyaPhJDsnecrFS78jDYr2su8V7C8Q_G3nAHg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+pipe+failures+in+water+supply+networks+using+logistic+regression+and+support+vector+classification&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Robles-Velasco%2C+Alicia&rft.au=Cort%C3%A9s%2C+Pablo&rft.au=Mu%C3%B1uzuri%2C+Jes%C3%BAs&rft.au=Onieva%2C+Luis&rft.date=2020-04-01&rft.issn=0951-8320&rft.volume=196&rft.spage=106754&rft_id=info:doi/10.1016%2Fj.ress.2019.106754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2019_106754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon