Top-k Feature Selection Framework Using Robust 0-1 Integer Programming
Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 32; no. 7; pp. 3005 - 3019 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and then select the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> top-ranked features, where <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> is the number of desired features. However, these features are usually not the top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> features and may present a suboptimal choice. To address this issue, we propose a novel FS framework in this article to select the exact top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> features in the unsupervised, semisupervised, and supervised scenarios. The new framework utilizes the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm as the matrix sparsity constraint rather than its relaxations, such as the <inline-formula> <tex-math notation="LaTeX">\ell _{1,2} </tex-math></inline-formula>-norm. Since the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm constrained problem is difficult to solve, we transform the discrete <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm-based constraint into an equivalent 0-1 integer constraint and replace the 0-1 integer constraint with two continuous constraints. The obtained top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> FS framework with two continuous constraints is theoretically equivalent to the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm constrained problem and can be optimized by the alternating direction method of multipliers (ADMM). Unsupervised and semisupervised FS methods are developed based on the proposed framework, and extensive experiments on real-world data sets are conducted to demonstrate the effectiveness of the proposed FS framework. |
|---|---|
| AbstractList | Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and then select the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> top-ranked features, where <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> is the number of desired features. However, these features are usually not the top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> features and may present a suboptimal choice. To address this issue, we propose a novel FS framework in this article to select the exact top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> features in the unsupervised, semisupervised, and supervised scenarios. The new framework utilizes the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm as the matrix sparsity constraint rather than its relaxations, such as the <inline-formula> <tex-math notation="LaTeX">\ell _{1,2} </tex-math></inline-formula>-norm. Since the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm constrained problem is difficult to solve, we transform the discrete <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm-based constraint into an equivalent 0-1 integer constraint and replace the 0-1 integer constraint with two continuous constraints. The obtained top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> FS framework with two continuous constraints is theoretically equivalent to the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm constrained problem and can be optimized by the alternating direction method of multipliers (ADMM). Unsupervised and semisupervised FS methods are developed based on the proposed framework, and extensive experiments on real-world data sets are conducted to demonstrate the effectiveness of the proposed FS framework. Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and then select the [Formula Omitted] top-ranked features, where [Formula Omitted] is the number of desired features. However, these features are usually not the top-[Formula Omitted] features and may present a suboptimal choice. To address this issue, we propose a novel FS framework in this article to select the exact top-[Formula Omitted] features in the unsupervised, semisupervised, and supervised scenarios. The new framework utilizes the [Formula Omitted]-norm as the matrix sparsity constraint rather than its relaxations, such as the [Formula Omitted]-norm. Since the [Formula Omitted]-norm constrained problem is difficult to solve, we transform the discrete [Formula Omitted]-norm-based constraint into an equivalent 0–1 integer constraint and replace the 0–1 integer constraint with two continuous constraints. The obtained top-[Formula Omitted] FS framework with two continuous constraints is theoretically equivalent to the [Formula Omitted]-norm constrained problem and can be optimized by the alternating direction method of multipliers (ADMM). Unsupervised and semisupervised FS methods are developed based on the proposed framework, and extensive experiments on real-world data sets are conducted to demonstrate the effectiveness of the proposed FS framework. Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and then select the k top-ranked features, where k is the number of desired features. However, these features are usually not the top- k features and may present a suboptimal choice. To address this issue, we propose a novel FS framework in this article to select the exact top- k features in the unsupervised, semisupervised, and supervised scenarios. The new framework utilizes the l0,2 -norm as the matrix sparsity constraint rather than its relaxations, such as the l1,2 -norm. Since the l0,2 -norm constrained problem is difficult to solve, we transform the discrete l0,2 -norm-based constraint into an equivalent 0-1 integer constraint and replace the 0-1 integer constraint with two continuous constraints. The obtained top- k FS framework with two continuous constraints is theoretically equivalent to the l0,2 -norm constrained problem and can be optimized by the alternating direction method of multipliers (ADMM). Unsupervised and semisupervised FS methods are developed based on the proposed framework, and extensive experiments on real-world data sets are conducted to demonstrate the effectiveness of the proposed FS framework.Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and then select the k top-ranked features, where k is the number of desired features. However, these features are usually not the top- k features and may present a suboptimal choice. To address this issue, we propose a novel FS framework in this article to select the exact top- k features in the unsupervised, semisupervised, and supervised scenarios. The new framework utilizes the l0,2 -norm as the matrix sparsity constraint rather than its relaxations, such as the l1,2 -norm. Since the l0,2 -norm constrained problem is difficult to solve, we transform the discrete l0,2 -norm-based constraint into an equivalent 0-1 integer constraint and replace the 0-1 integer constraint with two continuous constraints. The obtained top- k FS framework with two continuous constraints is theoretically equivalent to the l0,2 -norm constrained problem and can be optimized by the alternating direction method of multipliers (ADMM). Unsupervised and semisupervised FS methods are developed based on the proposed framework, and extensive experiments on real-world data sets are conducted to demonstrate the effectiveness of the proposed FS framework. |
| Author | Tao, Dacheng Wang, Di Zhang, Xiaoqin Zhou, Peng Fan, Mingyu |
| Author_xml | – sequence: 1 givenname: Xiaoqin orcidid: 0000-0003-0958-7285 surname: Zhang fullname: Zhang, Xiaoqin email: zhangxiaoqinnan@gmail.com organization: College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China – sequence: 2 givenname: Mingyu orcidid: 0000-0002-0492-4708 surname: Fan fullname: Fan, Mingyu email: fanmingyu@wzu.edu.cn organization: College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China – sequence: 3 givenname: Di orcidid: 0000-0003-0435-0609 surname: Wang fullname: Wang, Di email: wang.di@xjtu.edu.cn organization: Center of Intelligent Decision-Making and Machine Learning, School of Management, Xi'an Jiaotong University, Xi'an, China – sequence: 4 givenname: Peng orcidid: 0000-0002-3675-4985 surname: Zhou fullname: Zhou, Peng email: zhoupeng@ahu.edu.cn organization: School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 5 givenname: Dacheng orcidid: 0000-0001-7225-5449 surname: Tao fullname: Tao, Dacheng email: dacheng.tao@sydney.edu.au organization: UBTECH Sydney Artificial Intelligence Centre and the School of Computer Science, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia |
| BookMark | eNp9kM9LwzAUgIMoOn_8A3opePHS-ZI0bXKUYXUwVNwG3kIaX0e1bWbSIv73dk528GAueZDvC4_vmOy3rkVCzimMKQV1vXh4mM3HDBiMOYBioPbIiNGUxYxLub-bs5cjchbCGwwnBZEm6pAccZZxIbgckXzh1vF7lKPpeo_RHGu0XeXaKPemwU_n36NlqNpV9OyKPnQRxDSath2u0EdP3q0GqhmeT8lBaeqAZ7_3CVnmt4vJfTx7vJtObmax5Ux2MbUIyLNEiYKnAkpLDbWcJsiosEIBfS0TgdKgyKCUKR3GoigZZLIQYArgJ-Rq--_au48eQ6ebKlisa9Oi64NmCVNZJgWIAb38g7653rfDdpqJRCoFXPGBklvKeheCx1LbqjObAp03Va0p6E1u_ZNbb3Lr39yDyv6oa181xn_9L11spQoRd4Kigqsk4d--jolr |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s00366_020_01277_4 crossref_primary_10_32604_cmc_2023_032363 crossref_primary_10_3390_bioengineering9010007 crossref_primary_10_1007_s10948_021_05932_9 crossref_primary_10_1016_j_measurement_2022_111310 crossref_primary_10_1155_2021_8130378 crossref_primary_10_1109_TNNLS_2021_3128173 crossref_primary_10_1007_s11227_021_04005_x crossref_primary_10_1016_j_sigpro_2022_108622 crossref_primary_10_1155_2020_4968063 crossref_primary_10_1016_j_compbiomed_2023_107769 crossref_primary_10_1016_j_compbiomed_2021_104698 crossref_primary_10_1016_j_neucom_2024_128069 crossref_primary_10_1109_JIOT_2022_3204581 crossref_primary_10_1002_int_22744 crossref_primary_10_1109_TETCI_2024_3449850 crossref_primary_10_32604_cmes_2024_052637 crossref_primary_10_3390_en14041196 crossref_primary_10_1007_s11082_021_03168_4 crossref_primary_10_1007_s00366_021_01289_8 crossref_primary_10_1007_s42235_021_0068_1 crossref_primary_10_1515_revic_2021_0007 crossref_primary_10_1016_j_eswa_2020_113974 crossref_primary_10_1155_2021_6296811 crossref_primary_10_1109_TNNLS_2023_3234629 crossref_primary_10_1016_j_ins_2023_03_050 crossref_primary_10_1093_bib_bbac253 crossref_primary_10_3390_en14061649 crossref_primary_10_1007_s13042_024_02308_y crossref_primary_10_1016_j_sysconle_2025_106189 crossref_primary_10_1007_s10472_024_09936_8 crossref_primary_10_1109_TKDE_2024_3388526 crossref_primary_10_1038_s41746_022_00704_8 crossref_primary_10_1109_ACCESS_2020_3024690 crossref_primary_10_1016_j_swevo_2024_101701 crossref_primary_10_1109_TMC_2024_3470993 crossref_primary_10_1109_TCYB_2022_3160244 crossref_primary_10_1145_3418284 crossref_primary_10_1007_s10118_020_2491_x crossref_primary_10_1109_TBDATA_2022_3178715 crossref_primary_10_1155_2020_4873501 crossref_primary_10_1016_j_neucom_2025_131099 crossref_primary_10_1007_s00366_021_01464_x crossref_primary_10_3390_su13063198 crossref_primary_10_1109_TIM_2023_3322486 crossref_primary_10_1109_JSEN_2025_3591932 crossref_primary_10_1515_ijcre_2021_0069 crossref_primary_10_1007_s00366_021_01359_x crossref_primary_10_1007_s42235_021_00114_8 crossref_primary_10_1007_s00366_020_01234_1 crossref_primary_10_1007_s10668_022_02652_5 crossref_primary_10_3390_plants10112527 crossref_primary_10_1186_s12951_021_00896_3 crossref_primary_10_1109_ACCESS_2021_3108447 crossref_primary_10_1093_jcde_qwac014 crossref_primary_10_1007_s00366_021_01363_1 crossref_primary_10_1007_s00500_020_05439_w crossref_primary_10_1109_ACCESS_2021_3079204 crossref_primary_10_1155_2021_6636794 crossref_primary_10_3390_sym12101651 crossref_primary_10_1111_exsy_13803 crossref_primary_10_1109_TNNLS_2023_3321685 crossref_primary_10_1007_s00500_022_07058_z crossref_primary_10_1007_s10489_022_03539_8 crossref_primary_10_1109_ACCESS_2020_3044548 crossref_primary_10_1007_s00366_021_01282_1 crossref_primary_10_1007_s00366_021_01377_9 crossref_primary_10_1038_s41598_023_39790_3 crossref_primary_10_1016_j_neuroimage_2024_120839 crossref_primary_10_1002_int_22658 crossref_primary_10_1007_s00366_021_01356_0 crossref_primary_10_1155_2022_3755574 crossref_primary_10_1007_s00607_025_01425_y crossref_primary_10_3390_su13042336 crossref_primary_10_1109_TIM_2023_3291774 |
| Cites_doi | 10.1609/aaai.v33i01.33013983 10.1109/TNNLS.2015.2441735 10.1037/h0071325 10.1109/TPAMI.2019.2903483 10.1016/j.knosys.2019.105417 10.1109/TNNLS.2016.2551724 10.1609/aaai.v33i01.33013534 10.24963/ijcai.2019/412 10.1109/TCYB.2017.2647904 10.24963/ijcai.2017/228 10.1109/TCYB.2017.2657007 10.1109/TNNLS.2012.2212721 10.1109/TNNLS.2018.2852297 10.1016/j.patcog.2020.107375 10.1109/TIP.2017.2733200 10.1002/cpa.20132 10.1109/TCYB.2016.2539546 10.1007/978-3-662-44845-8_20 10.1109/TPAMI.2019.2929043 10.1017/CBO9780511804441 10.1145/2783258.2783345 10.1016/j.ins.2018.05.030 10.1109/TKDE.2018.2847685 10.1109/TNNLS.2016.2582746 10.1109/TCYB.2013.2272642 10.1109/TKDE.2007.190669 10.1016/j.amc.2017.01.062 10.1109/TKDE.2017.2763618 10.1016/j.neucom.2018.06.010 10.1109/TPAMI.2018.2845842 10.1016/j.neucom.2007.06.014 10.5244/C.25.76 10.1016/j.patcog.2014.08.006 10.1109/TNNLS.2018.2868847 10.1111/j.1467-9868.2005.00503.x 10.1109/TNNLS.2016.2562670 10.1016/j.patcog.2015.12.007 10.1109/TNNLS.2015.2424721 10.1109/TNNLS.2014.2314123 10.1109/TNNLS.2017.2650978 10.1109/JSTARS.2017.2700058 10.1109/TMM.2012.2199293 10.1145/1835804.1835848 10.1109/TPAMI.2013.57 10.1111/j.2517-6161.1996.tb02080.x 10.24963/ijcai.2019/438 10.1016/j.patcog.2011.02.013 10.1016/j.imavis.2016.11.014 10.1109/TSMCB.2011.2179533 10.1016/j.neucom.2015.02.043 10.1016/j.neucom.2012.05.031 10.1016/j.patcog.2017.01.016 10.1016/S0304-3975(97)00115-1 10.1109/ICCIA.2010.6141595 10.1007/s10589-014-9648-x 10.1609/aaai.v33i01.33013705 10.1109/TIP.2015.2441632 10.1109/TIP.2008.2007610 10.1007/978-1-4419-7011-4 10.1109/TKDE.2011.222 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2020.3009209 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 3019 |
| ExternalDocumentID | 10_1109_TNNLS_2020_3009209 9153944 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61772373; 61922064; 61772374; 61806003 funderid: 10.13039/501100001809 – fundername: Science and Technology Plan Project of Wenzhou, China; Project of Science and Technology Plans of Wenzhou City grantid: C20170008; ZG2017016 funderid: 10.13039/501100018553 – fundername: Australian Research Council grantid: FL-170100117 funderid: 10.13039/501100000923 – fundername: Zhejiang Provincial Natural Science Foundation grantid: LR17F030001 funderid: 10.13039/501100004731 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c328t-1ce0e37495b3650fc1a1c314e215c5901df45e8ae570f861e8abbf2078b50ab03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670541500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Nov 09 10:29:56 EST 2025 Sun Nov 30 04:03:10 EST 2025 Tue Nov 18 21:45:11 EST 2025 Sat Nov 29 01:40:07 EST 2025 Wed Aug 27 02:26:39 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-1ce0e37495b3650fc1a1c314e215c5901df45e8ae570f861e8abbf2078b50ab03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0958-7285 0000-0002-0492-4708 0000-0002-3675-4985 0000-0003-0435-0609 0000-0001-7225-5449 |
| PMID | 32735538 |
| PQID | 2548990393 |
| PQPubID | 85436 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2429778505 proquest_journals_2548990393 ieee_primary_9153944 crossref_citationtrail_10_1109_TNNLS_2020_3009209 crossref_primary_10_1109_TNNLS_2020_3009209 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref59 ref15 ref58 ref14 lan (ref4) 2015 yang (ref26) 2011 ref53 ref55 ref11 ref54 ref10 bishop (ref6) 2006 ref17 zhu (ref65) 2003 ref16 han (ref38) 2015; 26 romano (ref75) 2014; 32 ref18 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 nie (ref20) 2010 ng (ref63) 2002 ref49 ref8 nie (ref29) 2016 he (ref56) 2006 ref9 ref3 ref5 ref40 qian (ref73) 2013 ref35 ref78 ref34 ref37 ref36 ref31 fukunaga (ref66) 2013 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref1 cai (ref52) 2013 cai (ref67) 2008; 20 ref71 ref70 fan (ref57) 2017 ref72 jenatton (ref50) 2011; 12 ref68 ref24 ref23 ref69 ref25 ref64 ref22 guyon (ref7) 2003; 3 ref21 chang (ref39) 2014 ref28 ref27 nie (ref61) 2016 gu (ref19) 2011 ref60 ref62 |
| References_xml | – year: 2014 ident: ref39 article-title: A convex formulation for semi-supervised multi-label feature selection publication-title: Proc 28th AAAI Conf Artif Intell – ident: ref44 doi: 10.1609/aaai.v33i01.33013983 – ident: ref2 doi: 10.1109/TNNLS.2015.2441735 – ident: ref69 doi: 10.1037/h0071325 – ident: ref48 doi: 10.1109/TPAMI.2019.2903483 – ident: ref33 doi: 10.1016/j.knosys.2019.105417 – ident: ref9 doi: 10.1109/TNNLS.2016.2551724 – ident: ref37 doi: 10.1609/aaai.v33i01.33013534 – ident: ref25 doi: 10.24963/ijcai.2019/412 – ident: ref41 doi: 10.1109/TCYB.2017.2647904 – ident: ref16 doi: 10.24963/ijcai.2017/228 – volume: 3 start-page: 1157 year: 2003 ident: ref7 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – start-page: 507 year: 2006 ident: ref56 article-title: Laplacian score for feature selection publication-title: Proc Adv Neural Inf Process Syst – ident: ref35 doi: 10.1109/TCYB.2017.2657007 – start-page: 1241 year: 2013 ident: ref52 article-title: Exact top-k feature selection via ??, 0-norm constraint publication-title: Proc 23rd Int Joint Conf Artif Intell – ident: ref51 doi: 10.1109/TNNLS.2012.2212721 – start-page: 204 year: 2015 ident: ref4 article-title: Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – start-page: 912 year: 2003 ident: ref65 article-title: Semi-supervised learning using Gaussian fields and harmonic functions publication-title: Proc 20th Int Conf Mach Learn (ICML) – year: 2013 ident: ref66 publication-title: Introduction to statistical pattern recognition – ident: ref23 doi: 10.1109/TNNLS.2018.2852297 – ident: ref36 doi: 10.1016/j.patcog.2020.107375 – ident: ref55 doi: 10.1109/TIP.2017.2733200 – ident: ref11 doi: 10.1002/cpa.20132 – ident: ref5 doi: 10.1109/TCYB.2016.2539546 – start-page: 1589 year: 2011 ident: ref26 article-title: ???-norm regularized discriminative feature selection for unsupervised learning publication-title: Proc IJCAI – ident: ref74 doi: 10.1007/978-3-662-44845-8_20 – start-page: 1870 year: 2017 ident: ref57 article-title: Structure regularized unsupervised discriminant feature analysis publication-title: Proc 31st AAAI Conf Artif Intell – ident: ref3 doi: 10.1109/TPAMI.2019.2929043 – ident: ref15 doi: 10.1017/CBO9780511804441 – ident: ref27 doi: 10.1145/2783258.2783345 – ident: ref64 doi: 10.1016/j.ins.2018.05.030 – start-page: 1302 year: 2016 ident: ref29 article-title: Unsupervised feature selection with structured graph optimization publication-title: Proc AAAI – ident: ref53 doi: 10.1109/TKDE.2018.2847685 – ident: ref40 doi: 10.1109/TNNLS.2016.2582746 – ident: ref72 doi: 10.1109/TCYB.2013.2272642 – volume: 20 start-page: 1 year: 2008 ident: ref67 article-title: SRDA: An efficient algorithm for large-scale discriminant analysis publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2007.190669 – ident: ref12 doi: 10.1016/j.amc.2017.01.062 – ident: ref34 doi: 10.1109/TKDE.2017.2763618 – ident: ref31 doi: 10.1016/j.neucom.2018.06.010 – ident: ref54 doi: 10.1109/TPAMI.2018.2845842 – start-page: 849 year: 2002 ident: ref63 article-title: On spectral clustering: Analysis and an algorithm publication-title: Proc Adv Neural Inf Process Syst – ident: ref78 doi: 10.1016/j.neucom.2007.06.014 – ident: ref1 doi: 10.5244/C.25.76 – ident: ref28 doi: 10.1016/j.patcog.2014.08.006 – ident: ref32 doi: 10.1109/TNNLS.2018.2868847 – start-page: 266 year: 2011 ident: ref19 article-title: Generalized Fisher score for feature selection publication-title: Proc Conf Uncertainty of Artificial Intelligence – ident: ref47 doi: 10.1111/j.1467-9868.2005.00503.x – ident: ref42 doi: 10.1109/TNNLS.2016.2562670 – start-page: 1813 year: 2010 ident: ref20 article-title: Efficient and robust feature selection via joint ??, 1-norms minimization publication-title: Proc Adv Neural Inf Process Syst – ident: ref59 doi: 10.1016/j.patcog.2015.12.007 – ident: ref18 doi: 10.1109/TNNLS.2015.2424721 – volume: 26 start-page: 252 year: 2015 ident: ref38 article-title: Semisupervised feature selection via spline regression for video semantic recognition publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2314123 – ident: ref30 doi: 10.1109/TNNLS.2017.2650978 – ident: ref43 doi: 10.1109/JSTARS.2017.2700058 – ident: ref76 doi: 10.1109/TMM.2012.2199293 – ident: ref70 doi: 10.1145/1835804.1835848 – ident: ref17 doi: 10.1109/TPAMI.2013.57 – volume: 32 start-page: 1143 year: 2014 ident: ref75 article-title: Standardized mutual information for clustering comparisons: One step further in adjustment for chance publication-title: Proc 31st Int Conf Mach Learn – ident: ref45 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref24 doi: 10.24963/ijcai.2019/438 – ident: ref62 doi: 10.1016/j.patcog.2011.02.013 – ident: ref14 doi: 10.1016/j.imavis.2016.11.014 – ident: ref49 doi: 10.1109/TSMCB.2011.2179533 – start-page: 1621 year: 2013 ident: ref73 article-title: Robust unsupervised feature selection publication-title: Proc 23rd Int Joint Conf Artif Intell – start-page: 1969 year: 2016 ident: ref61 article-title: The constrained Laplacian rank algorithm for graph-based clustering publication-title: Proc 13th AAAI Conf Artif Intell (AAAI) – year: 2006 ident: ref6 publication-title: Pattern Recognition and Machine Learning – volume: 12 start-page: 2777 year: 2011 ident: ref50 article-title: Structured variable selection with sparsity-inducing norms publication-title: J Mach Learn Res – ident: ref21 doi: 10.1016/j.neucom.2015.02.043 – ident: ref77 doi: 10.1016/j.neucom.2012.05.031 – ident: ref68 doi: 10.1016/j.patcog.2017.01.016 – ident: ref10 doi: 10.1016/S0304-3975(97)00115-1 – ident: ref58 doi: 10.1109/ICCIA.2010.6141595 – ident: ref13 doi: 10.1007/s10589-014-9648-x – ident: ref22 doi: 10.1609/aaai.v33i01.33013705 – ident: ref60 doi: 10.1109/TIP.2015.2441632 – ident: ref46 doi: 10.1109/TIP.2008.2007610 – ident: ref8 doi: 10.1007/978-1-4419-7011-4 – ident: ref71 doi: 10.1109/TKDE.2011.222 |
| SSID | ssj0000605649 |
| Score | 2.6282194 |
| Snippet | Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3005 |
| SubjectTerms | 0-1 integer programming Computer science Constraints Correlation Data analysis Datasets Equivalence Fans Feature extraction Feature selection feature selection (FS) Integer programming Learning algorithms Linear programming Machine learning nonconvex optimization norm Optimization Robustness |
| Title | Top-k Feature Selection Framework Using Robust 0-1 Integer Programming |
| URI | https://ieeexplore.ieee.org/document/9153944 https://www.proquest.com/docview/2548990393 https://www.proquest.com/docview/2429778505 |
| Volume | 32 |
| WOSCitedRecordID | wos000670541500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7a4oMvtrWKZ2uJ4JvGJtnsJnkU6dGHchR7wr0tSXZWRL0td7f-_U5yu4ugCL4F8oMlk9n5JplvBuCN9c7FBg3XslVcV7bkzqjI0ReYmJhWuyYXmzCLhV2t3N0BvJu4MIiYg8_wfWrmt_ymi326KrtypJ5O60M4NMbsuVrTfYogXF5ltKtkpbgqzGrkyAh3tVwsbu_JG1TkpKY0QyJlCy3IdJdlYqb8ZpJyjZU_fszZ2syP_-87T-DJgCrZh_0xOIUDXD-F47FiAxsU-Azmy-6Bf2MJ9_UbZPe5CA5Jhs3HGC2WYwjYpy702x0TXLJ0Z_iFFrnbR3L9oO5n8Hl-vfx4w4dKCjwWyu64jCiwMOQMhYIgWRull7GQGsngx8Q-bVpdovVYGtHaSlIzhFYRfAil8EEUz-Fo3a3xBTDtW1P4YFEGS1DM2kroRkndBh8xNn4GctzMOg5pxlO1i-91djeEq7Ms6iSLepDFDN5Ocx72STb-Ofosbfk0ctjtGVyMMqsHPdzW5P6SQ5n4xzN4PXWTBqVnEb_GrqcxZJKNsQQFX_595XN4rFIkSw7SvYCj3abHV_Ao_tx93W4u6TCu7GU-jL8AKjfXdA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OU9AXTz3F1VMj-Kbx8tUmfRRxOXEth7fCvpU0nYp4tz12t_79TrJtERTBt0A-KJlM5zfJ_GYAXjlfFKFBy41sFTe5y3hhVeDoNUYmpjNFk4pN2LJ0q1VxfgBvJi4MIqbgM3wbm-ktv-lCH6_KTgtSz8KYG3AzM0bJPVtrulERhMzzhHeVzBVX2q5GlowoTpdlubggf1CRmxoTDYmYL1ST8c6yyE35zSilKit__JqTvZkf_d-X3oO7A65k7_YH4T4c4PoBHI01G9igwscwX3bX_AeLyK_fILtIZXBINmw-RmmxFEXAvnR1v90xwSWLt4bfaJHzfSzXFXU_hK_zD8v3Z3yopcCDVm7HZUCB2pI7VGsCZW2QXgYtDZLJD5F_2rQmQ-cxs6J1uaRmXbeKAESdCV8L_QgO190aHwMzvrXa1w5l7QiMOZcL0yhp2toHDI2fgRw3swpDovFY7-KySg6HKKokiyrKohpkMYPX05zrfZqNf44-jls-jRx2ewYno8yqQRO3FTnA5FJGBvIMXk7dpEPxYcSvsetpDBllax2BwSd_X_kF3D5bfl5Ui4_lp6dwR8W4lhSyewKHu02Pz-BW-Ln7vt08T0fyF3Tt2dM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Top-k+Feature+Selection+Framework+Using+Robust+0-1+Integer+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Xiaoqin&rft.au=Fan%2C+Mingyu&rft.au=Wang%2C+Di&rft.au=Zhou%2C+Peng&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=32&rft.issue=7&rft.spage=3005&rft.epage=3019&rft_id=info:doi/10.1109%2FTNNLS.2020.3009209&rft_id=info%3Apmid%2F32735538&rft.externalDocID=9153944 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |