Top-k Feature Selection Framework Using Robust 0-1 Integer Programming

Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 32; no. 7; pp. 3005 - 3019
Main Authors: Zhang, Xiaoqin, Fan, Mingyu, Wang, Di, Zhou, Peng, Tao, Dacheng
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and then select the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> top-ranked features, where <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> is the number of desired features. However, these features are usually not the top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> features and may present a suboptimal choice. To address this issue, we propose a novel FS framework in this article to select the exact top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> features in the unsupervised, semisupervised, and supervised scenarios. The new framework utilizes the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm as the matrix sparsity constraint rather than its relaxations, such as the <inline-formula> <tex-math notation="LaTeX">\ell _{1,2} </tex-math></inline-formula>-norm. Since the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm constrained problem is difficult to solve, we transform the discrete <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm-based constraint into an equivalent 0-1 integer constraint and replace the 0-1 integer constraint with two continuous constraints. The obtained top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> FS framework with two continuous constraints is theoretically equivalent to the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm constrained problem and can be optimized by the alternating direction method of multipliers (ADMM). Unsupervised and semisupervised FS methods are developed based on the proposed framework, and extensive experiments on real-world data sets are conducted to demonstrate the effectiveness of the proposed FS framework.
AbstractList Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and then select the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> top-ranked features, where <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> is the number of desired features. However, these features are usually not the top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> features and may present a suboptimal choice. To address this issue, we propose a novel FS framework in this article to select the exact top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> features in the unsupervised, semisupervised, and supervised scenarios. The new framework utilizes the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm as the matrix sparsity constraint rather than its relaxations, such as the <inline-formula> <tex-math notation="LaTeX">\ell _{1,2} </tex-math></inline-formula>-norm. Since the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm constrained problem is difficult to solve, we transform the discrete <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm-based constraint into an equivalent 0-1 integer constraint and replace the 0-1 integer constraint with two continuous constraints. The obtained top-<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> FS framework with two continuous constraints is theoretically equivalent to the <inline-formula> <tex-math notation="LaTeX">\ell _{0,2} </tex-math></inline-formula>-norm constrained problem and can be optimized by the alternating direction method of multipliers (ADMM). Unsupervised and semisupervised FS methods are developed based on the proposed framework, and extensive experiments on real-world data sets are conducted to demonstrate the effectiveness of the proposed FS framework.
Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and then select the [Formula Omitted] top-ranked features, where [Formula Omitted] is the number of desired features. However, these features are usually not the top-[Formula Omitted] features and may present a suboptimal choice. To address this issue, we propose a novel FS framework in this article to select the exact top-[Formula Omitted] features in the unsupervised, semisupervised, and supervised scenarios. The new framework utilizes the [Formula Omitted]-norm as the matrix sparsity constraint rather than its relaxations, such as the [Formula Omitted]-norm. Since the [Formula Omitted]-norm constrained problem is difficult to solve, we transform the discrete [Formula Omitted]-norm-based constraint into an equivalent 0–1 integer constraint and replace the 0–1 integer constraint with two continuous constraints. The obtained top-[Formula Omitted] FS framework with two continuous constraints is theoretically equivalent to the [Formula Omitted]-norm constrained problem and can be optimized by the alternating direction method of multipliers (ADMM). Unsupervised and semisupervised FS methods are developed based on the proposed framework, and extensive experiments on real-world data sets are conducted to demonstrate the effectiveness of the proposed FS framework.
Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and then select the k top-ranked features, where k is the number of desired features. However, these features are usually not the top- k features and may present a suboptimal choice. To address this issue, we propose a novel FS framework in this article to select the exact top- k features in the unsupervised, semisupervised, and supervised scenarios. The new framework utilizes the l0,2 -norm as the matrix sparsity constraint rather than its relaxations, such as the l1,2 -norm. Since the l0,2 -norm constrained problem is difficult to solve, we transform the discrete l0,2 -norm-based constraint into an equivalent 0-1 integer constraint and replace the 0-1 integer constraint with two continuous constraints. The obtained top- k FS framework with two continuous constraints is theoretically equivalent to the l0,2 -norm constrained problem and can be optimized by the alternating direction method of multipliers (ADMM). Unsupervised and semisupervised FS methods are developed based on the proposed framework, and extensive experiments on real-world data sets are conducted to demonstrate the effectiveness of the proposed FS framework.Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine learning and has been widely studied in recent years. Most FS methods rank the features in order of their scores based on a specific criterion and then select the k top-ranked features, where k is the number of desired features. However, these features are usually not the top- k features and may present a suboptimal choice. To address this issue, we propose a novel FS framework in this article to select the exact top- k features in the unsupervised, semisupervised, and supervised scenarios. The new framework utilizes the l0,2 -norm as the matrix sparsity constraint rather than its relaxations, such as the l1,2 -norm. Since the l0,2 -norm constrained problem is difficult to solve, we transform the discrete l0,2 -norm-based constraint into an equivalent 0-1 integer constraint and replace the 0-1 integer constraint with two continuous constraints. The obtained top- k FS framework with two continuous constraints is theoretically equivalent to the l0,2 -norm constrained problem and can be optimized by the alternating direction method of multipliers (ADMM). Unsupervised and semisupervised FS methods are developed based on the proposed framework, and extensive experiments on real-world data sets are conducted to demonstrate the effectiveness of the proposed FS framework.
Author Tao, Dacheng
Wang, Di
Zhang, Xiaoqin
Zhou, Peng
Fan, Mingyu
Author_xml – sequence: 1
  givenname: Xiaoqin
  orcidid: 0000-0003-0958-7285
  surname: Zhang
  fullname: Zhang, Xiaoqin
  email: zhangxiaoqinnan@gmail.com
  organization: College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
– sequence: 2
  givenname: Mingyu
  orcidid: 0000-0002-0492-4708
  surname: Fan
  fullname: Fan, Mingyu
  email: fanmingyu@wzu.edu.cn
  organization: College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
– sequence: 3
  givenname: Di
  orcidid: 0000-0003-0435-0609
  surname: Wang
  fullname: Wang, Di
  email: wang.di@xjtu.edu.cn
  organization: Center of Intelligent Decision-Making and Machine Learning, School of Management, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Peng
  orcidid: 0000-0002-3675-4985
  surname: Zhou
  fullname: Zhou, Peng
  email: zhoupeng@ahu.edu.cn
  organization: School of Computer Science and Technology, Anhui University, Hefei, China
– sequence: 5
  givenname: Dacheng
  orcidid: 0000-0001-7225-5449
  surname: Tao
  fullname: Tao, Dacheng
  email: dacheng.tao@sydney.edu.au
  organization: UBTECH Sydney Artificial Intelligence Centre and the School of Computer Science, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia
BookMark eNp9kM9LwzAUgIMoOn_8A3opePHS-ZI0bXKUYXUwVNwG3kIaX0e1bWbSIv73dk528GAueZDvC4_vmOy3rkVCzimMKQV1vXh4mM3HDBiMOYBioPbIiNGUxYxLub-bs5cjchbCGwwnBZEm6pAccZZxIbgckXzh1vF7lKPpeo_RHGu0XeXaKPemwU_n36NlqNpV9OyKPnQRxDSath2u0EdP3q0GqhmeT8lBaeqAZ7_3CVnmt4vJfTx7vJtObmax5Ux2MbUIyLNEiYKnAkpLDbWcJsiosEIBfS0TgdKgyKCUKR3GoigZZLIQYArgJ-Rq--_au48eQ6ebKlisa9Oi64NmCVNZJgWIAb38g7653rfDdpqJRCoFXPGBklvKeheCx1LbqjObAp03Va0p6E1u_ZNbb3Lr39yDyv6oa181xn_9L11spQoRd4Kigqsk4d--jolr
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s00366_020_01277_4
crossref_primary_10_32604_cmc_2023_032363
crossref_primary_10_3390_bioengineering9010007
crossref_primary_10_1007_s10948_021_05932_9
crossref_primary_10_1016_j_measurement_2022_111310
crossref_primary_10_1155_2021_8130378
crossref_primary_10_1109_TNNLS_2021_3128173
crossref_primary_10_1007_s11227_021_04005_x
crossref_primary_10_1016_j_sigpro_2022_108622
crossref_primary_10_1155_2020_4968063
crossref_primary_10_1016_j_compbiomed_2023_107769
crossref_primary_10_1016_j_compbiomed_2021_104698
crossref_primary_10_1016_j_neucom_2024_128069
crossref_primary_10_1109_JIOT_2022_3204581
crossref_primary_10_1002_int_22744
crossref_primary_10_1109_TETCI_2024_3449850
crossref_primary_10_32604_cmes_2024_052637
crossref_primary_10_3390_en14041196
crossref_primary_10_1007_s11082_021_03168_4
crossref_primary_10_1007_s00366_021_01289_8
crossref_primary_10_1007_s42235_021_0068_1
crossref_primary_10_1515_revic_2021_0007
crossref_primary_10_1016_j_eswa_2020_113974
crossref_primary_10_1155_2021_6296811
crossref_primary_10_1109_TNNLS_2023_3234629
crossref_primary_10_1016_j_ins_2023_03_050
crossref_primary_10_1093_bib_bbac253
crossref_primary_10_3390_en14061649
crossref_primary_10_1007_s13042_024_02308_y
crossref_primary_10_1016_j_sysconle_2025_106189
crossref_primary_10_1007_s10472_024_09936_8
crossref_primary_10_1109_TKDE_2024_3388526
crossref_primary_10_1038_s41746_022_00704_8
crossref_primary_10_1109_ACCESS_2020_3024690
crossref_primary_10_1016_j_swevo_2024_101701
crossref_primary_10_1109_TMC_2024_3470993
crossref_primary_10_1109_TCYB_2022_3160244
crossref_primary_10_1145_3418284
crossref_primary_10_1007_s10118_020_2491_x
crossref_primary_10_1109_TBDATA_2022_3178715
crossref_primary_10_1155_2020_4873501
crossref_primary_10_1016_j_neucom_2025_131099
crossref_primary_10_1007_s00366_021_01464_x
crossref_primary_10_3390_su13063198
crossref_primary_10_1109_TIM_2023_3322486
crossref_primary_10_1109_JSEN_2025_3591932
crossref_primary_10_1515_ijcre_2021_0069
crossref_primary_10_1007_s00366_021_01359_x
crossref_primary_10_1007_s42235_021_00114_8
crossref_primary_10_1007_s00366_020_01234_1
crossref_primary_10_1007_s10668_022_02652_5
crossref_primary_10_3390_plants10112527
crossref_primary_10_1186_s12951_021_00896_3
crossref_primary_10_1109_ACCESS_2021_3108447
crossref_primary_10_1093_jcde_qwac014
crossref_primary_10_1007_s00366_021_01363_1
crossref_primary_10_1007_s00500_020_05439_w
crossref_primary_10_1109_ACCESS_2021_3079204
crossref_primary_10_1155_2021_6636794
crossref_primary_10_3390_sym12101651
crossref_primary_10_1111_exsy_13803
crossref_primary_10_1109_TNNLS_2023_3321685
crossref_primary_10_1007_s00500_022_07058_z
crossref_primary_10_1007_s10489_022_03539_8
crossref_primary_10_1109_ACCESS_2020_3044548
crossref_primary_10_1007_s00366_021_01282_1
crossref_primary_10_1007_s00366_021_01377_9
crossref_primary_10_1038_s41598_023_39790_3
crossref_primary_10_1016_j_neuroimage_2024_120839
crossref_primary_10_1002_int_22658
crossref_primary_10_1007_s00366_021_01356_0
crossref_primary_10_1155_2022_3755574
crossref_primary_10_1007_s00607_025_01425_y
crossref_primary_10_3390_su13042336
crossref_primary_10_1109_TIM_2023_3291774
Cites_doi 10.1609/aaai.v33i01.33013983
10.1109/TNNLS.2015.2441735
10.1037/h0071325
10.1109/TPAMI.2019.2903483
10.1016/j.knosys.2019.105417
10.1109/TNNLS.2016.2551724
10.1609/aaai.v33i01.33013534
10.24963/ijcai.2019/412
10.1109/TCYB.2017.2647904
10.24963/ijcai.2017/228
10.1109/TCYB.2017.2657007
10.1109/TNNLS.2012.2212721
10.1109/TNNLS.2018.2852297
10.1016/j.patcog.2020.107375
10.1109/TIP.2017.2733200
10.1002/cpa.20132
10.1109/TCYB.2016.2539546
10.1007/978-3-662-44845-8_20
10.1109/TPAMI.2019.2929043
10.1017/CBO9780511804441
10.1145/2783258.2783345
10.1016/j.ins.2018.05.030
10.1109/TKDE.2018.2847685
10.1109/TNNLS.2016.2582746
10.1109/TCYB.2013.2272642
10.1109/TKDE.2007.190669
10.1016/j.amc.2017.01.062
10.1109/TKDE.2017.2763618
10.1016/j.neucom.2018.06.010
10.1109/TPAMI.2018.2845842
10.1016/j.neucom.2007.06.014
10.5244/C.25.76
10.1016/j.patcog.2014.08.006
10.1109/TNNLS.2018.2868847
10.1111/j.1467-9868.2005.00503.x
10.1109/TNNLS.2016.2562670
10.1016/j.patcog.2015.12.007
10.1109/TNNLS.2015.2424721
10.1109/TNNLS.2014.2314123
10.1109/TNNLS.2017.2650978
10.1109/JSTARS.2017.2700058
10.1109/TMM.2012.2199293
10.1145/1835804.1835848
10.1109/TPAMI.2013.57
10.1111/j.2517-6161.1996.tb02080.x
10.24963/ijcai.2019/438
10.1016/j.patcog.2011.02.013
10.1016/j.imavis.2016.11.014
10.1109/TSMCB.2011.2179533
10.1016/j.neucom.2015.02.043
10.1016/j.neucom.2012.05.031
10.1016/j.patcog.2017.01.016
10.1016/S0304-3975(97)00115-1
10.1109/ICCIA.2010.6141595
10.1007/s10589-014-9648-x
10.1609/aaai.v33i01.33013705
10.1109/TIP.2015.2441632
10.1109/TIP.2008.2007610
10.1007/978-1-4419-7011-4
10.1109/TKDE.2011.222
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3009209
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3019
ExternalDocumentID 10_1109_TNNLS_2020_3009209
9153944
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61772373; 61922064; 61772374; 61806003
  funderid: 10.13039/501100001809
– fundername: Science and Technology Plan Project of Wenzhou, China; Project of Science and Technology Plans of Wenzhou City
  grantid: C20170008; ZG2017016
  funderid: 10.13039/501100018553
– fundername: Australian Research Council
  grantid: FL-170100117
  funderid: 10.13039/501100000923
– fundername: Zhejiang Provincial Natural Science Foundation
  grantid: LR17F030001
  funderid: 10.13039/501100004731
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c328t-1ce0e37495b3650fc1a1c314e215c5901df45e8ae570f861e8abbf2078b50ab03
IEDL.DBID RIE
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670541500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Nov 09 10:29:56 EST 2025
Sun Nov 30 04:03:10 EST 2025
Tue Nov 18 21:45:11 EST 2025
Sat Nov 29 01:40:07 EST 2025
Wed Aug 27 02:26:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-1ce0e37495b3650fc1a1c314e215c5901df45e8ae570f861e8abbf2078b50ab03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0958-7285
0000-0002-0492-4708
0000-0002-3675-4985
0000-0003-0435-0609
0000-0001-7225-5449
PMID 32735538
PQID 2548990393
PQPubID 85436
PageCount 15
ParticipantIDs proquest_miscellaneous_2429778505
proquest_journals_2548990393
ieee_primary_9153944
crossref_citationtrail_10_1109_TNNLS_2020_3009209
crossref_primary_10_1109_TNNLS_2020_3009209
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref59
ref15
ref58
ref14
lan (ref4) 2015
yang (ref26) 2011
ref53
ref55
ref11
ref54
ref10
bishop (ref6) 2006
ref17
zhu (ref65) 2003
ref16
han (ref38) 2015; 26
romano (ref75) 2014; 32
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
nie (ref20) 2010
ng (ref63) 2002
ref49
ref8
nie (ref29) 2016
he (ref56) 2006
ref9
ref3
ref5
ref40
qian (ref73) 2013
ref35
ref78
ref34
ref37
ref36
ref31
fukunaga (ref66) 2013
ref74
ref30
ref77
ref33
ref76
ref32
ref2
ref1
cai (ref52) 2013
cai (ref67) 2008; 20
ref71
ref70
fan (ref57) 2017
ref72
jenatton (ref50) 2011; 12
ref68
ref24
ref23
ref69
ref25
ref64
ref22
guyon (ref7) 2003; 3
ref21
chang (ref39) 2014
ref28
ref27
nie (ref61) 2016
gu (ref19) 2011
ref60
ref62
References_xml – year: 2014
  ident: ref39
  article-title: A convex formulation for semi-supervised multi-label feature selection
  publication-title: Proc 28th AAAI Conf Artif Intell
– ident: ref44
  doi: 10.1609/aaai.v33i01.33013983
– ident: ref2
  doi: 10.1109/TNNLS.2015.2441735
– ident: ref69
  doi: 10.1037/h0071325
– ident: ref48
  doi: 10.1109/TPAMI.2019.2903483
– ident: ref33
  doi: 10.1016/j.knosys.2019.105417
– ident: ref9
  doi: 10.1109/TNNLS.2016.2551724
– ident: ref37
  doi: 10.1609/aaai.v33i01.33013534
– ident: ref25
  doi: 10.24963/ijcai.2019/412
– ident: ref41
  doi: 10.1109/TCYB.2017.2647904
– ident: ref16
  doi: 10.24963/ijcai.2017/228
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref7
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– start-page: 507
  year: 2006
  ident: ref56
  article-title: Laplacian score for feature selection
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref35
  doi: 10.1109/TCYB.2017.2657007
– start-page: 1241
  year: 2013
  ident: ref52
  article-title: Exact top-k feature selection via ??, 0-norm constraint
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– ident: ref51
  doi: 10.1109/TNNLS.2012.2212721
– start-page: 204
  year: 2015
  ident: ref4
  article-title: Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 912
  year: 2003
  ident: ref65
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
  publication-title: Proc 20th Int Conf Mach Learn (ICML)
– year: 2013
  ident: ref66
  publication-title: Introduction to statistical pattern recognition
– ident: ref23
  doi: 10.1109/TNNLS.2018.2852297
– ident: ref36
  doi: 10.1016/j.patcog.2020.107375
– ident: ref55
  doi: 10.1109/TIP.2017.2733200
– ident: ref11
  doi: 10.1002/cpa.20132
– ident: ref5
  doi: 10.1109/TCYB.2016.2539546
– start-page: 1589
  year: 2011
  ident: ref26
  article-title: ???-norm regularized discriminative feature selection for unsupervised learning
  publication-title: Proc IJCAI
– ident: ref74
  doi: 10.1007/978-3-662-44845-8_20
– start-page: 1870
  year: 2017
  ident: ref57
  article-title: Structure regularized unsupervised discriminant feature analysis
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref3
  doi: 10.1109/TPAMI.2019.2929043
– ident: ref15
  doi: 10.1017/CBO9780511804441
– ident: ref27
  doi: 10.1145/2783258.2783345
– ident: ref64
  doi: 10.1016/j.ins.2018.05.030
– start-page: 1302
  year: 2016
  ident: ref29
  article-title: Unsupervised feature selection with structured graph optimization
  publication-title: Proc AAAI
– ident: ref53
  doi: 10.1109/TKDE.2018.2847685
– ident: ref40
  doi: 10.1109/TNNLS.2016.2582746
– ident: ref72
  doi: 10.1109/TCYB.2013.2272642
– volume: 20
  start-page: 1
  year: 2008
  ident: ref67
  article-title: SRDA: An efficient algorithm for large-scale discriminant analysis
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2007.190669
– ident: ref12
  doi: 10.1016/j.amc.2017.01.062
– ident: ref34
  doi: 10.1109/TKDE.2017.2763618
– ident: ref31
  doi: 10.1016/j.neucom.2018.06.010
– ident: ref54
  doi: 10.1109/TPAMI.2018.2845842
– start-page: 849
  year: 2002
  ident: ref63
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref78
  doi: 10.1016/j.neucom.2007.06.014
– ident: ref1
  doi: 10.5244/C.25.76
– ident: ref28
  doi: 10.1016/j.patcog.2014.08.006
– ident: ref32
  doi: 10.1109/TNNLS.2018.2868847
– start-page: 266
  year: 2011
  ident: ref19
  article-title: Generalized Fisher score for feature selection
  publication-title: Proc Conf Uncertainty of Artificial Intelligence
– ident: ref47
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref42
  doi: 10.1109/TNNLS.2016.2562670
– start-page: 1813
  year: 2010
  ident: ref20
  article-title: Efficient and robust feature selection via joint ??, 1-norms minimization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref59
  doi: 10.1016/j.patcog.2015.12.007
– ident: ref18
  doi: 10.1109/TNNLS.2015.2424721
– volume: 26
  start-page: 252
  year: 2015
  ident: ref38
  article-title: Semisupervised feature selection via spline regression for video semantic recognition
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2314123
– ident: ref30
  doi: 10.1109/TNNLS.2017.2650978
– ident: ref43
  doi: 10.1109/JSTARS.2017.2700058
– ident: ref76
  doi: 10.1109/TMM.2012.2199293
– ident: ref70
  doi: 10.1145/1835804.1835848
– ident: ref17
  doi: 10.1109/TPAMI.2013.57
– volume: 32
  start-page: 1143
  year: 2014
  ident: ref75
  article-title: Standardized mutual information for clustering comparisons: One step further in adjustment for chance
  publication-title: Proc 31st Int Conf Mach Learn
– ident: ref45
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref24
  doi: 10.24963/ijcai.2019/438
– ident: ref62
  doi: 10.1016/j.patcog.2011.02.013
– ident: ref14
  doi: 10.1016/j.imavis.2016.11.014
– ident: ref49
  doi: 10.1109/TSMCB.2011.2179533
– start-page: 1621
  year: 2013
  ident: ref73
  article-title: Robust unsupervised feature selection
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– start-page: 1969
  year: 2016
  ident: ref61
  article-title: The constrained Laplacian rank algorithm for graph-based clustering
  publication-title: Proc 13th AAAI Conf Artif Intell (AAAI)
– year: 2006
  ident: ref6
  publication-title: Pattern Recognition and Machine Learning
– volume: 12
  start-page: 2777
  year: 2011
  ident: ref50
  article-title: Structured variable selection with sparsity-inducing norms
  publication-title: J Mach Learn Res
– ident: ref21
  doi: 10.1016/j.neucom.2015.02.043
– ident: ref77
  doi: 10.1016/j.neucom.2012.05.031
– ident: ref68
  doi: 10.1016/j.patcog.2017.01.016
– ident: ref10
  doi: 10.1016/S0304-3975(97)00115-1
– ident: ref58
  doi: 10.1109/ICCIA.2010.6141595
– ident: ref13
  doi: 10.1007/s10589-014-9648-x
– ident: ref22
  doi: 10.1609/aaai.v33i01.33013705
– ident: ref60
  doi: 10.1109/TIP.2015.2441632
– ident: ref46
  doi: 10.1109/TIP.2008.2007610
– ident: ref8
  doi: 10.1007/978-1-4419-7011-4
– ident: ref71
  doi: 10.1109/TKDE.2011.222
SSID ssj0000605649
Score 2.6282194
Snippet Feature selection (FS), which identifies the relevant features in a data set to facilitate subsequent data analysis, is a fundamental problem in machine...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3005
SubjectTerms 0-1 integer programming
Computer science
Constraints
Correlation
Data analysis
Datasets
Equivalence
Fans
Feature extraction
Feature selection
feature selection (FS)
Integer programming
Learning algorithms
Linear programming
Machine learning
nonconvex optimization
norm
Optimization
Robustness
Title Top-k Feature Selection Framework Using Robust 0-1 Integer Programming
URI https://ieeexplore.ieee.org/document/9153944
https://www.proquest.com/docview/2548990393
https://www.proquest.com/docview/2429778505
Volume 32
WOSCitedRecordID wos000670541500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7a4oMvtrWKZ2uJ4JvGJtnsJnkU6dGHchR7wr0tSXZWRL0td7f-_U5yu4ugCL4F8oMlk9n5JplvBuCN9c7FBg3XslVcV7bkzqjI0ReYmJhWuyYXmzCLhV2t3N0BvJu4MIiYg8_wfWrmt_ymi326KrtypJ5O60M4NMbsuVrTfYogXF5ltKtkpbgqzGrkyAh3tVwsbu_JG1TkpKY0QyJlCy3IdJdlYqb8ZpJyjZU_fszZ2syP_-87T-DJgCrZh_0xOIUDXD-F47FiAxsU-Azmy-6Bf2MJ9_UbZPe5CA5Jhs3HGC2WYwjYpy702x0TXLJ0Z_iFFrnbR3L9oO5n8Hl-vfx4w4dKCjwWyu64jCiwMOQMhYIgWRull7GQGsngx8Q-bVpdovVYGtHaSlIzhFYRfAil8EEUz-Fo3a3xBTDtW1P4YFEGS1DM2kroRkndBh8xNn4GctzMOg5pxlO1i-91djeEq7Ms6iSLepDFDN5Ocx72STb-Ofosbfk0ctjtGVyMMqsHPdzW5P6SQ5n4xzN4PXWTBqVnEb_GrqcxZJKNsQQFX_595XN4rFIkSw7SvYCj3abHV_Ao_tx93W4u6TCu7GU-jL8AKjfXdA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OU9AXTz3F1VMj-Kbx8tUmfRRxOXEth7fCvpU0nYp4tz12t_79TrJtERTBt0A-KJlM5zfJ_GYAXjlfFKFBy41sFTe5y3hhVeDoNUYmpjNFk4pN2LJ0q1VxfgBvJi4MIqbgM3wbm-ktv-lCH6_KTgtSz8KYG3AzM0bJPVtrulERhMzzhHeVzBVX2q5GlowoTpdlubggf1CRmxoTDYmYL1ST8c6yyE35zSilKit__JqTvZkf_d-X3oO7A65k7_YH4T4c4PoBHI01G9igwscwX3bX_AeLyK_fILtIZXBINmw-RmmxFEXAvnR1v90xwSWLt4bfaJHzfSzXFXU_hK_zD8v3Z3yopcCDVm7HZUCB2pI7VGsCZW2QXgYtDZLJD5F_2rQmQ-cxs6J1uaRmXbeKAESdCV8L_QgO190aHwMzvrXa1w5l7QiMOZcL0yhp2toHDI2fgRw3swpDovFY7-KySg6HKKokiyrKohpkMYPX05zrfZqNf44-jls-jRx2ewYno8yqQRO3FTnA5FJGBvIMXk7dpEPxYcSvsetpDBllax2BwSd_X_kF3D5bfl5Ui4_lp6dwR8W4lhSyewKHu02Pz-BW-Ln7vt08T0fyF3Tt2dM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Top-k+Feature+Selection+Framework+Using+Robust+0-1+Integer+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Xiaoqin&rft.au=Fan%2C+Mingyu&rft.au=Wang%2C+Di&rft.au=Zhou%2C+Peng&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=32&rft.issue=7&rft.spage=3005&rft.epage=3019&rft_id=info:doi/10.1109%2FTNNLS.2020.3009209&rft_id=info%3Apmid%2F32735538&rft.externalDocID=9153944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon