Niching chimp optimization for constraint multimodal engineering optimization problems

•Applying the Niching concept to ChOA (NChOA).•The NChOA proposes a novel constraint handling technique.•The NChOA's performance was evaluated on 37 numerical functions.•The NChOAs’ performance was tested on twelve real-world constraint problems. Two significant concerns need to be addressed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 198; S. 116887
Hauptverfasser: Gong, Shuo-Peng, Khishe, Mohammad, Mohammadi, Mokhtar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 15.07.2022
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Applying the Niching concept to ChOA (NChOA).•The NChOA proposes a novel constraint handling technique.•The NChOA's performance was evaluated on 37 numerical functions.•The NChOAs’ performance was tested on twelve real-world constraint problems. Two significant concerns need to be addressed to handle multimodal problems: classifying various local/global optima and preserving these optimum values until the termination. Besides, a comprehensive local search ability is also a need to achieve the exact global optima. Chimp Optimization Algorithm (ChOA) is a recently swarm intelligence algorithm that needs less parameter tuning. The ChOA, on the other hand, is prone to early convergence and fails to strike a balance between exploration and exploitation when it comes to resolving multimodal challenges. In order to overcome these concerns, this paper embeds the niching technique in ChOA (NChOA) that includes the personal best qualities of PSO and a local search technique. To evaluate the NChOA’s performance, we analyze it against fifteen frequently utilized multimodal numerical test functions, ten complex IEEE CEC06-2019 suit tests, and twelve constrained real-world optimization problems in a variety of engineering fields, including industrial chemical producer, process design and synthesis, mechanical design, power system, power-electronic, and livestock teed ration problems. The results indicate that the NChOA outperforms several benchmark algorithms and sixteen out of eighteen state-of-the-art algorithms by an average rank of Friedman test greater than 81% for 25 numerical functions and twelve engineering problems while outperforming jDE100 and DISHchain1e + 12 by 22% and 41%, respectively. The Bonferroni-Dunn and Holm tests demonstrated that NChOA outperforms all benchmark and state-of-the-art algorithms for all numerical functions and engineering tasks while performing comparably to jDE100 and DISHchain1e + 12. The proposed NChOA, we believe, can be used to address difficulties involving multimodal search spaces. Additionally, NChOA is more broadly applicable than rival benchmarks to a broader range of engineering applications.
AbstractList Two significant concerns need to be addressed to handle multimodal problems: classifying various local/global optima and preserving these optimum values until the termination. Besides, a comprehensive local search ability is also a need to achieve the exact global optima. Chimp Optimization Algorithm (ChOA) is a recently swarm intelligence algorithm that needs less parameter tuning. The ChOA, on the other hand, is prone to early convergence and fails to strike a balance between exploration and exploitation when it comes to resolving multimodal challenges. In order to overcome these concerns, this paper embeds the niching technique in ChOA (NChOA) that includes the personal best qualities of PSO and a local search technique. To evaluate the NChOA's performance, we analyze it against fifteen frequently utilized multimodal numerical test functions, ten complex IEEE CEC06-2019 suit tests, and twelve constrained real-world optimization problems in a variety of engineering fields, including industrial chemical producer, process design and synthesis, mechanical design, power system, power-electronic, and livestock teed ration problems. The results indicate that the NChOA outperforms several benchmark algorithms and sixteen out of eighteen state-of-the-art algorithms by an average rank of Friedman test greater than 81% for 25 numerical functions and twelve engineering problems while outperforming jDE100 and DISHchain1e + 12 by 22% and 41%, respectively. The Bonferroni-Dunn and Holm tests demonstrated that NChOA outperforms all benchmark and state-of-the-art algorithms for all numerical functions and engineering tasks while performing comparably to jDE100 and DISHchain1e + 12. The proposed NChOA, we believe, can be used to address difficulties involving multimodal search spaces. Additionally, NChOA is more broadly applicable than rival benchmarks to a broader range of engineering applications.
•Applying the Niching concept to ChOA (NChOA).•The NChOA proposes a novel constraint handling technique.•The NChOA's performance was evaluated on 37 numerical functions.•The NChOAs’ performance was tested on twelve real-world constraint problems. Two significant concerns need to be addressed to handle multimodal problems: classifying various local/global optima and preserving these optimum values until the termination. Besides, a comprehensive local search ability is also a need to achieve the exact global optima. Chimp Optimization Algorithm (ChOA) is a recently swarm intelligence algorithm that needs less parameter tuning. The ChOA, on the other hand, is prone to early convergence and fails to strike a balance between exploration and exploitation when it comes to resolving multimodal challenges. In order to overcome these concerns, this paper embeds the niching technique in ChOA (NChOA) that includes the personal best qualities of PSO and a local search technique. To evaluate the NChOA’s performance, we analyze it against fifteen frequently utilized multimodal numerical test functions, ten complex IEEE CEC06-2019 suit tests, and twelve constrained real-world optimization problems in a variety of engineering fields, including industrial chemical producer, process design and synthesis, mechanical design, power system, power-electronic, and livestock teed ration problems. The results indicate that the NChOA outperforms several benchmark algorithms and sixteen out of eighteen state-of-the-art algorithms by an average rank of Friedman test greater than 81% for 25 numerical functions and twelve engineering problems while outperforming jDE100 and DISHchain1e + 12 by 22% and 41%, respectively. The Bonferroni-Dunn and Holm tests demonstrated that NChOA outperforms all benchmark and state-of-the-art algorithms for all numerical functions and engineering tasks while performing comparably to jDE100 and DISHchain1e + 12. The proposed NChOA, we believe, can be used to address difficulties involving multimodal search spaces. Additionally, NChOA is more broadly applicable than rival benchmarks to a broader range of engineering applications.
ArticleNumber 116887
Author Khishe, Mohammad
Mohammadi, Mokhtar
Gong, Shuo-Peng
Author_xml – sequence: 1
  givenname: Shuo-Peng
  surname: Gong
  fullname: Gong, Shuo-Peng
  organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Mohammad
  surname: Khishe
  fullname: Khishe, Mohammad
  email: m_khishe@alumni.iust.ac.ir
  organization: Department of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran
– sequence: 3
  givenname: Mokhtar
  surname: Mohammadi
  fullname: Mohammadi, Mokhtar
  email: mukhtar@lfu.edu.krd
  organization: Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Kurdistan Region, Iraq
BookMark eNp9kD1PwzAQhi0EEm3hDzBFYk7wV-xYYkEVX1IFC7BaruMUV4kdbBcEv56EsMDQ5W6497nTPXNw6LwzAJwhWCCI2MW2MPFDFRhiXCDEqoofgBmqOMkZF-QQzKAoeU4Rp8dgHuMWQsQh5DPw8mD1q3WbbKhdn_k-2c5-qWS9yxofMu1dTEFZl7Ju1w5DX6s2M25jnTFhBP8gffDr1nTxBBw1qo3m9LcvwPPN9dPyLl893t4vr1a5JrhKOdK8rHEpaI0bofGar5nGBAlFGVYcUcpVI4QWEDJTi1I0VVXBpsSYUEqMbsgCnE97h8NvOxOT3PpdcMNJiRknhDPO6JDCU0oHH2MwjeyD7VT4lAjK0Z_cytGfHP3Jyd8AVf8gbdPPl6OPdj96OaFmeP3dmiCjtsZpU9tgdJK1t_vwb1s_juE
CitedBy_id crossref_primary_10_3390_app15137557
crossref_primary_10_1109_ACCESS_2023_3337602
crossref_primary_10_1016_j_energy_2023_128454
crossref_primary_10_1016_j_asoc_2025_113510
crossref_primary_10_1155_2022_7161522
crossref_primary_10_1016_j_jclepro_2022_132697
crossref_primary_10_1016_j_cma_2023_115878
crossref_primary_10_1080_15376494_2024_2375368
crossref_primary_10_1007_s42417_024_01473_2
crossref_primary_10_1109_ACCESS_2023_3262600
crossref_primary_10_1088_1402_4896_ad635c
crossref_primary_10_1016_j_advengsoft_2024_103694
crossref_primary_10_1016_j_aei_2022_101636
crossref_primary_10_1016_j_cose_2024_104166
crossref_primary_10_1016_j_cma_2023_116062
crossref_primary_10_1016_j_geits_2022_100040
crossref_primary_10_1016_j_est_2024_114544
crossref_primary_10_1016_j_cnsns_2024_108333
crossref_primary_10_1016_j_eswa_2022_118734
crossref_primary_10_1007_s00500_023_09074_z
crossref_primary_10_1007_s12530_023_09514_z
crossref_primary_10_1016_j_aej_2024_06_053
crossref_primary_10_2478_jaiscr_2024_0018
crossref_primary_10_1080_15376494_2024_2373976
crossref_primary_10_1007_s10462_024_10954_5
crossref_primary_10_1007_s40747_024_01502_3
crossref_primary_10_1080_01969722_2022_2110683
crossref_primary_10_23919_cje_2023_00_293
crossref_primary_10_1016_j_knosys_2023_110494
crossref_primary_10_1093_jcde_qwae074
crossref_primary_10_1007_s12530_023_09547_4
crossref_primary_10_1016_j_chaos_2023_113672
crossref_primary_10_1016_j_chaos_2023_113673
crossref_primary_10_1038_s41598_025_98112_x
crossref_primary_10_1038_s41598_025_95519_4
crossref_primary_10_3390_a17100448
crossref_primary_10_1038_s41598_022_24343_x
crossref_primary_10_1038_s41598_024_66285_6
crossref_primary_10_1016_j_chaos_2024_115972
crossref_primary_10_1007_s11276_023_03464_9
crossref_primary_10_1155_acis_1922567
crossref_primary_10_1016_j_heliyon_2024_e38984
crossref_primary_10_1038_s41598_024_57518_9
crossref_primary_10_1038_s41598_025_12307_w
crossref_primary_10_1038_s41598_024_82592_4
crossref_primary_10_1016_j_bspc_2023_105053
crossref_primary_10_1016_j_swevo_2025_102087
crossref_primary_10_1016_j_knosys_2022_110248
crossref_primary_10_1016_j_apenergy_2025_126377
crossref_primary_10_1111_exsy_13563
crossref_primary_10_1155_2022_1326325
crossref_primary_10_3390_math12142257
crossref_primary_10_1016_j_eswa_2023_119668
crossref_primary_10_1016_j_rineng_2025_104840
crossref_primary_10_1155_2022_3569261
crossref_primary_10_1108_EC_05_2024_0415
Cites_doi 10.1109/CEC.2006.1688287
10.1007/s00521-015-1920-1
10.1016/j.future.2019.07.015
10.1016/j.knosys.2018.11.024
10.1016/j.jfranklin.2019.09.029
10.1016/j.engappai.2020.103541
10.1016/j.swevo.2011.05.005
10.2105/AJPH.86.5.628
10.1016/j.cie.2020.106559
10.1016/j.advengsoft.2015.01.010
10.1016/j.future.2020.03.055
10.3139/120.111479
10.1109/ICEC.1996.542703
10.1016/j.ijpe.2021.108078
10.1287/mnsc.27.11.1309
10.1016/j.swevo.2020.100693
10.1080/00220973.1993.9943832
10.1016/j.advengsoft.2017.05.014
10.1162/106365600568167
10.1016/j.asoc.2021.107282
10.1016/j.knosys.2019.105190
10.1111/exsy.12666
10.1109/TEVC.2005.857610
10.1109/ICNN.1995.488968
10.1016/j.infsof.2021.106530
10.1109/TRO.2020.2981822
10.1142/9789814534116
10.1016/j.advengsoft.2013.12.007
10.1016/j.eswa.2020.113338
10.1109/TEVC.2021.3064835
10.1016/j.apacoust.2019.107005
10.1109/ACCESS.2021.3066329
10.1016/S0045-7825(99)00389-8
10.1016/j.bspc.2021.103261
10.1016/j.automatica.2019.108561
10.20944/preprints202103.0282.v1
10.1016/j.ins.2014.12.037
10.1162/evco.1993.1.2.101
10.1109/TNNLS.2020.2973760
10.1109/CEC.2003.1299795
10.1162/106365602760234081
10.1016/j.bspc.2021.102764
10.1038/scientificamerican0792-66
10.1016/j.amc.2015.11.001
10.1016/j.knosys.2021.106926
10.1109/TNNLS.2018.2846646
10.1016/j.swevo.2011.02.002
10.1080/03052150108940926
10.1016/j.cmpb.2020.105344
10.1136/bmj.310.6973.170
10.1007/978-0-387-30164-8_592
10.7717/peerj-cs.353
10.1007/978-3-7091-7533-0_65
10.1016/j.swevo.2019.100579
10.1109/JAS.2019.1911348
10.1109/TITS.2020.3040909
10.3139/120.111529
10.1016/j.solener.2021.03.087
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2022.116887
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_116887
S095741742200330X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-1c75d2594d2f9c2b7b6c2319a462a71447af99c9006ed959f8880f5223443ecf3
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792808100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 04:24:26 EDT 2025
Sat Nov 29 06:45:14 EST 2025
Tue Nov 18 22:35:04 EST 2025
Sun Apr 06 06:53:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Constraint optimization
Niching concept
Chimp optimization algorithm
Multimodal functions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-1c75d2594d2f9c2b7b6c2319a462a71447af99c9006ed959f8880f5223443ecf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2673376764
PQPubID 2045477
ParticipantIDs proquest_journals_2673376764
crossref_primary_10_1016_j_eswa_2022_116887
crossref_citationtrail_10_1016_j_eswa_2022_116887
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116887
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Harick (b0145) 1994
Luo, Li, Liu, Tian, Zhong, Shi (b0270) 2020; 357
Goldberg, Richardson (b0135) 1987
Wu, Zheng, Chen, Zhao, Yu, Mu (b0440) 2021; 133
Yin, Germay (b0475) 1993
Ding, Huang, Li, Gao, Deng, Li, Liu (b0110) 2020; 36
Bland, Altman (b0030) 1995; 310
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
Van Den Bergh (b0420) 2007
Gao, Zhou, Wang, Cheng, Yachi, Wang (b0125) 2018; 30
Panagant, Pholdee, Bureerat, Kaen, Yıldız, Sait (b0340) 2020; 62
Webb, G. I., Keogh, E., Miikkulainen, R., Miikkulainen, R., & Sebag, M. (2011). No-Free-Lunch Theorem. In
Garg (b0130) 2016
1.
Tasgetiren, M. F., & Suganthan, P. N. (2006). A multi-populated differential evolution algorithm for solving constrained optimization problem.
Deng, Li, Linghu (b0085) 2021; 30
Pétrowski, Alan. (1997). An efficient hierarchical clustering technique for speciation.
,
Lampinen, Storn (b0235) 2004
.
Laumanns, Rudolph, Schwefel (b0240) 1998
Mirjalili, Mirjalili, Lewis (b0320) 2014
Price, K. V., Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2018). Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Technical Report. https://personal.ntu.edu.sg/404.html.
Ahmed, Van Lam, Hung, Van Thieu, Kisi, El-Shafie (b0005) 2021; 105
Derrac, García, Molina, Herrera (b0090) 2011
Faramarzi, Heidarinejad, Stephens, Mirjalili (b0120) 2020; 191
Alavi, Henderson (b0010) 1981; 27
Dhiman, Kumar (b0105) 2019
(1), 1–12. http://ijmt.iranjournals.ir/article_31015.html.
Esquivel, S. C., & Coello, C. A. C. (2003). On the use of particle swarm optimization with multimodal functions.
Zhang, Liu, Fang, Yuan, Zhang, Lu (b0500) 2021
Das, Maity, Qu, Suganthan (b0060) 2011; 1
Shir, Bäck (b0390) 2005
Zimmerman, Zumbo (b0515) 1993; 62
Li, Balazs, Parks, Clarkson (b0250) 2002; 10
ARİBOWO, W. (n.d.). Comparison Study On Economic Load Dispatch Using Metaheuristic Algorithm.
Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A., & Tiwari, S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization.
Jiménez, F., & Verdegay, J. L. (1999).
Cao, Li, Liu, Zhao, Cao, Lv (b0035) 2021
Meng, Cheng, Wang (b0295) 2021; 15
Beasley, Bull, Martin (b0025) 1993; 1
Valdez, F., Castillo, O., & Melin, P. (2021).
Dhiman (b0095) 2021; 222
Mirjalili, Lewis (b0315) 2015; 300
Mirjalili (b0310) 2016
Tang, Liu, Deng, Zhang, Yin, Zheng (b0405) 2020; 190
Liang, Qin, Suganthan, Baskar (b0265) 2004
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0155) 2019
Yi (b0460) 2021
Runarsson, Yao (b0375) 2000; 10
Holland (b0160) 1992; 267
Khishe, Nezhadshahbodaghi, Mosavi, Martín (b0220) 2021
Deb, Goldberg (b0075) 1989
Yildiz, Pholdee, Bureerat, Yildiz, Sait (b0470) 2021; 38
Mengshoel, O. J., & Goldberg, D. E. (1999).
Xu, Wang, Zhou (b0450) 2021; 235
Mirjalili (b0305) 2015
Yıldız, Yıldız, Pholdee, Bureerat, Sait, Patel (b0485) 2020; 62
Yıldız, Pholdee, Panagant, Bureerat, Yildiz, Sait (b0480) 2021
Saffari, Zahiri, Khishe, Mosavi (b0380) 2020
Levin (b0245) 1996; 86
Mahfoud (b0290) 1993; 643
Khishe, Mosavi (b0215) 2020
Zayed, Zhao, Li, Elsheikh, Abd Elaziz, Yousri, Mingxi (b0490) 2021; 222
De Jong (b0065) 1975
Mahfoud (b0280) 1995
Li, Chen, Wang, Heidari, Mirjalili (b0255) 2020
Sebald, A. V., & Fogel, L. J. (1994).
Wu, Zheng, Xia, Lo (b0445) 2021
Gupta, Abderazek, Yıldız, Yildiz, Mirjalili, Sait (b0140) 2021; 115351
Jia, Sun, Zhang, Leng (b0185) 2021
Harik (b0150) 1995
Yildiz, Pholdee, Bureerat, Yildiz, Sait (b0465) 2021
Cavicchio, D. J. (1970).
Wang, Kumbasar (b0425) 2019; 6
Kumar, Wu, Ali, Mallipeddi, Suganthan, Das (b0230) 2020
Mosavi, M. R., Kaveh, M., Khishe, M., & aghababaie, majid. (2018). Design and Implementation a Sonar Data Set Classifier using Multi-Layer Perceptron Neural Network Trained by Elephant Herding Optimization.
https://doi.org/10.1007/978-0-387-30164-8_592.
1942–1948.
Kaur, Kaur, Singh, Dhiman (b0195) 2021
Cao, Zhao, Lv, Yang (b0045) 2020; 22
Liang, Qin, Suganthan, Baskar (b0260) 2006; 10
Khishe, Mosavi (b0210) 2020
Yang (b0455) 2009
Zervoudakis, Tsafarakis (b0495) 2020; 145
Cao, Zhang, Zhao, Liu, Skonieczny, Lv (b0040) 2021
Hu, Khishe, Mohammadi, Parvizi, Karim, Rashid (b0170) 2021
Deb (b0070) 2000
Kaur, Awasthi, Sangal, Dhiman (b0200) 2020; 90
Che, Wang (b0055) 2020; 32
Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms.
Zhou, W., Lv, Y., Lei, J., & Yu, L. (2019). Global and local-contrast guides content-aware fusion for RGB-D saliency prediction.
Sui, Marelli, Sun, Fu (b0400) 2020; 111
Deb, Abdelminaam, Said, Houssein (b0080) 2021; 9
1989.
https://doi.org/10.1142/9789814534116.
Dhiman, Kumar (b0100) 2017
1130–1136.
Ray, Tai, Seow (b0360) 2001; 33
Knowles, Corne (b0225) 2000; 8
Zhang, Wang, Zheng, Yin, Hu, Yang (b0505) 2022; 71
Ji, Zhang, Gong, Sun (b0175) 2021
https://doi.org/10.1109/cec.2006.1688287.
Mirjalili, Mirjalili, Zhang, Chalup, Noman (b0325) 2019; 51
Pétrowski (b0345) 1996
Rudolph (b0370) 2001
Mahfoud (b0285) 1992; 2
Barrera, Coello (b0020) 2009
Ji, Zhang, Gong, Sun, Guo (b0180) 2021
Ma, Zheng, Chen, Yin (b0275) 2021; 7
Roy, Parmee (b0365) 1996
Dhiman (10.1016/j.eswa.2022.116887_b0105) 2019
Faramarzi (10.1016/j.eswa.2022.116887_b0120) 2020; 191
Kaur (10.1016/j.eswa.2022.116887_b0200) 2020; 90
Rudolph (10.1016/j.eswa.2022.116887_b0370) 2001
Saffari (10.1016/j.eswa.2022.116887_b0380) 2020
10.1016/j.eswa.2022.116887_b0430
Kumar (10.1016/j.eswa.2022.116887_b0230) 2020
Mirjalili (10.1016/j.eswa.2022.116887_b0325) 2019; 51
10.1016/j.eswa.2022.116887_b0395
Mahfoud (10.1016/j.eswa.2022.116887_b0280) 1995
Liang (10.1016/j.eswa.2022.116887_b0260) 2006; 10
10.1016/j.eswa.2022.116887_b0300
De Jong (10.1016/j.eswa.2022.116887_b0065) 1975
Zayed (10.1016/j.eswa.2022.116887_b0490) 2021; 222
Hu (10.1016/j.eswa.2022.116887_b0170) 2021
Laumanns (10.1016/j.eswa.2022.116887_b0240) 1998
Derrac (10.1016/j.eswa.2022.116887_b0090) 2011
Garg (10.1016/j.eswa.2022.116887_b0130) 2016
Sui (10.1016/j.eswa.2022.116887_b0400) 2020; 111
Knowles (10.1016/j.eswa.2022.116887_b0225) 2000; 8
Jia (10.1016/j.eswa.2022.116887_b0185) 2021
Ding (10.1016/j.eswa.2022.116887_b0110) 2020; 36
10.1016/j.eswa.2022.116887_b0385
Zhang (10.1016/j.eswa.2022.116887_b0500) 2021
Hashim (10.1016/j.eswa.2022.116887_b0155) 2019
10.1016/j.eswa.2022.116887_b0015
Kaur (10.1016/j.eswa.2022.116887_b0195) 2021
10.1016/j.eswa.2022.116887_b0410
10.1016/j.eswa.2022.116887_b0415
Harick (10.1016/j.eswa.2022.116887_b0145) 1994
Van Den Bergh (10.1016/j.eswa.2022.116887_b0420) 2007
Li (10.1016/j.eswa.2022.116887_b0250) 2002; 10
Mirjalili (10.1016/j.eswa.2022.116887_b0315) 2015; 300
Das (10.1016/j.eswa.2022.116887_b0060) 2011; 1
Yin (10.1016/j.eswa.2022.116887_b0475) 1993
Khishe (10.1016/j.eswa.2022.116887_b0210) 2020
Tang (10.1016/j.eswa.2022.116887_b0405) 2020; 190
Khishe (10.1016/j.eswa.2022.116887_b0220) 2021
Cao (10.1016/j.eswa.2022.116887_b0045) 2020; 22
Zervoudakis (10.1016/j.eswa.2022.116887_b0495) 2020; 145
Barrera (10.1016/j.eswa.2022.116887_b0020) 2009
Gupta (10.1016/j.eswa.2022.116887_b0140) 2021; 115351
Levin (10.1016/j.eswa.2022.116887_b0245) 1996; 86
Mirjalili (10.1016/j.eswa.2022.116887_b0310) 2016
Wang (10.1016/j.eswa.2022.116887_b0425) 2019; 6
Goldberg (10.1016/j.eswa.2022.116887_b0135) 1987
Deng (10.1016/j.eswa.2022.116887_b0085) 2021; 30
Ahmed (10.1016/j.eswa.2022.116887_b0005) 2021; 105
Cao (10.1016/j.eswa.2022.116887_b0035) 2021
Ji (10.1016/j.eswa.2022.116887_b0180) 2021
Mirjalili (10.1016/j.eswa.2022.116887_b0320) 2014
Bland (10.1016/j.eswa.2022.116887_b0030) 1995; 310
Holland (10.1016/j.eswa.2022.116887_b0160) 1992; 267
Roy (10.1016/j.eswa.2022.116887_b0365) 1996
Shir (10.1016/j.eswa.2022.116887_b0390) 2005
Beasley (10.1016/j.eswa.2022.116887_b0025) 1993; 1
Deb (10.1016/j.eswa.2022.116887_b0075) 1989
Yi (10.1016/j.eswa.2022.116887_b0460) 2021
Meng (10.1016/j.eswa.2022.116887_b0295) 2021; 15
10.1016/j.eswa.2022.116887_b0510
10.1016/j.eswa.2022.116887_b0115
Runarsson (10.1016/j.eswa.2022.116887_b0375) 2000; 10
Khishe (10.1016/j.eswa.2022.116887_b0215) 2020
10.1016/j.eswa.2022.116887_b0355
Wu (10.1016/j.eswa.2022.116887_b0440) 2021; 133
Zhang (10.1016/j.eswa.2022.116887_b0505) 2022; 71
10.1016/j.eswa.2022.116887_b0190
10.1016/j.eswa.2022.116887_b0350
Mirjalili (10.1016/j.eswa.2022.116887_b0305) 2015
Yildiz (10.1016/j.eswa.2022.116887_b0465) 2021
Cao (10.1016/j.eswa.2022.116887_b0040) 2021
Ji (10.1016/j.eswa.2022.116887_b0175) 2021
Pétrowski (10.1016/j.eswa.2022.116887_b0345) 1996
Deb (10.1016/j.eswa.2022.116887_b0070) 2000
Harik (10.1016/j.eswa.2022.116887_b0150) 1995
Luo (10.1016/j.eswa.2022.116887_b0270) 2020; 357
10.1016/j.eswa.2022.116887_b0335
Gao (10.1016/j.eswa.2022.116887_b0125) 2018; 30
Dhiman (10.1016/j.eswa.2022.116887_b0095) 2021; 222
Alavi (10.1016/j.eswa.2022.116887_b0010) 1981; 27
10.1016/j.eswa.2022.116887_b0050
Dhiman (10.1016/j.eswa.2022.116887_b0100) 2017
Li (10.1016/j.eswa.2022.116887_b0255) 2020
Wu (10.1016/j.eswa.2022.116887_b0445) 2021
Zimmerman (10.1016/j.eswa.2022.116887_b0515) 1993; 62
10.1016/j.eswa.2022.116887_b0330
Che (10.1016/j.eswa.2022.116887_b0055) 2020; 32
Panagant (10.1016/j.eswa.2022.116887_b0340) 2020; 62
10.1016/j.eswa.2022.116887_b0205
Yıldız (10.1016/j.eswa.2022.116887_b0485) 2020; 62
Yildiz (10.1016/j.eswa.2022.116887_b0470) 2021; 38
Liang (10.1016/j.eswa.2022.116887_b0265) 2004
Lampinen (10.1016/j.eswa.2022.116887_b0235) 2004
Yıldız (10.1016/j.eswa.2022.116887_b0480) 2021
Yang (10.1016/j.eswa.2022.116887_b0455) 2009
Mahfoud (10.1016/j.eswa.2022.116887_b0290) 1993; 643
Ray (10.1016/j.eswa.2022.116887_b0360) 2001; 33
Deb (10.1016/j.eswa.2022.116887_b0080) 2021; 9
Mahfoud (10.1016/j.eswa.2022.116887_b0285) 1992; 2
Xu (10.1016/j.eswa.2022.116887_b0450) 2021; 235
Ma (10.1016/j.eswa.2022.116887_b0275) 2021; 7
References_xml – volume: 310
  start-page: 170
  year: 1995
  ident: b0030
  article-title: Multiple significance tests: The Bonferroni method
  publication-title: BMJ
– volume: 8
  start-page: 149
  year: 2000
  end-page: 172
  ident: b0225
  article-title: Approximating the nondominated front using the Pareto archived evolution strategy
  publication-title: Evolutionary Computation
– volume: 9
  start-page: 44322
  year: 2021
  end-page: 44338
  ident: b0080
  article-title: Recent methodology-based gradient-based optimizer for economic load dispatch problem
  publication-title: IEEE Access
– year: 2021
  ident: b0220
  article-title: A weighted chimp optimization algorithm
– reference: , 1.
– year: 2020
  ident: b0210
  article-title: Chimp optimization algorithm
  publication-title: Expert Systems with Applications
– year: 2016
  ident: b0310
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
– volume: 300
  start-page: 158
  year: 2015
  end-page: 192
  ident: b0315
  article-title: Novel frameworks for creating robust multi-objective benchmark problems
  publication-title: Information Sciences
– reference: Mosavi, M. R., Kaveh, M., Khishe, M., & aghababaie, majid. (2018). Design and Implementation a Sonar Data Set Classifier using Multi-Layer Perceptron Neural Network Trained by Elephant Herding Optimization.
– volume: 71
  year: 2022
  ident: b0505
  article-title: Endoscope image mosaic based on pyramid ORB
  publication-title: Biomedical Signal Processing and Control
– year: 2021
  ident: b0195
  article-title: SChoA: An newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications
  publication-title: Engineering with Computers
– volume: 222
  year: 2021
  ident: b0095
  article-title: SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications
  publication-title: Knowledge-Based Systems
– year: 1994
  ident: b0145
  article-title: Finding multi-modal solutions in problems of bounded difficulty
  publication-title: Technical report, Illinois Genetic Algorithms Laboratory, report.
– volume: 51
  year: 2019
  ident: b0325
  article-title: Improving the reliability of implicit averaging methods using new conditional operators for robust optimization
  publication-title: Swarm and Evolutionary Computation
– start-page: 1
  year: 2021
  end-page: 13
  ident: b0480
  article-title: A novel chaotic Henry gas solubility optimization algorithm for solving real-world engineering problems
  publication-title: Engineering with Computers
– year: 2021
  ident: b0445
  article-title: Data quality matters: A case study on data label correctness for security bug report prediction
– volume: 62
  start-page: 75
  year: 1993
  end-page: 86
  ident: b0515
  article-title: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks
  publication-title: The Journal of Experimental Education
– volume: 357
  start-page: 39
  year: 2020
  end-page: 58
  ident: b0270
  article-title: Stabilization analysis for fuzzy systems with a switched sampled-data control
  publication-title: Journal of the Franklin Institute
– year: 2021
  ident: b0175
  article-title: Dual-surrogate assisted cooperative particle swarm optimization for expensive multimodal problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 133
  year: 2021
  ident: b0440
  article-title: Improving high-impact bug report prediction with combination of interactive machine learning and active learning
  publication-title: Information and Software Technology
– volume: 1
  start-page: 71
  year: 2011
  end-page: 88
  ident: b0060
  article-title: Real-parameter evolutionary multimodal optimization—A survey of the state-of-the-art
  publication-title: Swarm and Evolutionary Computation
– year: 2014
  ident: b0320
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– year: 2021
  ident: b0460
  article-title: Secure social internet of things based on post-quantum blockchain
  publication-title: IEEE Transactions on Network Science and Engineering
– reference: Sebald, A. V., & Fogel, L. J. (1994).
– year: 2021
  ident: b0180
  article-title: Multisurrogate-assisted multitasking particle swarm optimization for expensive multimodal problems
  publication-title: IEEE Transactions on Cybernetics
– volume: 145
  year: 2020
  ident: b0495
  article-title: A mayfly optimization algorithm
  publication-title: Computers & Industrial Engineering
– volume: 643
  year: 1993
  ident: b0290
  article-title: Simple analytical models of genetic algorithms for multimodal function optimization
  publication-title: ICGA
– year: 2021
  ident: b0170
  article-title: Real-time COVID-19 diagnosis from X-Ray images using deep CNN and extreme learning machines stabilized by chimp optimization algorithm
  publication-title: Biomedical Signal Processing and Control
– reference: Zhou, W., Lv, Y., Lei, J., & Yu, L. (2019). Global and local-contrast guides content-aware fusion for RGB-D saliency prediction.
– reference: Pétrowski, Alan. (1997). An efficient hierarchical clustering technique for speciation.
– year: 2017
  ident: b0100
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Advances in Engineering Software
– reference: Valdez, F., Castillo, O., & Melin, P. (2021).
– year: 2007
  ident: b0420
  article-title: An analysis of particle swarm optimizers
– reference: ,
– volume: 30
  start-page: 5385
  year: 2021
  end-page: 5394
  ident: b0085
  article-title: Sensitivity analysis of steam injection parameters of steam injection thermal recovery technology
  publication-title: Fresenius Environment bulletin
– start-page: 230
  year: 2004
  end-page: 235
  ident: b0265
  article-title: Evaluation of comprehensive learning particle swarm optimizer
  publication-title: International Conference on Neural Information Processing
– reference: , 1989.
– volume: 1
  start-page: 101
  year: 1993
  end-page: 125
  ident: b0025
  article-title: A sequential niche technique for multimodal function optimization
  publication-title: Evolutionary Computation
– year: 1975
  ident: b0065
  article-title: An analysis of the behavior of a class of genetic adaptive systems
– year: 2019
  ident: b0105
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowledge-Based Systems
– year: 1995
  ident: b0280
  article-title: Niching methods for genetic algorithms
– year: 2021
  ident: b0040
  article-title: Recommendation based on large-scale many-objective optimization for the intelligent internet of things system
  publication-title: IEEE Internet of Things Journal.
– volume: 2
  start-page: 27
  year: 1992
  end-page: 36
  ident: b0285
  article-title: Crowding and preselection revisited
– start-page: 1
  year: 2021
  end-page: 13
  ident: b0465
  article-title: Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems
  publication-title: Engineering with Computers
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: b0260
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Tasgetiren, M. F., & Suganthan, P. N. (2006). A multi-populated differential evolution algorithm for solving constrained optimization problem.
– reference: Mengshoel, O. J., & Goldberg, D. E. (1999).
– reference: Price, K. V., Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2018). Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Technical Report. https://personal.ntu.edu.sg/404.html.
– volume: 190
  year: 2020
  ident: b0405
  article-title: Construction of force haptic reappearance system based on Geomagic Touch haptic device
  publication-title: Computer Methods and Programs in Biomedicine
– reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
– volume: 36
  start-page: 894
  year: 2020
  end-page: 909
  ident: b0110
  article-title: Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain
  publication-title: IEEE Transactions on Robotics
– volume: 7
  year: 2021
  ident: b0275
  article-title: Joint embedding VQA model based on dynamic word vector
  publication-title: PeerJ Computer Science
– volume: 32
  start-page: 36
  year: 2020
  end-page: 48
  ident: b0055
  article-title: A two-timescale duplex neurodynamic approach to mixed-integer optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: , 1130–1136.
– volume: 191
  year: 2020
  ident: b0120
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowledge-Based Systems
– start-page: 9
  year: 2009
  end-page: 37
  ident: b0020
  article-title: A review of particle swarm optimization methods used for multimodal optimization
  publication-title: Innovations in Swarm Intelligence
– start-page: 915
  year: 2005
  end-page: 916
  ident: b0390
  article-title: Niching in evolution strategies
  publication-title: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation
– year: 2019
  ident: b0155
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
– start-page: 798
  year: 1996
  end-page: 803
  ident: b0345
  article-title: A clearing procedure as a niching method for genetic algorithms
  publication-title: Proceedings of IEEE International Conference on Evolutionary Computation
– volume: 30
  start-page: 601
  year: 2018
  end-page: 614
  ident: b0125
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2020
  ident: b0255
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Generation Computer Systems
– volume: 105
  year: 2021
  ident: b0005
  article-title: A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem
  publication-title: Applied Soft Computing
– start-page: 236
  year: 1996
  end-page: 256
  ident: b0365
  article-title: Adaptive restricted tournament selection for the identification of multiple sub-optima in a multi-modal function
  publication-title: AISB Workshop on Evolutionary Computing
– volume: 15
  start-page: 4028
  year: 2021
  end-page: 4042
  ident: b0295
  article-title: Semi-supervised software defect prediction model based on tri-training
  publication-title: KSII Transactions on Internet and Information Systems
– year: 2009
  ident: b0455
  article-title: Firefly algorithms for multimodal optimization
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– year: 2016
  ident: b0130
  article-title: A hybrid PSO-GA algorithm for constrained optimization problems
  publication-title: Applied Mathematics and Computation
– year: 2015
  ident: b0305
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
– reference: , 1942–1948.
– reference: Cavicchio, D. J. (1970).
– reference: Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms.
– volume: 62
  start-page: 640
  year: 2020
  end-page: 644
  ident: b0340
  article-title: Seagull optimization algorithm for solving real-world design optimization problems
  publication-title: Materials Testing
– volume: 111
  year: 2020
  ident: b0400
  article-title: Multi-sensor state estimation over lossy channels using coded measurements
  publication-title: Automatica
– year: 2021
  ident: b0035
  article-title: Many-objective deployment optimization for a drone-assisted camera network
– year: 2000
  ident: b0070
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2020
  ident: b0215
  article-title: Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm
  publication-title: Applied Acoustics
– year: 2001
  ident: b0370
  article-title: Evolutionary search under partially ordered fitness sets
  publication-title: Citeseer.
– start-page: 42
  year: 1989
  end-page: 50
  ident: b0075
  article-title: An investigation of niche and species formation in genetic function optimization
  publication-title: Proceedings of the Third International Conference on Genetic Algorithms
– reference: Jiménez, F., & Verdegay, J. L. (1999).
– volume: 6
  start-page: 247
  year: 2019
  end-page: 257
  ident: b0425
  article-title: Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods
  publication-title: IEEE/CAA Journal of Automatica Sinica
– reference: . https://doi.org/10.1142/9789814534116.
– year: 2021
  ident: b0500
  article-title: Learning from a complementary-label source domain: Theory and algorithms
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 38
  year: 2021
  ident: b0470
  article-title: Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm
  publication-title: Expert Systems
– volume: 222
  start-page: 1
  year: 2021
  end-page: 17
  ident: b0490
  article-title: Predicting the performance of solar dish Stirling power plant using a hybrid random vector functional link/chimp optimization model
  publication-title: Solar Energy
– volume: 22
  start-page: 2133
  year: 2020
  end-page: 2139
  ident: b0045
  article-title: Diversified personalized recommendation optimization based on mobile data
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: b0160
  article-title: Genetic algorithms
  publication-title: Scientific American
– reference: Esquivel, S. C., & Coello, C. A. C. (2003). On the use of particle swarm optimization with multimodal functions.
– reference: Webb, G. I., Keogh, E., Miikkulainen, R., Miikkulainen, R., & Sebag, M. (2011). No-Free-Lunch Theorem. In
– start-page: 1
  year: 2021
  end-page: 18
  ident: b0185
  article-title: An enhanced chimp optimization algorithm for continuous optimization domains
  publication-title: Complex & Intelligent Systems
– reference: ARİBOWO, W. (n.d.). Comparison Study On Economic Load Dispatch Using Metaheuristic Algorithm.
– year: 2011
  ident: b0090
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
– start-page: 41
  year: 1987
  end-page: 49
  ident: b0135
  article-title: Genetic algorithms with sharing for multimodal function optimization
  publication-title: Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms
– start-page: 24
  year: 1995
  end-page: 31
  ident: b0150
  article-title: Finding multimodal solutions using restricted tournament selection
  publication-title: ICGA
– reference: . https://doi.org/10.1007/978-0-387-30164-8_592.
– volume: 33
  start-page: 399
  year: 2001
  end-page: 424
  ident: b0360
  article-title: An evolutionary algorithm for multiobjective optimization
  publication-title: Engineering Optimization
– reference: (1), 1–12. http://ijmt.iranjournals.ir/article_31015.html.
– start-page: 123
  year: 2004
  end-page: 166
  ident: b0235
  article-title: Differential evolution
  publication-title: New optimization techniques in engineering
– start-page: 241
  year: 1998
  end-page: 249
  ident: b0240
  article-title: A spatial predator-prey approach to multi-objective optimization: A preliminary study
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 10
  start-page: 207
  year: 2002
  end-page: 234
  ident: b0250
  article-title: A species conserving genetic algorithm for multimodal function optimization
  publication-title: Evolutionary Computation
– volume: 90
  year: 2020
  ident: b0200
  article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 86
  start-page: 628
  year: 1996
  end-page: 629
  ident: b0245
  article-title: On the Holm, Simes, and Hochberg multiple test procedures
  publication-title: American Journal of Public Health
– reference: . https://doi.org/10.1109/cec.2006.1688287.
– volume: 115351
  year: 2021
  ident: b0140
  article-title: Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems
  publication-title: Expert Systems with Applications
– reference: .
– reference: Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A., & Tiwari, S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization.
– volume: 235
  year: 2021
  ident: b0450
  article-title: GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective
  publication-title: International Journal of Production Economics
– volume: 62
  start-page: 261
  year: 2020
  end-page: 264
  ident: b0485
  article-title: The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components
  publication-title: Materials Testing
– start-page: 450
  year: 1993
  end-page: 457
  ident: b0475
  article-title: A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization
  publication-title: Artificial Neural Nets and Genetic Algorithms
– volume: 27
  start-page: 1309
  year: 1981
  end-page: 1323
  ident: b0010
  article-title: An evolutionary strategy for implementing a decision support system
  publication-title: Management Science
– year: 2020
  ident: b0230
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Swarm and Evolutionary Computation
– year: 2020
  ident: b0380
  article-title: Design of a fuzzy model of control parameters of chimp algorithm optimization for automatic sonar targets recognition
  publication-title: IJMT
– volume: 10
  year: 2000
  ident: b0375
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation. doi
– ident: 10.1016/j.eswa.2022.116887_b0410
  doi: 10.1109/CEC.2006.1688287
– ident: 10.1016/j.eswa.2022.116887_b0300
– start-page: 9
  year: 2009
  ident: 10.1016/j.eswa.2022.116887_b0020
  article-title: A review of particle swarm optimization methods used for multimodal optimization
  publication-title: Innovations in Swarm Intelligence
– year: 2016
  ident: 10.1016/j.eswa.2022.116887_b0310
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1920-1
– year: 2019
  ident: 10.1016/j.eswa.2022.116887_b0155
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.07.015
– year: 2019
  ident: 10.1016/j.eswa.2022.116887_b0105
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.11.024
– year: 1994
  ident: 10.1016/j.eswa.2022.116887_b0145
  article-title: Finding multi-modal solutions in problems of bounded difficulty
  publication-title: Technical report, Illinois Genetic Algorithms Laboratory, report.
– start-page: 230
  year: 2004
  ident: 10.1016/j.eswa.2022.116887_b0265
  article-title: Evaluation of comprehensive learning particle swarm optimizer
  publication-title: International Conference on Neural Information Processing
– volume: 357
  start-page: 39
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0270
  article-title: Stabilization analysis for fuzzy systems with a switched sampled-data control
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2019.09.029
– volume: 90
  year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0200
  article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103541
– volume: 1
  start-page: 71
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2022.116887_b0060
  article-title: Real-parameter evolutionary multimodal optimization—A survey of the state-of-the-art
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.05.005
– volume: 15
  start-page: 4028
  issue: 11
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0295
  article-title: Semi-supervised software defect prediction model based on tri-training
  publication-title: KSII Transactions on Internet and Information Systems
– volume: 86
  start-page: 628
  issue: 5
  year: 1996
  ident: 10.1016/j.eswa.2022.116887_b0245
  article-title: On the Holm, Simes, and Hochberg multiple test procedures
  publication-title: American Journal of Public Health
  doi: 10.2105/AJPH.86.5.628
– volume: 145
  year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0495
  article-title: A mayfly optimization algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106559
– ident: 10.1016/j.eswa.2022.116887_b0395
– year: 2015
  ident: 10.1016/j.eswa.2022.116887_b0305
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.01.010
– year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0255
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.03.055
– year: 2009
  ident: 10.1016/j.eswa.2022.116887_b0455
  article-title: Firefly algorithms for multimodal optimization
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 30
  start-page: 5385
  issue: 05
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0085
  article-title: Sensitivity analysis of steam injection parameters of steam injection thermal recovery technology
  publication-title: Fresenius Environment bulletin
– volume: 62
  start-page: 261
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0485
  article-title: The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components
  publication-title: Materials Testing
  doi: 10.3139/120.111479
– volume: 115351
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0140
  article-title: Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems
  publication-title: Expert Systems with Applications
– year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0500
  article-title: Learning from a complementary-label source domain: Theory and algorithms
– start-page: 798
  year: 1996
  ident: 10.1016/j.eswa.2022.116887_b0345
  article-title: A clearing procedure as a niching method for genetic algorithms
  publication-title: Proceedings of IEEE International Conference on Evolutionary Computation
  doi: 10.1109/ICEC.1996.542703
– volume: 235
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0450
  article-title: GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2021.108078
– ident: 10.1016/j.eswa.2022.116887_b0190
– volume: 27
  start-page: 1309
  issue: 11
  year: 1981
  ident: 10.1016/j.eswa.2022.116887_b0010
  article-title: An evolutionary strategy for implementing a decision support system
  publication-title: Management Science
  doi: 10.1287/mnsc.27.11.1309
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0185
  article-title: An enhanced chimp optimization algorithm for continuous optimization domains
  publication-title: Complex & Intelligent Systems
– volume: 10
  issue: 1109/4235
  year: 2000
  ident: 10.1016/j.eswa.2022.116887_b0375
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation. doi
– year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0230
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100693
– year: 1975
  ident: 10.1016/j.eswa.2022.116887_b0065
– start-page: 41
  year: 1987
  ident: 10.1016/j.eswa.2022.116887_b0135
  article-title: Genetic algorithms with sharing for multimodal function optimization
– volume: 62
  start-page: 75
  issue: 1
  year: 1993
  ident: 10.1016/j.eswa.2022.116887_b0515
  article-title: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks
  publication-title: The Journal of Experimental Education
  doi: 10.1080/00220973.1993.9943832
– year: 2017
  ident: 10.1016/j.eswa.2022.116887_b0100
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.05.014
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2022.116887_b0225
  article-title: Approximating the nondominated front using the Pareto archived evolution strategy
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568167
– volume: 105
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0005
  article-title: A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107282
– ident: 10.1016/j.eswa.2022.116887_b0510
– year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0040
  article-title: Recommendation based on large-scale many-objective optimization for the intelligent internet of things system
  publication-title: IEEE Internet of Things Journal.
– volume: 191
  year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0120
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105190
– volume: 38
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0470
  article-title: Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm
  publication-title: Expert Systems
  doi: 10.1111/exsy.12666
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2022.116887_b0260
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857610
– ident: 10.1016/j.eswa.2022.116887_b0205
  doi: 10.1109/ICNN.1995.488968
– volume: 133
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0440
  article-title: Improving high-impact bug report prediction with combination of interactive machine learning and active learning
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2021.106530
– volume: 36
  start-page: 894
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0110
  article-title: Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2020.2981822
– year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0380
  article-title: Design of a fuzzy model of control parameters of chimp algorithm optimization for automatic sonar targets recognition
  publication-title: IJMT
– start-page: 42
  year: 1989
  ident: 10.1016/j.eswa.2022.116887_b0075
  article-title: An investigation of niche and species formation in genetic function optimization
– ident: 10.1016/j.eswa.2022.116887_b0385
  doi: 10.1142/9789814534116
– year: 2014
  ident: 10.1016/j.eswa.2022.116887_b0320
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0210
  article-title: Chimp optimization algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113338
– year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0175
  article-title: Dual-surrogate assisted cooperative particle swarm optimization for expensive multimodal problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3064835
– year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0215
  article-title: Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2019.107005
– start-page: 241
  year: 1998
  ident: 10.1016/j.eswa.2022.116887_b0240
  article-title: A spatial predator-prey approach to multi-objective optimization: A preliminary study
  publication-title: International Conference on Parallel Problem Solving from Nature
– ident: 10.1016/j.eswa.2022.116887_b0050
– volume: 9
  start-page: 44322
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0080
  article-title: Recent methodology-based gradient-based optimizer for economic load dispatch problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3066329
– ident: 10.1016/j.eswa.2022.116887_b0015
– year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0220
– year: 2000
  ident: 10.1016/j.eswa.2022.116887_b0070
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 71
  year: 2022
  ident: 10.1016/j.eswa.2022.116887_b0505
  article-title: Endoscope image mosaic based on pyramid ORB
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.103261
– year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0195
  article-title: SChoA: An newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications
  publication-title: Engineering with Computers
– year: 2001
  ident: 10.1016/j.eswa.2022.116887_b0370
  article-title: Evolutionary search under partially ordered fitness sets
  publication-title: Citeseer.
– volume: 111
  year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0400
  article-title: Multi-sensor state estimation over lossy channels using coded measurements
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.108561
– ident: 10.1016/j.eswa.2022.116887_b0415
  doi: 10.20944/preprints202103.0282.v1
– volume: 300
  start-page: 158
  year: 2015
  ident: 10.1016/j.eswa.2022.116887_b0315
  article-title: Novel frameworks for creating robust multi-objective benchmark problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.12.037
– volume: 1
  start-page: 101
  issue: 2
  year: 1993
  ident: 10.1016/j.eswa.2022.116887_b0025
  article-title: A sequential niche technique for multimodal function optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1993.1.2.101
– volume: 32
  start-page: 36
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0055
  article-title: A two-timescale duplex neurodynamic approach to mixed-integer optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.2973760
– volume: 2
  start-page: 27
  year: 1992
  ident: 10.1016/j.eswa.2022.116887_b0285
  article-title: Crowding and preselection revisited
  publication-title: PPSN
– start-page: 915
  year: 2005
  ident: 10.1016/j.eswa.2022.116887_b0390
  article-title: Niching in evolution strategies
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0480
  article-title: A novel chaotic Henry gas solubility optimization algorithm for solving real-world engineering problems
  publication-title: Engineering with Computers
– ident: 10.1016/j.eswa.2022.116887_b0115
  doi: 10.1109/CEC.2003.1299795
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0465
  article-title: Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems
  publication-title: Engineering with Computers
– volume: 10
  start-page: 207
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2022.116887_b0250
  article-title: A species conserving genetic algorithm for multimodal function optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/106365602760234081
– year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0170
  article-title: Real-time COVID-19 diagnosis from X-Ray images using deep CNN and extreme learning machines stabilized by chimp optimization algorithm
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102764
– year: 1995
  ident: 10.1016/j.eswa.2022.116887_b0280
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.eswa.2022.116887_b0160
  article-title: Genetic algorithms
  publication-title: Scientific American
  doi: 10.1038/scientificamerican0792-66
– year: 2016
  ident: 10.1016/j.eswa.2022.116887_b0130
  article-title: A hybrid PSO-GA algorithm for constrained optimization problems
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2015.11.001
– volume: 643
  year: 1993
  ident: 10.1016/j.eswa.2022.116887_b0290
  article-title: Simple analytical models of genetic algorithms for multimodal function optimization
  publication-title: ICGA
– volume: 222
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0095
  article-title: SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106926
– volume: 30
  start-page: 601
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2022.116887_b0125
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2846646
– year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0460
  article-title: Secure social internet of things based on post-quantum blockchain
– year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0445
– start-page: 236
  year: 1996
  ident: 10.1016/j.eswa.2022.116887_b0365
  article-title: Adaptive restricted tournament selection for the identification of multiple sub-optima in a multi-modal function
  publication-title: AISB Workshop on Evolutionary Computing
– year: 2011
  ident: 10.1016/j.eswa.2022.116887_b0090
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– ident: 10.1016/j.eswa.2022.116887_b0350
– volume: 33
  start-page: 399
  issue: 3
  year: 2001
  ident: 10.1016/j.eswa.2022.116887_b0360
  article-title: An evolutionary algorithm for multiobjective optimization
  publication-title: Engineering Optimization
  doi: 10.1080/03052150108940926
– volume: 190
  year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0405
  article-title: Construction of force haptic reappearance system based on Geomagic Touch haptic device
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2020.105344
– year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0180
  article-title: Multisurrogate-assisted multitasking particle swarm optimization for expensive multimodal problems
  publication-title: IEEE Transactions on Cybernetics
– volume: 310
  start-page: 170
  issue: 6973
  year: 1995
  ident: 10.1016/j.eswa.2022.116887_b0030
  article-title: Multiple significance tests: The Bonferroni method
  publication-title: BMJ
  doi: 10.1136/bmj.310.6973.170
– year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0035
– ident: 10.1016/j.eswa.2022.116887_b0335
– ident: 10.1016/j.eswa.2022.116887_b0430
  doi: 10.1007/978-0-387-30164-8_592
– volume: 7
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0275
  article-title: Joint embedding VQA model based on dynamic word vector
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.353
– start-page: 24
  year: 1995
  ident: 10.1016/j.eswa.2022.116887_b0150
  article-title: Finding multimodal solutions using restricted tournament selection
  publication-title: ICGA
– start-page: 450
  year: 1993
  ident: 10.1016/j.eswa.2022.116887_b0475
  article-title: A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization
  publication-title: Artificial Neural Nets and Genetic Algorithms
  doi: 10.1007/978-3-7091-7533-0_65
– start-page: 123
  year: 2004
  ident: 10.1016/j.eswa.2022.116887_b0235
  article-title: Differential evolution
– volume: 51
  year: 2019
  ident: 10.1016/j.eswa.2022.116887_b0325
  article-title: Improving the reliability of implicit averaging methods using new conditional operators for robust optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.100579
– year: 2007
  ident: 10.1016/j.eswa.2022.116887_b0420
– volume: 6
  start-page: 247
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2022.116887_b0425
  article-title: Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2019.1911348
– ident: 10.1016/j.eswa.2022.116887_b0330
– volume: 22
  start-page: 2133
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0045
  article-title: Diversified personalized recommendation optimization based on mobile data
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.3040909
– volume: 62
  start-page: 640
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2022.116887_b0340
  article-title: Seagull optimization algorithm for solving real-world design optimization problems
  publication-title: Materials Testing
  doi: 10.3139/120.111529
– ident: 10.1016/j.eswa.2022.116887_b0355
– volume: 222
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.116887_b0490
  article-title: Predicting the performance of solar dish Stirling power plant using a hybrid random vector functional link/chimp optimization model
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2021.03.087
SSID ssj0017007
Score 2.595309
Snippet •Applying the Niching concept to ChOA (NChOA).•The NChOA proposes a novel constraint handling technique.•The NChOA's performance was evaluated on 37 numerical...
Two significant concerns need to be addressed to handle multimodal problems: classifying various local/global optima and preserving these optimum values until...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116887
SubjectTerms Algorithms
Benchmarks
Chemical synthesis
Chimp optimization algorithm
Constraint optimization
Constraints
Engineering
Livestock
Multimodal functions
Niching concept
Optimization
Searching
Swarm intelligence
Title Niching chimp optimization for constraint multimodal engineering optimization problems
URI https://dx.doi.org/10.1016/j.eswa.2022.116887
https://www.proquest.com/docview/2673376764
Volume 198
WOSCitedRecordID wos000792808100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLdY2WEXNvYh2NjkAzcURBwnjo9oYtoQQkiwqTfL8YcKI0nVhI0_f8-xk7SdQOOwS9SkseX29_Pz8_P7QGhfFkViU64jQ2wRUUM5zDleRJbyWMnEsFR2SVzP2Pl5Pp3yi3AU03TlBFhV5ff3fP5foYZnALYLnX0C3EOn8AA-A-hwBdjh-k_AA7adVQmu5fygBpFQhljLzqVQOYXQ1YVovTNhWWtAyYxpCVebhIIzzYoF36VHbkMS6D48bukgfPDpCe6-l7O7OrowYY100n3mPPE7W2w9k2Up9YB7uL_2X_6ctXKxbJggnROrD80cLIwsorEvwjMIW19zOojLOM5yv97-Jcm9UeHm0DS_XXooQg7Hl1fTZq8tZ4OTYe-_diNcH8L1IXwfz9AmYSnPJ2jz-NvJ9HQ4dmJHPr6-H3mIsvIOgesjeUiTWVvTO0Xl6hXaCjsMfOyZsY02TPUaveyrd-AgzN-gH4EouCMKXkYdA1HwSBQ8EgUvEWW1SU-Ut-j7l5Orz1-jUGUjUgnJ2yhWLNWwCaaaWK5IwYpMgdLPJc2IZLDfZtJyrjiIZ6N5ym0OIt-C2p5Qmhhlk3doUtWV2UFYa6pVAjrpkQVFNy9kAbMd7kxKtOQ530Vx_48JFVLQux9yKx7GahcdDG3mPgHLo2-nPRAiqJBeNRTAq0fb7fWoiTCXG0EylrhkRxl9_6RBfEAvxvmwhybt4s58RM_Vr_a6WXwKnPsDGGKh2Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Niching+chimp+optimization+for+constraint+multimodal+engineering+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Gong%2C+Shuo-Peng&rft.au=Khishe%2C+Mohammad&rft.au=Mohammadi%2C+Mokhtar&rft.date=2022-07-15&rft.issn=0957-4174&rft.volume=198&rft.spage=116887&rft_id=info:doi/10.1016%2Fj.eswa.2022.116887&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_116887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon