Niching chimp optimization for constraint multimodal engineering optimization problems
•Applying the Niching concept to ChOA (NChOA).•The NChOA proposes a novel constraint handling technique.•The NChOA's performance was evaluated on 37 numerical functions.•The NChOAs’ performance was tested on twelve real-world constraint problems. Two significant concerns need to be addressed to...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 198; S. 116887 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
15.07.2022
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Applying the Niching concept to ChOA (NChOA).•The NChOA proposes a novel constraint handling technique.•The NChOA's performance was evaluated on 37 numerical functions.•The NChOAs’ performance was tested on twelve real-world constraint problems.
Two significant concerns need to be addressed to handle multimodal problems: classifying various local/global optima and preserving these optimum values until the termination. Besides, a comprehensive local search ability is also a need to achieve the exact global optima. Chimp Optimization Algorithm (ChOA) is a recently swarm intelligence algorithm that needs less parameter tuning. The ChOA, on the other hand, is prone to early convergence and fails to strike a balance between exploration and exploitation when it comes to resolving multimodal challenges. In order to overcome these concerns, this paper embeds the niching technique in ChOA (NChOA) that includes the personal best qualities of PSO and a local search technique. To evaluate the NChOA’s performance, we analyze it against fifteen frequently utilized multimodal numerical test functions, ten complex IEEE CEC06-2019 suit tests, and twelve constrained real-world optimization problems in a variety of engineering fields, including industrial chemical producer, process design and synthesis, mechanical design, power system, power-electronic, and livestock teed ration problems. The results indicate that the NChOA outperforms several benchmark algorithms and sixteen out of eighteen state-of-the-art algorithms by an average rank of Friedman test greater than 81% for 25 numerical functions and twelve engineering problems while outperforming jDE100 and DISHchain1e + 12 by 22% and 41%, respectively. The Bonferroni-Dunn and Holm tests demonstrated that NChOA outperforms all benchmark and state-of-the-art algorithms for all numerical functions and engineering tasks while performing comparably to jDE100 and DISHchain1e + 12. The proposed NChOA, we believe, can be used to address difficulties involving multimodal search spaces. Additionally, NChOA is more broadly applicable than rival benchmarks to a broader range of engineering applications. |
|---|---|
| AbstractList | Two significant concerns need to be addressed to handle multimodal problems: classifying various local/global optima and preserving these optimum values until the termination. Besides, a comprehensive local search ability is also a need to achieve the exact global optima. Chimp Optimization Algorithm (ChOA) is a recently swarm intelligence algorithm that needs less parameter tuning. The ChOA, on the other hand, is prone to early convergence and fails to strike a balance between exploration and exploitation when it comes to resolving multimodal challenges. In order to overcome these concerns, this paper embeds the niching technique in ChOA (NChOA) that includes the personal best qualities of PSO and a local search technique. To evaluate the NChOA's performance, we analyze it against fifteen frequently utilized multimodal numerical test functions, ten complex IEEE CEC06-2019 suit tests, and twelve constrained real-world optimization problems in a variety of engineering fields, including industrial chemical producer, process design and synthesis, mechanical design, power system, power-electronic, and livestock teed ration problems. The results indicate that the NChOA outperforms several benchmark algorithms and sixteen out of eighteen state-of-the-art algorithms by an average rank of Friedman test greater than 81% for 25 numerical functions and twelve engineering problems while outperforming jDE100 and DISHchain1e + 12 by 22% and 41%, respectively. The Bonferroni-Dunn and Holm tests demonstrated that NChOA outperforms all benchmark and state-of-the-art algorithms for all numerical functions and engineering tasks while performing comparably to jDE100 and DISHchain1e + 12. The proposed NChOA, we believe, can be used to address difficulties involving multimodal search spaces. Additionally, NChOA is more broadly applicable than rival benchmarks to a broader range of engineering applications. •Applying the Niching concept to ChOA (NChOA).•The NChOA proposes a novel constraint handling technique.•The NChOA's performance was evaluated on 37 numerical functions.•The NChOAs’ performance was tested on twelve real-world constraint problems. Two significant concerns need to be addressed to handle multimodal problems: classifying various local/global optima and preserving these optimum values until the termination. Besides, a comprehensive local search ability is also a need to achieve the exact global optima. Chimp Optimization Algorithm (ChOA) is a recently swarm intelligence algorithm that needs less parameter tuning. The ChOA, on the other hand, is prone to early convergence and fails to strike a balance between exploration and exploitation when it comes to resolving multimodal challenges. In order to overcome these concerns, this paper embeds the niching technique in ChOA (NChOA) that includes the personal best qualities of PSO and a local search technique. To evaluate the NChOA’s performance, we analyze it against fifteen frequently utilized multimodal numerical test functions, ten complex IEEE CEC06-2019 suit tests, and twelve constrained real-world optimization problems in a variety of engineering fields, including industrial chemical producer, process design and synthesis, mechanical design, power system, power-electronic, and livestock teed ration problems. The results indicate that the NChOA outperforms several benchmark algorithms and sixteen out of eighteen state-of-the-art algorithms by an average rank of Friedman test greater than 81% for 25 numerical functions and twelve engineering problems while outperforming jDE100 and DISHchain1e + 12 by 22% and 41%, respectively. The Bonferroni-Dunn and Holm tests demonstrated that NChOA outperforms all benchmark and state-of-the-art algorithms for all numerical functions and engineering tasks while performing comparably to jDE100 and DISHchain1e + 12. The proposed NChOA, we believe, can be used to address difficulties involving multimodal search spaces. Additionally, NChOA is more broadly applicable than rival benchmarks to a broader range of engineering applications. |
| ArticleNumber | 116887 |
| Author | Khishe, Mohammad Mohammadi, Mokhtar Gong, Shuo-Peng |
| Author_xml | – sequence: 1 givenname: Shuo-Peng surname: Gong fullname: Gong, Shuo-Peng organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 2 givenname: Mohammad surname: Khishe fullname: Khishe, Mohammad email: m_khishe@alumni.iust.ac.ir organization: Department of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran – sequence: 3 givenname: Mokhtar surname: Mohammadi fullname: Mohammadi, Mokhtar email: mukhtar@lfu.edu.krd organization: Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Kurdistan Region, Iraq |
| BookMark | eNp9kD1PwzAQhi0EEm3hDzBFYk7wV-xYYkEVX1IFC7BaruMUV4kdbBcEv56EsMDQ5W6497nTPXNw6LwzAJwhWCCI2MW2MPFDFRhiXCDEqoofgBmqOMkZF-QQzKAoeU4Rp8dgHuMWQsQh5DPw8mD1q3WbbKhdn_k-2c5-qWS9yxofMu1dTEFZl7Ju1w5DX6s2M25jnTFhBP8gffDr1nTxBBw1qo3m9LcvwPPN9dPyLl893t4vr1a5JrhKOdK8rHEpaI0bofGar5nGBAlFGVYcUcpVI4QWEDJTi1I0VVXBpsSYUEqMbsgCnE97h8NvOxOT3PpdcMNJiRknhDPO6JDCU0oHH2MwjeyD7VT4lAjK0Z_cytGfHP3Jyd8AVf8gbdPPl6OPdj96OaFmeP3dmiCjtsZpU9tgdJK1t_vwb1s_juE |
| CitedBy_id | crossref_primary_10_3390_app15137557 crossref_primary_10_1109_ACCESS_2023_3337602 crossref_primary_10_1016_j_energy_2023_128454 crossref_primary_10_1016_j_asoc_2025_113510 crossref_primary_10_1155_2022_7161522 crossref_primary_10_1016_j_jclepro_2022_132697 crossref_primary_10_1016_j_cma_2023_115878 crossref_primary_10_1080_15376494_2024_2375368 crossref_primary_10_1007_s42417_024_01473_2 crossref_primary_10_1109_ACCESS_2023_3262600 crossref_primary_10_1088_1402_4896_ad635c crossref_primary_10_1016_j_advengsoft_2024_103694 crossref_primary_10_1016_j_aei_2022_101636 crossref_primary_10_1016_j_cose_2024_104166 crossref_primary_10_1016_j_cma_2023_116062 crossref_primary_10_1016_j_geits_2022_100040 crossref_primary_10_1016_j_est_2024_114544 crossref_primary_10_1016_j_cnsns_2024_108333 crossref_primary_10_1016_j_eswa_2022_118734 crossref_primary_10_1007_s00500_023_09074_z crossref_primary_10_1007_s12530_023_09514_z crossref_primary_10_1016_j_aej_2024_06_053 crossref_primary_10_2478_jaiscr_2024_0018 crossref_primary_10_1080_15376494_2024_2373976 crossref_primary_10_1007_s10462_024_10954_5 crossref_primary_10_1007_s40747_024_01502_3 crossref_primary_10_1080_01969722_2022_2110683 crossref_primary_10_23919_cje_2023_00_293 crossref_primary_10_1016_j_knosys_2023_110494 crossref_primary_10_1093_jcde_qwae074 crossref_primary_10_1007_s12530_023_09547_4 crossref_primary_10_1016_j_chaos_2023_113672 crossref_primary_10_1016_j_chaos_2023_113673 crossref_primary_10_1038_s41598_025_98112_x crossref_primary_10_1038_s41598_025_95519_4 crossref_primary_10_3390_a17100448 crossref_primary_10_1038_s41598_022_24343_x crossref_primary_10_1038_s41598_024_66285_6 crossref_primary_10_1016_j_chaos_2024_115972 crossref_primary_10_1007_s11276_023_03464_9 crossref_primary_10_1155_acis_1922567 crossref_primary_10_1016_j_heliyon_2024_e38984 crossref_primary_10_1038_s41598_024_57518_9 crossref_primary_10_1038_s41598_025_12307_w crossref_primary_10_1038_s41598_024_82592_4 crossref_primary_10_1016_j_bspc_2023_105053 crossref_primary_10_1016_j_swevo_2025_102087 crossref_primary_10_1016_j_knosys_2022_110248 crossref_primary_10_1016_j_apenergy_2025_126377 crossref_primary_10_1111_exsy_13563 crossref_primary_10_1155_2022_1326325 crossref_primary_10_3390_math12142257 crossref_primary_10_1016_j_eswa_2023_119668 crossref_primary_10_1016_j_rineng_2025_104840 crossref_primary_10_1155_2022_3569261 crossref_primary_10_1108_EC_05_2024_0415 |
| Cites_doi | 10.1109/CEC.2006.1688287 10.1007/s00521-015-1920-1 10.1016/j.future.2019.07.015 10.1016/j.knosys.2018.11.024 10.1016/j.jfranklin.2019.09.029 10.1016/j.engappai.2020.103541 10.1016/j.swevo.2011.05.005 10.2105/AJPH.86.5.628 10.1016/j.cie.2020.106559 10.1016/j.advengsoft.2015.01.010 10.1016/j.future.2020.03.055 10.3139/120.111479 10.1109/ICEC.1996.542703 10.1016/j.ijpe.2021.108078 10.1287/mnsc.27.11.1309 10.1016/j.swevo.2020.100693 10.1080/00220973.1993.9943832 10.1016/j.advengsoft.2017.05.014 10.1162/106365600568167 10.1016/j.asoc.2021.107282 10.1016/j.knosys.2019.105190 10.1111/exsy.12666 10.1109/TEVC.2005.857610 10.1109/ICNN.1995.488968 10.1016/j.infsof.2021.106530 10.1109/TRO.2020.2981822 10.1142/9789814534116 10.1016/j.advengsoft.2013.12.007 10.1016/j.eswa.2020.113338 10.1109/TEVC.2021.3064835 10.1016/j.apacoust.2019.107005 10.1109/ACCESS.2021.3066329 10.1016/S0045-7825(99)00389-8 10.1016/j.bspc.2021.103261 10.1016/j.automatica.2019.108561 10.20944/preprints202103.0282.v1 10.1016/j.ins.2014.12.037 10.1162/evco.1993.1.2.101 10.1109/TNNLS.2020.2973760 10.1109/CEC.2003.1299795 10.1162/106365602760234081 10.1016/j.bspc.2021.102764 10.1038/scientificamerican0792-66 10.1016/j.amc.2015.11.001 10.1016/j.knosys.2021.106926 10.1109/TNNLS.2018.2846646 10.1016/j.swevo.2011.02.002 10.1080/03052150108940926 10.1016/j.cmpb.2020.105344 10.1136/bmj.310.6973.170 10.1007/978-0-387-30164-8_592 10.7717/peerj-cs.353 10.1007/978-3-7091-7533-0_65 10.1016/j.swevo.2019.100579 10.1109/JAS.2019.1911348 10.1109/TITS.2020.3040909 10.3139/120.111529 10.1016/j.solener.2021.03.087 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jul 15, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jul 15, 2022 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2022.116887 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Engineering |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2022_116887 S095741742200330X |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AAYWO AAYXX ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-1c75d2594d2f9c2b7b6c2319a462a71447af99c9006ed959f8880f5223443ecf3 |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792808100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 04:24:26 EDT 2025 Sat Nov 29 06:45:14 EST 2025 Tue Nov 18 22:35:04 EST 2025 Sun Apr 06 06:53:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Constraint optimization Niching concept Chimp optimization algorithm Multimodal functions |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-1c75d2594d2f9c2b7b6c2319a462a71447af99c9006ed959f8880f5223443ecf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2673376764 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2673376764 crossref_primary_10_1016_j_eswa_2022_116887 crossref_citationtrail_10_1016_j_eswa_2022_116887 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116887 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-15 |
| PublicationDateYYYYMMDD | 2022-07-15 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Harick (b0145) 1994 Luo, Li, Liu, Tian, Zhong, Shi (b0270) 2020; 357 Goldberg, Richardson (b0135) 1987 Wu, Zheng, Chen, Zhao, Yu, Mu (b0440) 2021; 133 Yin, Germay (b0475) 1993 Ding, Huang, Li, Gao, Deng, Li, Liu (b0110) 2020; 36 Bland, Altman (b0030) 1995; 310 Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Van Den Bergh (b0420) 2007 Gao, Zhou, Wang, Cheng, Yachi, Wang (b0125) 2018; 30 Panagant, Pholdee, Bureerat, Kaen, Yıldız, Sait (b0340) 2020; 62 Webb, G. I., Keogh, E., Miikkulainen, R., Miikkulainen, R., & Sebag, M. (2011). No-Free-Lunch Theorem. In Garg (b0130) 2016 1. Tasgetiren, M. F., & Suganthan, P. N. (2006). A multi-populated differential evolution algorithm for solving constrained optimization problem. Deng, Li, Linghu (b0085) 2021; 30 Pétrowski, Alan. (1997). An efficient hierarchical clustering technique for speciation. , Lampinen, Storn (b0235) 2004 . Laumanns, Rudolph, Schwefel (b0240) 1998 Mirjalili, Mirjalili, Lewis (b0320) 2014 Price, K. V., Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2018). Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Technical Report. https://personal.ntu.edu.sg/404.html. Ahmed, Van Lam, Hung, Van Thieu, Kisi, El-Shafie (b0005) 2021; 105 Derrac, García, Molina, Herrera (b0090) 2011 Faramarzi, Heidarinejad, Stephens, Mirjalili (b0120) 2020; 191 Alavi, Henderson (b0010) 1981; 27 Dhiman, Kumar (b0105) 2019 (1), 1–12. http://ijmt.iranjournals.ir/article_31015.html. Esquivel, S. C., & Coello, C. A. C. (2003). On the use of particle swarm optimization with multimodal functions. Zhang, Liu, Fang, Yuan, Zhang, Lu (b0500) 2021 Das, Maity, Qu, Suganthan (b0060) 2011; 1 Shir, Bäck (b0390) 2005 Zimmerman, Zumbo (b0515) 1993; 62 Li, Balazs, Parks, Clarkson (b0250) 2002; 10 ARİBOWO, W. (n.d.). Comparison Study On Economic Load Dispatch Using Metaheuristic Algorithm. Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A., & Tiwari, S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Jiménez, F., & Verdegay, J. L. (1999). Cao, Li, Liu, Zhao, Cao, Lv (b0035) 2021 Meng, Cheng, Wang (b0295) 2021; 15 Beasley, Bull, Martin (b0025) 1993; 1 Valdez, F., Castillo, O., & Melin, P. (2021). Dhiman (b0095) 2021; 222 Mirjalili, Lewis (b0315) 2015; 300 Mirjalili (b0310) 2016 Tang, Liu, Deng, Zhang, Yin, Zheng (b0405) 2020; 190 Liang, Qin, Suganthan, Baskar (b0265) 2004 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0155) 2019 Yi (b0460) 2021 Runarsson, Yao (b0375) 2000; 10 Holland (b0160) 1992; 267 Khishe, Nezhadshahbodaghi, Mosavi, Martín (b0220) 2021 Deb, Goldberg (b0075) 1989 Yildiz, Pholdee, Bureerat, Yildiz, Sait (b0470) 2021; 38 Mengshoel, O. J., & Goldberg, D. E. (1999). Xu, Wang, Zhou (b0450) 2021; 235 Mirjalili (b0305) 2015 Yıldız, Yıldız, Pholdee, Bureerat, Sait, Patel (b0485) 2020; 62 Yıldız, Pholdee, Panagant, Bureerat, Yildiz, Sait (b0480) 2021 Saffari, Zahiri, Khishe, Mosavi (b0380) 2020 Levin (b0245) 1996; 86 Mahfoud (b0290) 1993; 643 Khishe, Mosavi (b0215) 2020 Zayed, Zhao, Li, Elsheikh, Abd Elaziz, Yousri, Mingxi (b0490) 2021; 222 De Jong (b0065) 1975 Mahfoud (b0280) 1995 Li, Chen, Wang, Heidari, Mirjalili (b0255) 2020 Sebald, A. V., & Fogel, L. J. (1994). Wu, Zheng, Xia, Lo (b0445) 2021 Gupta, Abderazek, Yıldız, Yildiz, Mirjalili, Sait (b0140) 2021; 115351 Jia, Sun, Zhang, Leng (b0185) 2021 Harik (b0150) 1995 Yildiz, Pholdee, Bureerat, Yildiz, Sait (b0465) 2021 Cavicchio, D. J. (1970). Wang, Kumbasar (b0425) 2019; 6 Kumar, Wu, Ali, Mallipeddi, Suganthan, Das (b0230) 2020 Mosavi, M. R., Kaveh, M., Khishe, M., & aghababaie, majid. (2018). Design and Implementation a Sonar Data Set Classifier using Multi-Layer Perceptron Neural Network Trained by Elephant Herding Optimization. https://doi.org/10.1007/978-0-387-30164-8_592. 1942–1948. Kaur, Kaur, Singh, Dhiman (b0195) 2021 Cao, Zhao, Lv, Yang (b0045) 2020; 22 Liang, Qin, Suganthan, Baskar (b0260) 2006; 10 Khishe, Mosavi (b0210) 2020 Yang (b0455) 2009 Zervoudakis, Tsafarakis (b0495) 2020; 145 Cao, Zhang, Zhao, Liu, Skonieczny, Lv (b0040) 2021 Hu, Khishe, Mohammadi, Parvizi, Karim, Rashid (b0170) 2021 Deb (b0070) 2000 Kaur, Awasthi, Sangal, Dhiman (b0200) 2020; 90 Che, Wang (b0055) 2020; 32 Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Zhou, W., Lv, Y., Lei, J., & Yu, L. (2019). Global and local-contrast guides content-aware fusion for RGB-D saliency prediction. Sui, Marelli, Sun, Fu (b0400) 2020; 111 Deb, Abdelminaam, Said, Houssein (b0080) 2021; 9 1989. https://doi.org/10.1142/9789814534116. Dhiman, Kumar (b0100) 2017 1130–1136. Ray, Tai, Seow (b0360) 2001; 33 Knowles, Corne (b0225) 2000; 8 Zhang, Wang, Zheng, Yin, Hu, Yang (b0505) 2022; 71 Ji, Zhang, Gong, Sun (b0175) 2021 https://doi.org/10.1109/cec.2006.1688287. Mirjalili, Mirjalili, Zhang, Chalup, Noman (b0325) 2019; 51 Pétrowski (b0345) 1996 Rudolph (b0370) 2001 Mahfoud (b0285) 1992; 2 Barrera, Coello (b0020) 2009 Ji, Zhang, Gong, Sun, Guo (b0180) 2021 Ma, Zheng, Chen, Yin (b0275) 2021; 7 Roy, Parmee (b0365) 1996 Dhiman (10.1016/j.eswa.2022.116887_b0105) 2019 Faramarzi (10.1016/j.eswa.2022.116887_b0120) 2020; 191 Kaur (10.1016/j.eswa.2022.116887_b0200) 2020; 90 Rudolph (10.1016/j.eswa.2022.116887_b0370) 2001 Saffari (10.1016/j.eswa.2022.116887_b0380) 2020 10.1016/j.eswa.2022.116887_b0430 Kumar (10.1016/j.eswa.2022.116887_b0230) 2020 Mirjalili (10.1016/j.eswa.2022.116887_b0325) 2019; 51 10.1016/j.eswa.2022.116887_b0395 Mahfoud (10.1016/j.eswa.2022.116887_b0280) 1995 Liang (10.1016/j.eswa.2022.116887_b0260) 2006; 10 10.1016/j.eswa.2022.116887_b0300 De Jong (10.1016/j.eswa.2022.116887_b0065) 1975 Zayed (10.1016/j.eswa.2022.116887_b0490) 2021; 222 Hu (10.1016/j.eswa.2022.116887_b0170) 2021 Laumanns (10.1016/j.eswa.2022.116887_b0240) 1998 Derrac (10.1016/j.eswa.2022.116887_b0090) 2011 Garg (10.1016/j.eswa.2022.116887_b0130) 2016 Sui (10.1016/j.eswa.2022.116887_b0400) 2020; 111 Knowles (10.1016/j.eswa.2022.116887_b0225) 2000; 8 Jia (10.1016/j.eswa.2022.116887_b0185) 2021 Ding (10.1016/j.eswa.2022.116887_b0110) 2020; 36 10.1016/j.eswa.2022.116887_b0385 Zhang (10.1016/j.eswa.2022.116887_b0500) 2021 Hashim (10.1016/j.eswa.2022.116887_b0155) 2019 10.1016/j.eswa.2022.116887_b0015 Kaur (10.1016/j.eswa.2022.116887_b0195) 2021 10.1016/j.eswa.2022.116887_b0410 10.1016/j.eswa.2022.116887_b0415 Harick (10.1016/j.eswa.2022.116887_b0145) 1994 Van Den Bergh (10.1016/j.eswa.2022.116887_b0420) 2007 Li (10.1016/j.eswa.2022.116887_b0250) 2002; 10 Mirjalili (10.1016/j.eswa.2022.116887_b0315) 2015; 300 Das (10.1016/j.eswa.2022.116887_b0060) 2011; 1 Yin (10.1016/j.eswa.2022.116887_b0475) 1993 Khishe (10.1016/j.eswa.2022.116887_b0210) 2020 Tang (10.1016/j.eswa.2022.116887_b0405) 2020; 190 Khishe (10.1016/j.eswa.2022.116887_b0220) 2021 Cao (10.1016/j.eswa.2022.116887_b0045) 2020; 22 Zervoudakis (10.1016/j.eswa.2022.116887_b0495) 2020; 145 Barrera (10.1016/j.eswa.2022.116887_b0020) 2009 Gupta (10.1016/j.eswa.2022.116887_b0140) 2021; 115351 Levin (10.1016/j.eswa.2022.116887_b0245) 1996; 86 Mirjalili (10.1016/j.eswa.2022.116887_b0310) 2016 Wang (10.1016/j.eswa.2022.116887_b0425) 2019; 6 Goldberg (10.1016/j.eswa.2022.116887_b0135) 1987 Deng (10.1016/j.eswa.2022.116887_b0085) 2021; 30 Ahmed (10.1016/j.eswa.2022.116887_b0005) 2021; 105 Cao (10.1016/j.eswa.2022.116887_b0035) 2021 Ji (10.1016/j.eswa.2022.116887_b0180) 2021 Mirjalili (10.1016/j.eswa.2022.116887_b0320) 2014 Bland (10.1016/j.eswa.2022.116887_b0030) 1995; 310 Holland (10.1016/j.eswa.2022.116887_b0160) 1992; 267 Roy (10.1016/j.eswa.2022.116887_b0365) 1996 Shir (10.1016/j.eswa.2022.116887_b0390) 2005 Beasley (10.1016/j.eswa.2022.116887_b0025) 1993; 1 Deb (10.1016/j.eswa.2022.116887_b0075) 1989 Yi (10.1016/j.eswa.2022.116887_b0460) 2021 Meng (10.1016/j.eswa.2022.116887_b0295) 2021; 15 10.1016/j.eswa.2022.116887_b0510 10.1016/j.eswa.2022.116887_b0115 Runarsson (10.1016/j.eswa.2022.116887_b0375) 2000; 10 Khishe (10.1016/j.eswa.2022.116887_b0215) 2020 10.1016/j.eswa.2022.116887_b0355 Wu (10.1016/j.eswa.2022.116887_b0440) 2021; 133 Zhang (10.1016/j.eswa.2022.116887_b0505) 2022; 71 10.1016/j.eswa.2022.116887_b0190 10.1016/j.eswa.2022.116887_b0350 Mirjalili (10.1016/j.eswa.2022.116887_b0305) 2015 Yildiz (10.1016/j.eswa.2022.116887_b0465) 2021 Cao (10.1016/j.eswa.2022.116887_b0040) 2021 Ji (10.1016/j.eswa.2022.116887_b0175) 2021 Pétrowski (10.1016/j.eswa.2022.116887_b0345) 1996 Deb (10.1016/j.eswa.2022.116887_b0070) 2000 Harik (10.1016/j.eswa.2022.116887_b0150) 1995 Luo (10.1016/j.eswa.2022.116887_b0270) 2020; 357 10.1016/j.eswa.2022.116887_b0335 Gao (10.1016/j.eswa.2022.116887_b0125) 2018; 30 Dhiman (10.1016/j.eswa.2022.116887_b0095) 2021; 222 Alavi (10.1016/j.eswa.2022.116887_b0010) 1981; 27 10.1016/j.eswa.2022.116887_b0050 Dhiman (10.1016/j.eswa.2022.116887_b0100) 2017 Li (10.1016/j.eswa.2022.116887_b0255) 2020 Wu (10.1016/j.eswa.2022.116887_b0445) 2021 Zimmerman (10.1016/j.eswa.2022.116887_b0515) 1993; 62 10.1016/j.eswa.2022.116887_b0330 Che (10.1016/j.eswa.2022.116887_b0055) 2020; 32 Panagant (10.1016/j.eswa.2022.116887_b0340) 2020; 62 10.1016/j.eswa.2022.116887_b0205 Yıldız (10.1016/j.eswa.2022.116887_b0485) 2020; 62 Yildiz (10.1016/j.eswa.2022.116887_b0470) 2021; 38 Liang (10.1016/j.eswa.2022.116887_b0265) 2004 Lampinen (10.1016/j.eswa.2022.116887_b0235) 2004 Yıldız (10.1016/j.eswa.2022.116887_b0480) 2021 Yang (10.1016/j.eswa.2022.116887_b0455) 2009 Mahfoud (10.1016/j.eswa.2022.116887_b0290) 1993; 643 Ray (10.1016/j.eswa.2022.116887_b0360) 2001; 33 Deb (10.1016/j.eswa.2022.116887_b0080) 2021; 9 Mahfoud (10.1016/j.eswa.2022.116887_b0285) 1992; 2 Xu (10.1016/j.eswa.2022.116887_b0450) 2021; 235 Ma (10.1016/j.eswa.2022.116887_b0275) 2021; 7 |
| References_xml | – volume: 310 start-page: 170 year: 1995 ident: b0030 article-title: Multiple significance tests: The Bonferroni method publication-title: BMJ – volume: 8 start-page: 149 year: 2000 end-page: 172 ident: b0225 article-title: Approximating the nondominated front using the Pareto archived evolution strategy publication-title: Evolutionary Computation – volume: 9 start-page: 44322 year: 2021 end-page: 44338 ident: b0080 article-title: Recent methodology-based gradient-based optimizer for economic load dispatch problem publication-title: IEEE Access – year: 2021 ident: b0220 article-title: A weighted chimp optimization algorithm – reference: , 1. – year: 2020 ident: b0210 article-title: Chimp optimization algorithm publication-title: Expert Systems with Applications – year: 2016 ident: b0310 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications – volume: 300 start-page: 158 year: 2015 end-page: 192 ident: b0315 article-title: Novel frameworks for creating robust multi-objective benchmark problems publication-title: Information Sciences – reference: Mosavi, M. R., Kaveh, M., Khishe, M., & aghababaie, majid. (2018). Design and Implementation a Sonar Data Set Classifier using Multi-Layer Perceptron Neural Network Trained by Elephant Herding Optimization. – volume: 71 year: 2022 ident: b0505 article-title: Endoscope image mosaic based on pyramid ORB publication-title: Biomedical Signal Processing and Control – year: 2021 ident: b0195 article-title: SChoA: An newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications publication-title: Engineering with Computers – volume: 222 year: 2021 ident: b0095 article-title: SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications publication-title: Knowledge-Based Systems – year: 1994 ident: b0145 article-title: Finding multi-modal solutions in problems of bounded difficulty publication-title: Technical report, Illinois Genetic Algorithms Laboratory, report. – volume: 51 year: 2019 ident: b0325 article-title: Improving the reliability of implicit averaging methods using new conditional operators for robust optimization publication-title: Swarm and Evolutionary Computation – start-page: 1 year: 2021 end-page: 13 ident: b0480 article-title: A novel chaotic Henry gas solubility optimization algorithm for solving real-world engineering problems publication-title: Engineering with Computers – year: 2021 ident: b0445 article-title: Data quality matters: A case study on data label correctness for security bug report prediction – volume: 62 start-page: 75 year: 1993 end-page: 86 ident: b0515 article-title: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks publication-title: The Journal of Experimental Education – volume: 357 start-page: 39 year: 2020 end-page: 58 ident: b0270 article-title: Stabilization analysis for fuzzy systems with a switched sampled-data control publication-title: Journal of the Franklin Institute – year: 2021 ident: b0175 article-title: Dual-surrogate assisted cooperative particle swarm optimization for expensive multimodal problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 133 year: 2021 ident: b0440 article-title: Improving high-impact bug report prediction with combination of interactive machine learning and active learning publication-title: Information and Software Technology – volume: 1 start-page: 71 year: 2011 end-page: 88 ident: b0060 article-title: Real-parameter evolutionary multimodal optimization—A survey of the state-of-the-art publication-title: Swarm and Evolutionary Computation – year: 2014 ident: b0320 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – year: 2021 ident: b0460 article-title: Secure social internet of things based on post-quantum blockchain publication-title: IEEE Transactions on Network Science and Engineering – reference: Sebald, A. V., & Fogel, L. J. (1994). – year: 2021 ident: b0180 article-title: Multisurrogate-assisted multitasking particle swarm optimization for expensive multimodal problems publication-title: IEEE Transactions on Cybernetics – volume: 145 year: 2020 ident: b0495 article-title: A mayfly optimization algorithm publication-title: Computers & Industrial Engineering – volume: 643 year: 1993 ident: b0290 article-title: Simple analytical models of genetic algorithms for multimodal function optimization publication-title: ICGA – year: 2021 ident: b0170 article-title: Real-time COVID-19 diagnosis from X-Ray images using deep CNN and extreme learning machines stabilized by chimp optimization algorithm publication-title: Biomedical Signal Processing and Control – reference: Zhou, W., Lv, Y., Lei, J., & Yu, L. (2019). Global and local-contrast guides content-aware fusion for RGB-D saliency prediction. – reference: Pétrowski, Alan. (1997). An efficient hierarchical clustering technique for speciation. – year: 2017 ident: b0100 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Advances in Engineering Software – reference: Valdez, F., Castillo, O., & Melin, P. (2021). – year: 2007 ident: b0420 article-title: An analysis of particle swarm optimizers – reference: , – volume: 30 start-page: 5385 year: 2021 end-page: 5394 ident: b0085 article-title: Sensitivity analysis of steam injection parameters of steam injection thermal recovery technology publication-title: Fresenius Environment bulletin – start-page: 230 year: 2004 end-page: 235 ident: b0265 article-title: Evaluation of comprehensive learning particle swarm optimizer publication-title: International Conference on Neural Information Processing – reference: , 1989. – volume: 1 start-page: 101 year: 1993 end-page: 125 ident: b0025 article-title: A sequential niche technique for multimodal function optimization publication-title: Evolutionary Computation – year: 1975 ident: b0065 article-title: An analysis of the behavior of a class of genetic adaptive systems – year: 2019 ident: b0105 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowledge-Based Systems – year: 1995 ident: b0280 article-title: Niching methods for genetic algorithms – year: 2021 ident: b0040 article-title: Recommendation based on large-scale many-objective optimization for the intelligent internet of things system publication-title: IEEE Internet of Things Journal. – volume: 2 start-page: 27 year: 1992 end-page: 36 ident: b0285 article-title: Crowding and preselection revisited – start-page: 1 year: 2021 end-page: 13 ident: b0465 article-title: Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems publication-title: Engineering with Computers – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: b0260 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Transactions on Evolutionary Computation – reference: Tasgetiren, M. F., & Suganthan, P. N. (2006). A multi-populated differential evolution algorithm for solving constrained optimization problem. – reference: Mengshoel, O. J., & Goldberg, D. E. (1999). – reference: Price, K. V., Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2018). Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Technical Report. https://personal.ntu.edu.sg/404.html. – volume: 190 year: 2020 ident: b0405 article-title: Construction of force haptic reappearance system based on Geomagic Touch haptic device publication-title: Computer Methods and Programs in Biomedicine – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. – volume: 36 start-page: 894 year: 2020 end-page: 909 ident: b0110 article-title: Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain publication-title: IEEE Transactions on Robotics – volume: 7 year: 2021 ident: b0275 article-title: Joint embedding VQA model based on dynamic word vector publication-title: PeerJ Computer Science – volume: 32 start-page: 36 year: 2020 end-page: 48 ident: b0055 article-title: A two-timescale duplex neurodynamic approach to mixed-integer optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – reference: , 1130–1136. – volume: 191 year: 2020 ident: b0120 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowledge-Based Systems – start-page: 9 year: 2009 end-page: 37 ident: b0020 article-title: A review of particle swarm optimization methods used for multimodal optimization publication-title: Innovations in Swarm Intelligence – start-page: 915 year: 2005 end-page: 916 ident: b0390 article-title: Niching in evolution strategies publication-title: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation – year: 2019 ident: b0155 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems – start-page: 798 year: 1996 end-page: 803 ident: b0345 article-title: A clearing procedure as a niching method for genetic algorithms publication-title: Proceedings of IEEE International Conference on Evolutionary Computation – volume: 30 start-page: 601 year: 2018 end-page: 614 ident: b0125 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2020 ident: b0255 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Generation Computer Systems – volume: 105 year: 2021 ident: b0005 article-title: A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem publication-title: Applied Soft Computing – start-page: 236 year: 1996 end-page: 256 ident: b0365 article-title: Adaptive restricted tournament selection for the identification of multiple sub-optima in a multi-modal function publication-title: AISB Workshop on Evolutionary Computing – volume: 15 start-page: 4028 year: 2021 end-page: 4042 ident: b0295 article-title: Semi-supervised software defect prediction model based on tri-training publication-title: KSII Transactions on Internet and Information Systems – year: 2009 ident: b0455 article-title: Firefly algorithms for multimodal optimization publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – year: 2016 ident: b0130 article-title: A hybrid PSO-GA algorithm for constrained optimization problems publication-title: Applied Mathematics and Computation – year: 2015 ident: b0305 article-title: The ant lion optimizer publication-title: Advances in Engineering Software – reference: , 1942–1948. – reference: Cavicchio, D. J. (1970). – reference: Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. – volume: 62 start-page: 640 year: 2020 end-page: 644 ident: b0340 article-title: Seagull optimization algorithm for solving real-world design optimization problems publication-title: Materials Testing – volume: 111 year: 2020 ident: b0400 article-title: Multi-sensor state estimation over lossy channels using coded measurements publication-title: Automatica – year: 2021 ident: b0035 article-title: Many-objective deployment optimization for a drone-assisted camera network – year: 2000 ident: b0070 article-title: An efficient constraint handling method for genetic algorithms publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2020 ident: b0215 article-title: Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm publication-title: Applied Acoustics – year: 2001 ident: b0370 article-title: Evolutionary search under partially ordered fitness sets publication-title: Citeseer. – start-page: 42 year: 1989 end-page: 50 ident: b0075 article-title: An investigation of niche and species formation in genetic function optimization publication-title: Proceedings of the Third International Conference on Genetic Algorithms – reference: Jiménez, F., & Verdegay, J. L. (1999). – volume: 6 start-page: 247 year: 2019 end-page: 257 ident: b0425 article-title: Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods publication-title: IEEE/CAA Journal of Automatica Sinica – reference: . https://doi.org/10.1142/9789814534116. – year: 2021 ident: b0500 article-title: Learning from a complementary-label source domain: Theory and algorithms publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 38 year: 2021 ident: b0470 article-title: Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm publication-title: Expert Systems – volume: 222 start-page: 1 year: 2021 end-page: 17 ident: b0490 article-title: Predicting the performance of solar dish Stirling power plant using a hybrid random vector functional link/chimp optimization model publication-title: Solar Energy – volume: 22 start-page: 2133 year: 2020 end-page: 2139 ident: b0045 article-title: Diversified personalized recommendation optimization based on mobile data publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: b0160 article-title: Genetic algorithms publication-title: Scientific American – reference: Esquivel, S. C., & Coello, C. A. C. (2003). On the use of particle swarm optimization with multimodal functions. – reference: Webb, G. I., Keogh, E., Miikkulainen, R., Miikkulainen, R., & Sebag, M. (2011). No-Free-Lunch Theorem. In – start-page: 1 year: 2021 end-page: 18 ident: b0185 article-title: An enhanced chimp optimization algorithm for continuous optimization domains publication-title: Complex & Intelligent Systems – reference: ARİBOWO, W. (n.d.). Comparison Study On Economic Load Dispatch Using Metaheuristic Algorithm. – year: 2011 ident: b0090 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation – start-page: 41 year: 1987 end-page: 49 ident: b0135 article-title: Genetic algorithms with sharing for multimodal function optimization publication-title: Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms – start-page: 24 year: 1995 end-page: 31 ident: b0150 article-title: Finding multimodal solutions using restricted tournament selection publication-title: ICGA – reference: . https://doi.org/10.1007/978-0-387-30164-8_592. – volume: 33 start-page: 399 year: 2001 end-page: 424 ident: b0360 article-title: An evolutionary algorithm for multiobjective optimization publication-title: Engineering Optimization – reference: (1), 1–12. http://ijmt.iranjournals.ir/article_31015.html. – start-page: 123 year: 2004 end-page: 166 ident: b0235 article-title: Differential evolution publication-title: New optimization techniques in engineering – start-page: 241 year: 1998 end-page: 249 ident: b0240 article-title: A spatial predator-prey approach to multi-objective optimization: A preliminary study publication-title: International Conference on Parallel Problem Solving from Nature – volume: 10 start-page: 207 year: 2002 end-page: 234 ident: b0250 article-title: A species conserving genetic algorithm for multimodal function optimization publication-title: Evolutionary Computation – volume: 90 year: 2020 ident: b0200 article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Engineering Applications of Artificial Intelligence – volume: 86 start-page: 628 year: 1996 end-page: 629 ident: b0245 article-title: On the Holm, Simes, and Hochberg multiple test procedures publication-title: American Journal of Public Health – reference: . https://doi.org/10.1109/cec.2006.1688287. – volume: 115351 year: 2021 ident: b0140 article-title: Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems publication-title: Expert Systems with Applications – reference: . – reference: Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A., & Tiwari, S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. – volume: 235 year: 2021 ident: b0450 article-title: GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective publication-title: International Journal of Production Economics – volume: 62 start-page: 261 year: 2020 end-page: 264 ident: b0485 article-title: The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components publication-title: Materials Testing – start-page: 450 year: 1993 end-page: 457 ident: b0475 article-title: A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization publication-title: Artificial Neural Nets and Genetic Algorithms – volume: 27 start-page: 1309 year: 1981 end-page: 1323 ident: b0010 article-title: An evolutionary strategy for implementing a decision support system publication-title: Management Science – year: 2020 ident: b0230 article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results publication-title: Swarm and Evolutionary Computation – year: 2020 ident: b0380 article-title: Design of a fuzzy model of control parameters of chimp algorithm optimization for automatic sonar targets recognition publication-title: IJMT – volume: 10 year: 2000 ident: b0375 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation. doi – ident: 10.1016/j.eswa.2022.116887_b0410 doi: 10.1109/CEC.2006.1688287 – ident: 10.1016/j.eswa.2022.116887_b0300 – start-page: 9 year: 2009 ident: 10.1016/j.eswa.2022.116887_b0020 article-title: A review of particle swarm optimization methods used for multimodal optimization publication-title: Innovations in Swarm Intelligence – year: 2016 ident: 10.1016/j.eswa.2022.116887_b0310 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1920-1 – year: 2019 ident: 10.1016/j.eswa.2022.116887_b0155 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.07.015 – year: 2019 ident: 10.1016/j.eswa.2022.116887_b0105 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.11.024 – year: 1994 ident: 10.1016/j.eswa.2022.116887_b0145 article-title: Finding multi-modal solutions in problems of bounded difficulty publication-title: Technical report, Illinois Genetic Algorithms Laboratory, report. – start-page: 230 year: 2004 ident: 10.1016/j.eswa.2022.116887_b0265 article-title: Evaluation of comprehensive learning particle swarm optimizer publication-title: International Conference on Neural Information Processing – volume: 357 start-page: 39 issue: 1 year: 2020 ident: 10.1016/j.eswa.2022.116887_b0270 article-title: Stabilization analysis for fuzzy systems with a switched sampled-data control publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2019.09.029 – volume: 90 year: 2020 ident: 10.1016/j.eswa.2022.116887_b0200 article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103541 – volume: 1 start-page: 71 issue: 2 year: 2011 ident: 10.1016/j.eswa.2022.116887_b0060 article-title: Real-parameter evolutionary multimodal optimization—A survey of the state-of-the-art publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.05.005 – volume: 15 start-page: 4028 issue: 11 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0295 article-title: Semi-supervised software defect prediction model based on tri-training publication-title: KSII Transactions on Internet and Information Systems – volume: 86 start-page: 628 issue: 5 year: 1996 ident: 10.1016/j.eswa.2022.116887_b0245 article-title: On the Holm, Simes, and Hochberg multiple test procedures publication-title: American Journal of Public Health doi: 10.2105/AJPH.86.5.628 – volume: 145 year: 2020 ident: 10.1016/j.eswa.2022.116887_b0495 article-title: A mayfly optimization algorithm publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106559 – ident: 10.1016/j.eswa.2022.116887_b0395 – year: 2015 ident: 10.1016/j.eswa.2022.116887_b0305 article-title: The ant lion optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.01.010 – year: 2020 ident: 10.1016/j.eswa.2022.116887_b0255 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2020.03.055 – year: 2009 ident: 10.1016/j.eswa.2022.116887_b0455 article-title: Firefly algorithms for multimodal optimization publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 30 start-page: 5385 issue: 05 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0085 article-title: Sensitivity analysis of steam injection parameters of steam injection thermal recovery technology publication-title: Fresenius Environment bulletin – volume: 62 start-page: 261 issue: 3 year: 2020 ident: 10.1016/j.eswa.2022.116887_b0485 article-title: The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components publication-title: Materials Testing doi: 10.3139/120.111479 – volume: 115351 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0140 article-title: Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems publication-title: Expert Systems with Applications – year: 2021 ident: 10.1016/j.eswa.2022.116887_b0500 article-title: Learning from a complementary-label source domain: Theory and algorithms – start-page: 798 year: 1996 ident: 10.1016/j.eswa.2022.116887_b0345 article-title: A clearing procedure as a niching method for genetic algorithms publication-title: Proceedings of IEEE International Conference on Evolutionary Computation doi: 10.1109/ICEC.1996.542703 – volume: 235 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0450 article-title: GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2021.108078 – ident: 10.1016/j.eswa.2022.116887_b0190 – volume: 27 start-page: 1309 issue: 11 year: 1981 ident: 10.1016/j.eswa.2022.116887_b0010 article-title: An evolutionary strategy for implementing a decision support system publication-title: Management Science doi: 10.1287/mnsc.27.11.1309 – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0185 article-title: An enhanced chimp optimization algorithm for continuous optimization domains publication-title: Complex & Intelligent Systems – volume: 10 issue: 1109/4235 year: 2000 ident: 10.1016/j.eswa.2022.116887_b0375 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation. doi – year: 2020 ident: 10.1016/j.eswa.2022.116887_b0230 article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2020.100693 – year: 1975 ident: 10.1016/j.eswa.2022.116887_b0065 – start-page: 41 year: 1987 ident: 10.1016/j.eswa.2022.116887_b0135 article-title: Genetic algorithms with sharing for multimodal function optimization – volume: 62 start-page: 75 issue: 1 year: 1993 ident: 10.1016/j.eswa.2022.116887_b0515 article-title: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks publication-title: The Journal of Experimental Education doi: 10.1080/00220973.1993.9943832 – year: 2017 ident: 10.1016/j.eswa.2022.116887_b0100 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.05.014 – volume: 8 start-page: 149 issue: 2 year: 2000 ident: 10.1016/j.eswa.2022.116887_b0225 article-title: Approximating the nondominated front using the Pareto archived evolution strategy publication-title: Evolutionary Computation doi: 10.1162/106365600568167 – volume: 105 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0005 article-title: A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107282 – ident: 10.1016/j.eswa.2022.116887_b0510 – year: 2021 ident: 10.1016/j.eswa.2022.116887_b0040 article-title: Recommendation based on large-scale many-objective optimization for the intelligent internet of things system publication-title: IEEE Internet of Things Journal. – volume: 191 year: 2020 ident: 10.1016/j.eswa.2022.116887_b0120 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105190 – volume: 38 issue: 3 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0470 article-title: Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm publication-title: Expert Systems doi: 10.1111/exsy.12666 – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 10.1016/j.eswa.2022.116887_b0260 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.857610 – ident: 10.1016/j.eswa.2022.116887_b0205 doi: 10.1109/ICNN.1995.488968 – volume: 133 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0440 article-title: Improving high-impact bug report prediction with combination of interactive machine learning and active learning publication-title: Information and Software Technology doi: 10.1016/j.infsof.2021.106530 – volume: 36 start-page: 894 issue: 3 year: 2020 ident: 10.1016/j.eswa.2022.116887_b0110 article-title: Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2020.2981822 – year: 2020 ident: 10.1016/j.eswa.2022.116887_b0380 article-title: Design of a fuzzy model of control parameters of chimp algorithm optimization for automatic sonar targets recognition publication-title: IJMT – start-page: 42 year: 1989 ident: 10.1016/j.eswa.2022.116887_b0075 article-title: An investigation of niche and species formation in genetic function optimization – ident: 10.1016/j.eswa.2022.116887_b0385 doi: 10.1142/9789814534116 – year: 2014 ident: 10.1016/j.eswa.2022.116887_b0320 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – year: 2020 ident: 10.1016/j.eswa.2022.116887_b0210 article-title: Chimp optimization algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113338 – year: 2021 ident: 10.1016/j.eswa.2022.116887_b0175 article-title: Dual-surrogate assisted cooperative particle swarm optimization for expensive multimodal problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2021.3064835 – year: 2020 ident: 10.1016/j.eswa.2022.116887_b0215 article-title: Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2019.107005 – start-page: 241 year: 1998 ident: 10.1016/j.eswa.2022.116887_b0240 article-title: A spatial predator-prey approach to multi-objective optimization: A preliminary study publication-title: International Conference on Parallel Problem Solving from Nature – ident: 10.1016/j.eswa.2022.116887_b0050 – volume: 9 start-page: 44322 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0080 article-title: Recent methodology-based gradient-based optimizer for economic load dispatch problem publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3066329 – ident: 10.1016/j.eswa.2022.116887_b0015 – year: 2021 ident: 10.1016/j.eswa.2022.116887_b0220 – year: 2000 ident: 10.1016/j.eswa.2022.116887_b0070 article-title: An efficient constraint handling method for genetic algorithms publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(99)00389-8 – volume: 71 year: 2022 ident: 10.1016/j.eswa.2022.116887_b0505 article-title: Endoscope image mosaic based on pyramid ORB publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.103261 – year: 2021 ident: 10.1016/j.eswa.2022.116887_b0195 article-title: SChoA: An newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications publication-title: Engineering with Computers – year: 2001 ident: 10.1016/j.eswa.2022.116887_b0370 article-title: Evolutionary search under partially ordered fitness sets publication-title: Citeseer. – volume: 111 year: 2020 ident: 10.1016/j.eswa.2022.116887_b0400 article-title: Multi-sensor state estimation over lossy channels using coded measurements publication-title: Automatica doi: 10.1016/j.automatica.2019.108561 – ident: 10.1016/j.eswa.2022.116887_b0415 doi: 10.20944/preprints202103.0282.v1 – volume: 300 start-page: 158 year: 2015 ident: 10.1016/j.eswa.2022.116887_b0315 article-title: Novel frameworks for creating robust multi-objective benchmark problems publication-title: Information Sciences doi: 10.1016/j.ins.2014.12.037 – volume: 1 start-page: 101 issue: 2 year: 1993 ident: 10.1016/j.eswa.2022.116887_b0025 article-title: A sequential niche technique for multimodal function optimization publication-title: Evolutionary Computation doi: 10.1162/evco.1993.1.2.101 – volume: 32 start-page: 36 issue: 1 year: 2020 ident: 10.1016/j.eswa.2022.116887_b0055 article-title: A two-timescale duplex neurodynamic approach to mixed-integer optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.2973760 – volume: 2 start-page: 27 year: 1992 ident: 10.1016/j.eswa.2022.116887_b0285 article-title: Crowding and preselection revisited publication-title: PPSN – start-page: 915 year: 2005 ident: 10.1016/j.eswa.2022.116887_b0390 article-title: Niching in evolution strategies – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0480 article-title: A novel chaotic Henry gas solubility optimization algorithm for solving real-world engineering problems publication-title: Engineering with Computers – ident: 10.1016/j.eswa.2022.116887_b0115 doi: 10.1109/CEC.2003.1299795 – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0465 article-title: Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems publication-title: Engineering with Computers – volume: 10 start-page: 207 issue: 3 year: 2002 ident: 10.1016/j.eswa.2022.116887_b0250 article-title: A species conserving genetic algorithm for multimodal function optimization publication-title: Evolutionary Computation doi: 10.1162/106365602760234081 – year: 2021 ident: 10.1016/j.eswa.2022.116887_b0170 article-title: Real-time COVID-19 diagnosis from X-Ray images using deep CNN and extreme learning machines stabilized by chimp optimization algorithm publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.102764 – year: 1995 ident: 10.1016/j.eswa.2022.116887_b0280 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.eswa.2022.116887_b0160 article-title: Genetic algorithms publication-title: Scientific American doi: 10.1038/scientificamerican0792-66 – year: 2016 ident: 10.1016/j.eswa.2022.116887_b0130 article-title: A hybrid PSO-GA algorithm for constrained optimization problems publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2015.11.001 – volume: 643 year: 1993 ident: 10.1016/j.eswa.2022.116887_b0290 article-title: Simple analytical models of genetic algorithms for multimodal function optimization publication-title: ICGA – volume: 222 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0095 article-title: SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.106926 – volume: 30 start-page: 601 issue: 2 year: 2018 ident: 10.1016/j.eswa.2022.116887_b0125 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2846646 – year: 2021 ident: 10.1016/j.eswa.2022.116887_b0460 article-title: Secure social internet of things based on post-quantum blockchain – year: 2021 ident: 10.1016/j.eswa.2022.116887_b0445 – start-page: 236 year: 1996 ident: 10.1016/j.eswa.2022.116887_b0365 article-title: Adaptive restricted tournament selection for the identification of multiple sub-optima in a multi-modal function publication-title: AISB Workshop on Evolutionary Computing – year: 2011 ident: 10.1016/j.eswa.2022.116887_b0090 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – ident: 10.1016/j.eswa.2022.116887_b0350 – volume: 33 start-page: 399 issue: 3 year: 2001 ident: 10.1016/j.eswa.2022.116887_b0360 article-title: An evolutionary algorithm for multiobjective optimization publication-title: Engineering Optimization doi: 10.1080/03052150108940926 – volume: 190 year: 2020 ident: 10.1016/j.eswa.2022.116887_b0405 article-title: Construction of force haptic reappearance system based on Geomagic Touch haptic device publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2020.105344 – year: 2021 ident: 10.1016/j.eswa.2022.116887_b0180 article-title: Multisurrogate-assisted multitasking particle swarm optimization for expensive multimodal problems publication-title: IEEE Transactions on Cybernetics – volume: 310 start-page: 170 issue: 6973 year: 1995 ident: 10.1016/j.eswa.2022.116887_b0030 article-title: Multiple significance tests: The Bonferroni method publication-title: BMJ doi: 10.1136/bmj.310.6973.170 – year: 2021 ident: 10.1016/j.eswa.2022.116887_b0035 – ident: 10.1016/j.eswa.2022.116887_b0335 – ident: 10.1016/j.eswa.2022.116887_b0430 doi: 10.1007/978-0-387-30164-8_592 – volume: 7 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0275 article-title: Joint embedding VQA model based on dynamic word vector publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.353 – start-page: 24 year: 1995 ident: 10.1016/j.eswa.2022.116887_b0150 article-title: Finding multimodal solutions using restricted tournament selection publication-title: ICGA – start-page: 450 year: 1993 ident: 10.1016/j.eswa.2022.116887_b0475 article-title: A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization publication-title: Artificial Neural Nets and Genetic Algorithms doi: 10.1007/978-3-7091-7533-0_65 – start-page: 123 year: 2004 ident: 10.1016/j.eswa.2022.116887_b0235 article-title: Differential evolution – volume: 51 year: 2019 ident: 10.1016/j.eswa.2022.116887_b0325 article-title: Improving the reliability of implicit averaging methods using new conditional operators for robust optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2019.100579 – year: 2007 ident: 10.1016/j.eswa.2022.116887_b0420 – volume: 6 start-page: 247 issue: 1 year: 2019 ident: 10.1016/j.eswa.2022.116887_b0425 article-title: Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2019.1911348 – ident: 10.1016/j.eswa.2022.116887_b0330 – volume: 22 start-page: 2133 issue: 4 year: 2020 ident: 10.1016/j.eswa.2022.116887_b0045 article-title: Diversified personalized recommendation optimization based on mobile data publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2020.3040909 – volume: 62 start-page: 640 issue: 6 year: 2020 ident: 10.1016/j.eswa.2022.116887_b0340 article-title: Seagull optimization algorithm for solving real-world design optimization problems publication-title: Materials Testing doi: 10.3139/120.111529 – ident: 10.1016/j.eswa.2022.116887_b0355 – volume: 222 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2022.116887_b0490 article-title: Predicting the performance of solar dish Stirling power plant using a hybrid random vector functional link/chimp optimization model publication-title: Solar Energy doi: 10.1016/j.solener.2021.03.087 |
| SSID | ssj0017007 |
| Score | 2.595309 |
| Snippet | •Applying the Niching concept to ChOA (NChOA).•The NChOA proposes a novel constraint handling technique.•The NChOA's performance was evaluated on 37 numerical... Two significant concerns need to be addressed to handle multimodal problems: classifying various local/global optima and preserving these optimum values until... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116887 |
| SubjectTerms | Algorithms Benchmarks Chemical synthesis Chimp optimization algorithm Constraint optimization Constraints Engineering Livestock Multimodal functions Niching concept Optimization Searching Swarm intelligence |
| Title | Niching chimp optimization for constraint multimodal engineering optimization problems |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.116887 https://www.proquest.com/docview/2673376764 |
| Volume | 198 |
| WOSCitedRecordID | wos000792808100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLdY2WEXNvYh2NjkAzcURBwnjo9oYtoQQkiwqTfL8YcKI0nVhI0_f8-xk7SdQOOwS9SkseX29_Pz8_P7QGhfFkViU64jQ2wRUUM5zDleRJbyWMnEsFR2SVzP2Pl5Pp3yi3AU03TlBFhV5ff3fP5foYZnALYLnX0C3EOn8AA-A-hwBdjh-k_AA7adVQmu5fygBpFQhljLzqVQOYXQ1YVovTNhWWtAyYxpCVebhIIzzYoF36VHbkMS6D48bukgfPDpCe6-l7O7OrowYY100n3mPPE7W2w9k2Up9YB7uL_2X_6ctXKxbJggnROrD80cLIwsorEvwjMIW19zOojLOM5yv97-Jcm9UeHm0DS_XXooQg7Hl1fTZq8tZ4OTYe-_diNcH8L1IXwfz9AmYSnPJ2jz-NvJ9HQ4dmJHPr6-H3mIsvIOgesjeUiTWVvTO0Xl6hXaCjsMfOyZsY02TPUaveyrd-AgzN-gH4EouCMKXkYdA1HwSBQ8EgUvEWW1SU-Ut-j7l5Orz1-jUGUjUgnJ2yhWLNWwCaaaWK5IwYpMgdLPJc2IZLDfZtJyrjiIZ6N5ym0OIt-C2p5Qmhhlk3doUtWV2UFYa6pVAjrpkQVFNy9kAbMd7kxKtOQ530Vx_48JFVLQux9yKx7GahcdDG3mPgHLo2-nPRAiqJBeNRTAq0fb7fWoiTCXG0EylrhkRxl9_6RBfEAvxvmwhybt4s58RM_Vr_a6WXwKnPsDGGKh2Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Niching+chimp+optimization+for+constraint+multimodal+engineering+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Gong%2C+Shuo-Peng&rft.au=Khishe%2C+Mohammad&rft.au=Mohammadi%2C+Mokhtar&rft.date=2022-07-15&rft.issn=0957-4174&rft.volume=198&rft.spage=116887&rft_id=info:doi/10.1016%2Fj.eswa.2022.116887&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_116887 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |