Fully Statistical, Wavelet-based conditional random field (FSWCRF) for SAR image segmentation

•A new statistical conditional random field is proposed for SAR image segmentation.•The generalized Gaussian distribution of wavelet coefficients is applied in the CRF.•The unary potential is constructed based on the generalized Gaussian distribution.•The Kullback–Leibler distance improves the pairw...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 168; s. 114370
Hlavní autoři: Golpardaz, Maryam, Helfroush, Mohammad Sadegh, Danyali, Habibollah, Ghaffari, Reyhane
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 15.04.2021
Elsevier BV
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A new statistical conditional random field is proposed for SAR image segmentation.•The generalized Gaussian distribution of wavelet coefficients is applied in the CRF.•The unary potential is constructed based on the generalized Gaussian distribution.•The Kullback–Leibler distance improves the pairwise potential results. Recently, the conditional random field (CRF) model has been greatly considered in synthetic aperture radar (SAR) image segmentation. This model not only directly considers the posterior distribution of the label field conditioned on images but also gives the interactions between the observations. In this paper, we propose a new CRF-based algorithm for SAR image segmentation. We consider the statistical approach jointly in feature extraction and similarity measurement in the proposed conditional random field model. Using the benefit of the 2-D wavelet transform, we define the generalized Gaussian distribution (GGD) on the wavelet coefficients to extract texture-based features. Then, to improve the CRF potential functions a new unary function is proposed which exactly matches the statistical properties of the wavelet coefficients and produces more accurate parameters for different regions. As the advantage of this function, it is no longer necessary to apply the multinomial logistic regression (MLR) model used in previous CRFs. Moreover, using the Kullback–Leibler distance (KLD) between distribution functions, the similarity measure in our pairwise potential is proposed very effectively and efficiently. The superiority of this scheme is that the similarity measure can be entirely computed using the parameters of the GGD that are typically of small size compared with the feature vectors in the previous methods. Comprehensive experiments on both synthetic and real SAR images indicate that our proposed algorithm achieves accuracy improvement in SAR image segmentation.
AbstractList Recently, the conditional random field (CRF) model has been greatly considered in synthetic aperture radar (SAR) image segmentation. This model not only directly considers the posterior distribution of the label field conditioned on images but also gives the interactions between the observations. In this paper, we propose a new CRF-based algorithm for SAR image segmentation. We consider the statistical approach jointly in feature extraction and similarity measurement in the proposed conditional random field model. Using the benefit of the 2-D wavelet transform, we define the generalized Gaussian distribution (GGD) on the wavelet coefficients to extract texture-based features. Then, to improve the CRF potential functions a new unary function is proposed which exactly matches the statistical properties of the wavelet coefficients and produces more accurate parameters for different regions. As the advantage of this function, it is no longer necessary to apply the multinomial logistic regression (MLR) model used in previous CRFs. Moreover, using the Kullback–Leibler distance (KLD) between distribution functions, the similarity measure in our pairwise potential is proposed very effectively and efficiently. The superiority of this scheme is that the similarity measure can be entirely computed using the parameters of the GGD that are typically of small size compared with the feature vectors in the previous methods. Comprehensive experiments on both synthetic and real SAR images indicate that our proposed algorithm achieves accuracy improvement in SAR image segmentation.
•A new statistical conditional random field is proposed for SAR image segmentation.•The generalized Gaussian distribution of wavelet coefficients is applied in the CRF.•The unary potential is constructed based on the generalized Gaussian distribution.•The Kullback–Leibler distance improves the pairwise potential results. Recently, the conditional random field (CRF) model has been greatly considered in synthetic aperture radar (SAR) image segmentation. This model not only directly considers the posterior distribution of the label field conditioned on images but also gives the interactions between the observations. In this paper, we propose a new CRF-based algorithm for SAR image segmentation. We consider the statistical approach jointly in feature extraction and similarity measurement in the proposed conditional random field model. Using the benefit of the 2-D wavelet transform, we define the generalized Gaussian distribution (GGD) on the wavelet coefficients to extract texture-based features. Then, to improve the CRF potential functions a new unary function is proposed which exactly matches the statistical properties of the wavelet coefficients and produces more accurate parameters for different regions. As the advantage of this function, it is no longer necessary to apply the multinomial logistic regression (MLR) model used in previous CRFs. Moreover, using the Kullback–Leibler distance (KLD) between distribution functions, the similarity measure in our pairwise potential is proposed very effectively and efficiently. The superiority of this scheme is that the similarity measure can be entirely computed using the parameters of the GGD that are typically of small size compared with the feature vectors in the previous methods. Comprehensive experiments on both synthetic and real SAR images indicate that our proposed algorithm achieves accuracy improvement in SAR image segmentation.
ArticleNumber 114370
Author Golpardaz, Maryam
Ghaffari, Reyhane
Danyali, Habibollah
Helfroush, Mohammad Sadegh
Author_xml – sequence: 1
  givenname: Maryam
  surname: Golpardaz
  fullname: Golpardaz, Maryam
  email: m.golpardaz@sutech.ac.ir
– sequence: 2
  givenname: Mohammad Sadegh
  orcidid: 0000-0001-9095-4913
  surname: Helfroush
  fullname: Helfroush, Mohammad Sadegh
  email: ms_helfroush@sutech.ac.ir
– sequence: 3
  givenname: Habibollah
  surname: Danyali
  fullname: Danyali, Habibollah
  email: danyali@sutech.ca.ir
– sequence: 4
  givenname: Reyhane
  surname: Ghaffari
  fullname: Ghaffari, Reyhane
  email: r.ghaffari@sutech.ac.ir
BookMark eNp9kE9LxDAUxIMouK5-AU8BLwp2TdI_acGLLK4KC8Ku4knCa_IqWbqNJlnFb29LPXnw9OAxv2Fmjsh-5zok5JSzGWe8uNrMMHzBTDDRP3iWSrZHJryUaVLIKt0nE1blMsm4zA7JUQgbxrhkTE7I62LXtt90HSHaEK2G9pK-wCe2GJMaAhqqXWdstK6DlnrojNvSxmJr6Pli_TJfLS5o4zxd36yo3cIb0oBvW-wGP9cdk4MG2oAnv3dKnhe3T_P7ZPl49zC_WSY6FWVMuE7zWjRQ1KKQjWbCaAF1XZa5gUoWErCSdVoBysboBkBkRQEVGlELOfRLp-Rs9H337mOHIaqN2_k-cVAiq0TK8yLPelU5qrR3IXhslLZjzujBtoozNYypNmoYUw1jqnHMHhV_0Hff1_Xf_0PXI4R99U-LXgVtsdNorEcdlXH2P_wHahyP3Q
CitedBy_id crossref_primary_10_1016_j_eswa_2022_118811
crossref_primary_10_1109_TGRS_2023_3301494
crossref_primary_10_1155_2023_4359133
crossref_primary_10_1080_01431161_2021_1899336
crossref_primary_10_1016_j_dsp_2025_105174
crossref_primary_10_1007_s11042_023_16205_z
crossref_primary_10_1155_2021_1014017
crossref_primary_10_1016_j_jag_2023_103363
crossref_primary_10_1007_s12652_022_04231_y
crossref_primary_10_3233_JIFS_210810
Cites_doi 10.3390/app8122576
10.1109/TPAMI.2008.105
10.1117/1.JRS.12.045006
10.3969/j.issn.1004-4132.2010.01.006
10.1109/TGRS.2007.907109
10.1109/TGRS.2016.2611060
10.1109/83.753747
10.3390/rs11212462
10.1109/MGRS.2017.2762307
10.3390/rs10060906
10.1109/JSTARS.2015.2492552
10.1109/GlobalSIP.2017.8308643
10.1080/01621459.1987.10478393
10.1109/TGRS.2012.2194787
10.1109/ACCESS.2019.2912174
10.1109/TGRS.2015.2413905
10.1016/j.patcog.2016.11.015
10.1080/0143116021000013322
10.1109/IKT.2015.7288780
10.1016/j.sigpro.2020.107623
10.1109/LGRS.2015.2478256
10.1109/TFUZZ.2018.2796074
10.1109/83.869185
10.1016/j.patrec.2016.03.032
10.1080/01431161.2019.1706202
10.3390/rs11050512
10.1109/TGRS.2013.2287273
10.1080/01431161.2016.1266104
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Apr 15, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.114370
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_114370
S0957417420310484
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-1c35b2fa6b267fc02dc2abb885da9767ae97b39ae7fdcfaa2466a9ed2b2767933
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615903900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 05:40:29 EST 2025
Sat Nov 29 07:09:24 EST 2025
Tue Nov 18 22:23:08 EST 2025
Fri Feb 23 02:48:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Conditional Random Field (CRF)
Generalized Gaussian Distributions (GGD)
Synthetic Aperture Radar (SAR) image segmentation
Kullback–Leibler Distance (KLD)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-1c35b2fa6b267fc02dc2abb885da9767ae97b39ae7fdcfaa2466a9ed2b2767933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9095-4913
PQID 2492315654
PQPubID 2045477
ParticipantIDs proquest_journals_2492315654
crossref_citationtrail_10_1016_j_eswa_2020_114370
crossref_primary_10_1016_j_eswa_2020_114370
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114370
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang, Wu, Zhang, Zhao, Li, Liao (b0120) 2014; 52
Zhou, Y., Shi, J., Yang, X., Wang, C., Kumar, D., Wei, S., & et al. (2019). Deep multi-scale recurrent network for synthetic aperture radar images despeckling. Remote Sensing 11, 2462.
Sun, L., Meng, X., Xu, J., & Tian, Y. (2018). An image segmentation method using an active contour model based on improved SPF and LIF. Applied Sciences 8, 2576.
Ma, F., Gao, F., Sun, J., Zhou, H., & Hussain, A. (2019). Weakly supervised segmentation of SAR imagery using superpixel and hierarchically adversarial CRF. Remote Sensing 11, 512.
Golpardaz, Helfroush, Danyali (b0040) 2020; 174
Lei, Jia, Zhang, He, Meng, Nandi (b0055) 2018; 26
Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (b0155) 2017; 5
Akbarizadeh (b0005) 2012; 50
Wang, Wu, Li, Zhang, Zhang (b0115) 2017; 55
Yu, Zhang, Li (b0130) 2012; 8
Modava, Akbarizadeh (b0080) 2017; 38
Wouwer, G. V. de, Scheunders, P., & Dyck, D. V. (1999). Statistical texture characterization from discrete wavelet representations. IEEE Transactions on Image Processing 8, 592–598.
Toyoda, Hasegawa (b0105) 2008; 30
Zhang, Li, Wu, Li (b0140) 2015; 53
Lei, Li, Zhao, Zhang (b0060) 2010; 21
Geng, Fan, Wang, Ma, Li, Chen (b0030) 2015; 12
Perez-Cruz (b0085) 2008
Comer, M. L., & Delp, E. J. (2000). The EM/MPM algorithm for segmentation of textured images: analysis and further experimental results. IEEE Transaction on Image Processing 9, 1731–1744.
Ghaffari, Golpardaz, Helfroush, Danyali (b0035) 2020; 41
Duan, Tao, Han, Lu (b0025) 2017; 2017
Duan, Liu, Jiao, Zhao, Zhang (b0020) 2017; 64
.
Zhang, Li, Wu, An, Jia (b0135) 2016; 78
Tirandaz, Akbarizadeh (b0095) 2016; 9
Dong, Y., Forster, B. C., & Milne, A. K. (2003). Comparison of radar image segmentation by Gaussian- and Gamma-Markov random field models. International Journal of Remote Sensing 24, 711–722.
Liu, J., Wen, X., Meng, Q., Xu, H., Yuan, L., 2018. Synthetic aperture radar image segmentation with reaction diffusion level set evolution equation in an active contour model. Remote Sensing 10, 906.
Han, Wu, Basu (b0045) 2019; 7
Viera, A. J., Garrett, J. M. (n.d.) Understanding interobserver agreement: The Kappa statistic. Family Medicine 4.
Hu, H., Liu, B., Zhang, Z., Guo, W., & Yu, W. (2018). Superpixel generation for synthetic aperture radar imagery using edge-dominated local clustering. JARS 12, 045006.
Zhong, Wang (b0145) 2007; 45
Tirandaz, Z., & Akbarizadeh, G. (2016b). Unsupervised texture-based SAR image segmentation using spectral regression and gabor filter bank.
Marroquin, J., Mitter, S., & Poggio, T. (1987). Probabilistic solution of Ill-posed problems in computational vision. journal of the american statistical association 82, 76–89.
Akbarizadeh (10.1016/j.eswa.2020.114370_b0005) 2012; 50
Duan (10.1016/j.eswa.2020.114370_b0025) 2017; 2017
Golpardaz (10.1016/j.eswa.2020.114370_b0040) 2020; 174
Modava (10.1016/j.eswa.2020.114370_b0080) 2017; 38
Duan (10.1016/j.eswa.2020.114370_b0020) 2017; 64
10.1016/j.eswa.2020.114370_b0065
Toyoda (10.1016/j.eswa.2020.114370_b0105) 2008; 30
10.1016/j.eswa.2020.114370_b0100
Zhong (10.1016/j.eswa.2020.114370_b0145) 2007; 45
10.1016/j.eswa.2020.114370_b0125
Yu (10.1016/j.eswa.2020.114370_b0130) 2012; 8
Zhang (10.1016/j.eswa.2020.114370_b0135) 2016; 78
Wang (10.1016/j.eswa.2020.114370_b0115) 2017; 55
Ghaffari (10.1016/j.eswa.2020.114370_b0035) 2020; 41
Lei (10.1016/j.eswa.2020.114370_b0060) 2010; 21
Wang (10.1016/j.eswa.2020.114370_b0120) 2014; 52
Lei (10.1016/j.eswa.2020.114370_b0055) 2018; 26
10.1016/j.eswa.2020.114370_b0090
10.1016/j.eswa.2020.114370_b0070
10.1016/j.eswa.2020.114370_b0050
Tirandaz (10.1016/j.eswa.2020.114370_b0095) 2016; 9
10.1016/j.eswa.2020.114370_b0150
Perez-Cruz (10.1016/j.eswa.2020.114370_b0085) 2008
10.1016/j.eswa.2020.114370_b0075
10.1016/j.eswa.2020.114370_b0010
10.1016/j.eswa.2020.114370_b0110
Han (10.1016/j.eswa.2020.114370_b0045) 2019; 7
Zhu (10.1016/j.eswa.2020.114370_b0155) 2017; 5
10.1016/j.eswa.2020.114370_b0015
Zhang (10.1016/j.eswa.2020.114370_b0140) 2015; 53
Geng (10.1016/j.eswa.2020.114370_b0030) 2015; 12
References_xml – volume: 7
  start-page: 54522
  year: 2019
  end-page: 54532
  ident: b0045
  article-title: Adaptive active contour model based on weighted RBPF for SAR image segmentation
  publication-title: IEEE Access
– volume: 55
  start-page: 537
  year: 2017
  end-page: 550
  ident: b0115
  article-title: Adaptive hybrid conditional random field model for SAR image segmentation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: Liu, J., Wen, X., Meng, Q., Xu, H., Yuan, L., 2018. Synthetic aperture radar image segmentation with reaction diffusion level set evolution equation in an active contour model. Remote Sensing 10, 906.
– volume: 38
  start-page: 355
  year: 2017
  end-page: 370
  ident: b0080
  article-title: Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method
  publication-title: International Journal of Remote Sensing
– volume: 5
  start-page: 8
  year: 2017
  end-page: 36
  ident: b0155
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 2017
  start-page: 254
  year: 2017
  end-page: 258
  ident: b0025
  article-title: Hierarchical multinomial latent model with G0 distribution for remote sensing image semantic segmentation
  publication-title: IEEE Global Conference on Signal and Information Processing (GlobalSIP)
– volume: 9
  start-page: 1244
  year: 2016
  end-page: 1264
  ident: b0095
  article-title: A two-phase algorithm based on kurtosis curvelet energy and unsupervised spectral regression for segmentation of SAR images
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– reference: Viera, A. J., Garrett, J. M. (n.d.) Understanding interobserver agreement: The Kappa statistic. Family Medicine 4.
– volume: 52
  start-page: 5193
  year: 2014
  end-page: 5205
  ident: b0120
  article-title: Unsupervised SAR image segmentation using higher order neighborhood-based triplet markov fields model
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: Ma, F., Gao, F., Sun, J., Zhou, H., & Hussain, A. (2019). Weakly supervised segmentation of SAR imagery using superpixel and hierarchically adversarial CRF. Remote Sensing 11, 512.
– volume: 12
  start-page: 2351
  year: 2015
  end-page: 2355
  ident: b0030
  article-title: High-resolution SAR image classification via deep convolutional autoencoders
  publication-title: IEEE Geoscience and Remote Sensing Letters
– reference: Wouwer, G. V. de, Scheunders, P., & Dyck, D. V. (1999). Statistical texture characterization from discrete wavelet representations. IEEE Transactions on Image Processing 8, 592–598.
– volume: 26
  start-page: 3027
  year: 2018
  end-page: 3041
  ident: b0055
  article-title: Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 21
  start-page: 31
  year: 2010
  end-page: 36
  ident: b0060
  article-title: Fast segmentation approach for SAR image based on simple Markov random field
  publication-title: Journal of Systems Engineering and Electronics
– reference: Hu, H., Liu, B., Zhang, Z., Guo, W., & Yu, W. (2018). Superpixel generation for synthetic aperture radar imagery using edge-dominated local clustering. JARS 12, 045006.
– reference: Sun, L., Meng, X., Xu, J., & Tian, Y. (2018). An image segmentation method using an active contour model based on improved SPF and LIF. Applied Sciences 8, 2576.
– reference: Tirandaz, Z., & Akbarizadeh, G. (2016b). Unsupervised texture-based SAR image segmentation using spectral regression and gabor filter bank.
– volume: 41
  start-page: 3535
  year: 2020
  end-page: 3557
  ident: b0035
  article-title: A fast, weighted CRF algorithm based on a two-step superpixel generation for SAR image segmentation
  publication-title: International Journal of Remote Sensing
– reference: Comer, M. L., & Delp, E. J. (2000). The EM/MPM algorithm for segmentation of textured images: analysis and further experimental results. IEEE Transaction on Image Processing 9, 1731–1744.
– volume: 64
  start-page: 255
  year: 2017
  end-page: 267
  ident: b0020
  article-title: SAR Image segmentation based on convolutional-wavelet neural network and markov random field
  publication-title: Pattern Recognition
– volume: 174
  start-page: 107623
  year: 2020
  ident: b0040
  article-title: Nonsubsampled contourlet transform-based conditional random field for SAR images segmentation
  publication-title: Signal Processing
– volume: 45
  start-page: 3978
  year: 2007
  end-page: 3988
  ident: b0145
  article-title: A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: .
– volume: 78
  start-page: 48
  year: 2016
  end-page: 55
  ident: b0135
  article-title: Unsupervised SAR image segmentation using high-order conditional random fields model based on product-of-experts
  publication-title: Pattern Recognition Letters
– volume: 53
  start-page: 4933
  year: 2015
  end-page: 4951
  ident: b0140
  article-title: Hierarchical conditional random fields model for semisupervised SAR image segmentation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: Marroquin, J., Mitter, S., & Poggio, T. (1987). Probabilistic solution of Ill-posed problems in computational vision. journal of the american statistical association 82, 76–89.
– volume: 8
  start-page: 9055
  year: 2012
  end-page: 9064
  ident: b0130
  article-title: A review of estimating the shape parameter of generalized Gaussian distribution
  publication-title: Journal of Computer Information Systems
– volume: 50
  start-page: 4358
  year: 2012
  end-page: 4368
  ident: b0005
  article-title: A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: Zhou, Y., Shi, J., Yang, X., Wang, C., Kumar, D., Wei, S., & et al. (2019). Deep multi-scale recurrent network for synthetic aperture radar images despeckling. Remote Sensing 11, 2462.
– reference: Dong, Y., Forster, B. C., & Milne, A. K. (2003). Comparison of radar image segmentation by Gaussian- and Gamma-Markov random field models. International Journal of Remote Sensing 24, 711–722.
– start-page: 1666
  year: 2008
  end-page: 1670
  ident: b0085
  article-title: Kullback-Leibler divergence estimation of continuous distributions
  publication-title: In 2008 IEEE international symposium on information theory. Presented at the 2008 IEEE international symposium on information theory
– volume: 30
  start-page: 1483
  year: 2008
  end-page: 1489
  ident: b0105
  article-title: Random field model for integration of local information and global information
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: 10.1016/j.eswa.2020.114370_b0090
  doi: 10.3390/app8122576
– volume: 30
  start-page: 1483
  year: 2008
  ident: 10.1016/j.eswa.2020.114370_b0105
  article-title: Random field model for integration of local information and global information
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.105
– ident: 10.1016/j.eswa.2020.114370_b0050
  doi: 10.1117/1.JRS.12.045006
– volume: 21
  start-page: 31
  year: 2010
  ident: 10.1016/j.eswa.2020.114370_b0060
  article-title: Fast segmentation approach for SAR image based on simple Markov random field
  publication-title: Journal of Systems Engineering and Electronics
  doi: 10.3969/j.issn.1004-4132.2010.01.006
– volume: 45
  start-page: 3978
  year: 2007
  ident: 10.1016/j.eswa.2020.114370_b0145
  article-title: A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2007.907109
– volume: 55
  start-page: 537
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2020.114370_b0115
  article-title: Adaptive hybrid conditional random field model for SAR image segmentation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2016.2611060
– ident: 10.1016/j.eswa.2020.114370_b0125
  doi: 10.1109/83.753747
– ident: 10.1016/j.eswa.2020.114370_b0150
  doi: 10.3390/rs11212462
– volume: 8
  start-page: 9055
  issue: 21
  year: 2012
  ident: 10.1016/j.eswa.2020.114370_b0130
  article-title: A review of estimating the shape parameter of generalized Gaussian distribution
  publication-title: Journal of Computer Information Systems
– volume: 5
  start-page: 8
  year: 2017
  ident: 10.1016/j.eswa.2020.114370_b0155
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geoscience and Remote Sensing Magazine
  doi: 10.1109/MGRS.2017.2762307
– ident: 10.1016/j.eswa.2020.114370_b0065
  doi: 10.3390/rs10060906
– volume: 9
  start-page: 1244
  year: 2016
  ident: 10.1016/j.eswa.2020.114370_b0095
  article-title: A two-phase algorithm based on kurtosis curvelet energy and unsupervised spectral regression for segmentation of SAR images
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2015.2492552
– volume: 2017
  start-page: 254
  year: 2017
  ident: 10.1016/j.eswa.2020.114370_b0025
  article-title: Hierarchical multinomial latent model with G0 distribution for remote sensing image semantic segmentation
  publication-title: IEEE Global Conference on Signal and Information Processing (GlobalSIP)
  doi: 10.1109/GlobalSIP.2017.8308643
– ident: 10.1016/j.eswa.2020.114370_b0075
  doi: 10.1080/01621459.1987.10478393
– volume: 50
  start-page: 4358
  year: 2012
  ident: 10.1016/j.eswa.2020.114370_b0005
  article-title: A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2012.2194787
– volume: 7
  start-page: 54522
  year: 2019
  ident: 10.1016/j.eswa.2020.114370_b0045
  article-title: Adaptive active contour model based on weighted RBPF for SAR image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912174
– volume: 53
  start-page: 4933
  year: 2015
  ident: 10.1016/j.eswa.2020.114370_b0140
  article-title: Hierarchical conditional random fields model for semisupervised SAR image segmentation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2015.2413905
– volume: 64
  start-page: 255
  year: 2017
  ident: 10.1016/j.eswa.2020.114370_b0020
  article-title: SAR Image segmentation based on convolutional-wavelet neural network and markov random field
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2016.11.015
– ident: 10.1016/j.eswa.2020.114370_b0015
  doi: 10.1080/0143116021000013322
– ident: 10.1016/j.eswa.2020.114370_b0100
  doi: 10.1109/IKT.2015.7288780
– ident: 10.1016/j.eswa.2020.114370_b0110
– volume: 174
  start-page: 107623
  year: 2020
  ident: 10.1016/j.eswa.2020.114370_b0040
  article-title: Nonsubsampled contourlet transform-based conditional random field for SAR images segmentation
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2020.107623
– volume: 12
  start-page: 2351
  year: 2015
  ident: 10.1016/j.eswa.2020.114370_b0030
  article-title: High-resolution SAR image classification via deep convolutional autoencoders
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2015.2478256
– volume: 26
  start-page: 3027
  year: 2018
  ident: 10.1016/j.eswa.2020.114370_b0055
  article-title: Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2018.2796074
– start-page: 1666
  year: 2008
  ident: 10.1016/j.eswa.2020.114370_b0085
  article-title: Kullback-Leibler divergence estimation of continuous distributions
– ident: 10.1016/j.eswa.2020.114370_b0010
  doi: 10.1109/83.869185
– volume: 78
  start-page: 48
  year: 2016
  ident: 10.1016/j.eswa.2020.114370_b0135
  article-title: Unsupervised SAR image segmentation using high-order conditional random fields model based on product-of-experts
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2016.03.032
– volume: 41
  start-page: 3535
  year: 2020
  ident: 10.1016/j.eswa.2020.114370_b0035
  article-title: A fast, weighted CRF algorithm based on a two-step superpixel generation for SAR image segmentation
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2019.1706202
– ident: 10.1016/j.eswa.2020.114370_b0070
  doi: 10.3390/rs11050512
– volume: 52
  start-page: 5193
  issue: 8
  year: 2014
  ident: 10.1016/j.eswa.2020.114370_b0120
  article-title: Unsupervised SAR image segmentation using higher order neighborhood-based triplet markov fields model
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2013.2287273
– volume: 38
  start-page: 355
  year: 2017
  ident: 10.1016/j.eswa.2020.114370_b0080
  article-title: Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2016.1266104
SSID ssj0017007
Score 2.4053395
Snippet •A new statistical conditional random field is proposed for SAR image segmentation.•The generalized Gaussian distribution of wavelet coefficients is applied in...
Recently, the conditional random field (CRF) model has been greatly considered in synthetic aperture radar (SAR) image segmentation. This model not only...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114370
SubjectTerms Algorithms
Conditional Random Field (CRF)
Conditional random fields
Distribution functions
Feature extraction
Generalized Gaussian Distributions (GGD)
Image segmentation
Kullback–Leibler Distance (KLD)
Normal distribution
Parameters
Radar imaging
Regression models
Similarity
Similarity measures
Statistical analysis
Synthetic aperture radar
Synthetic Aperture Radar (SAR) image segmentation
Two dimensional models
Wavelet transforms
Title Fully Statistical, Wavelet-based conditional random field (FSWCRF) for SAR image segmentation
URI https://dx.doi.org/10.1016/j.eswa.2020.114370
https://www.proquest.com/docview/2492315654
Volume 168
WOSCitedRecordID wos000615903900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKx4ELv9EGA_nAAVQytY4TJ8dqWhlITKgdWi8oeo6ddVPTTm03Vv4U_lr8bCftipgAiUsUpUlc-X2xn5_f9z1CXneiQoPOlVmbCBFwySCQSqqAgdIJj1IZ5coWmxBHR8lwmH5uNH5UXJirsZhMkuvr9OK_mtpcM8ZG6uxfmLt-qblgzo3RzdGY3Rz_yPC4qFxaJ9JqMFtB_9YJYIGJRYCTFvLYcKPaBQHNXKWmZctmsqG72Ruc7Pd7GCzABMRBt986KzGvZ65PS89TmtwI56NW8sIrQldcubVd8TrBZzpGZUf47hlCSyhXcdhxMZtezm2E59N0BGUJxg02djytg9UGnUtwVO5DkGcS4Vv_-H4ERQGOM9_XyxH4XAEfzWAd3JhxfE4XYqtoNqucJherNDjquHI-e9qN1IkIg1i48or1UO5K9PwyLbgIxfmenn9DrSlmJZJDV7FkQ257gI1hWwxFU3nC75AtJqI0aZKt7oeD4cd6j0q0HRm_-nOekuWyBzdb-p3bs-EAWK_m-CG575cjtOtg9Ig09OQxeVCV-qB-5H9CvlpU0TVUvaM3MEXXMEUdpqjFFH3jEPWWGjxRgydq8UTX8fSUfOkdHO8fBr4yR5CHLFkEnTyMJCsgliwWRd5mKmcgZZJECox_K0CnQoYpaFGovABgPI4h1YpJJtBm4TPSnEwnepvQUIftthaqUIJzlJ7iIedREvO0iCOAaId0qo7Lci9bj9VTxlmVn3ieYWdn2NmZ6-wd0qqfuXCiLbfeHVX2yLzb6dzJzMDn1ud2K-Nl_vufZ8wKHppVEn_-j699Qe6tPoxd0lzMLvVLcje_MvadvfIg_AnfLbL0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+Statistical%2C+Wavelet-based+conditional+random+field+%28FSWCRF%29+for+SAR+image+segmentation&rft.jtitle=Expert+systems+with+applications&rft.au=Golpardaz%2C+Maryam&rft.au=Helfroush%2C+Mohammad+Sadegh&rft.au=Danyali%2C+Habibollah&rft.au=Ghaffari%2C+Reyhane&rft.date=2021-04-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=168&rft_id=info:doi/10.1016%2Fj.eswa.2020.114370&rft.externalDocID=S0957417420310484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon