Fully Statistical, Wavelet-based conditional random field (FSWCRF) for SAR image segmentation
•A new statistical conditional random field is proposed for SAR image segmentation.•The generalized Gaussian distribution of wavelet coefficients is applied in the CRF.•The unary potential is constructed based on the generalized Gaussian distribution.•The Kullback–Leibler distance improves the pairw...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 168; s. 114370 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
15.04.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A new statistical conditional random field is proposed for SAR image segmentation.•The generalized Gaussian distribution of wavelet coefficients is applied in the CRF.•The unary potential is constructed based on the generalized Gaussian distribution.•The Kullback–Leibler distance improves the pairwise potential results.
Recently, the conditional random field (CRF) model has been greatly considered in synthetic aperture radar (SAR) image segmentation. This model not only directly considers the posterior distribution of the label field conditioned on images but also gives the interactions between the observations. In this paper, we propose a new CRF-based algorithm for SAR image segmentation. We consider the statistical approach jointly in feature extraction and similarity measurement in the proposed conditional random field model. Using the benefit of the 2-D wavelet transform, we define the generalized Gaussian distribution (GGD) on the wavelet coefficients to extract texture-based features. Then, to improve the CRF potential functions a new unary function is proposed which exactly matches the statistical properties of the wavelet coefficients and produces more accurate parameters for different regions. As the advantage of this function, it is no longer necessary to apply the multinomial logistic regression (MLR) model used in previous CRFs. Moreover, using the Kullback–Leibler distance (KLD) between distribution functions, the similarity measure in our pairwise potential is proposed very effectively and efficiently. The superiority of this scheme is that the similarity measure can be entirely computed using the parameters of the GGD that are typically of small size compared with the feature vectors in the previous methods. Comprehensive experiments on both synthetic and real SAR images indicate that our proposed algorithm achieves accuracy improvement in SAR image segmentation. |
|---|---|
| AbstractList | Recently, the conditional random field (CRF) model has been greatly considered in synthetic aperture radar (SAR) image segmentation. This model not only directly considers the posterior distribution of the label field conditioned on images but also gives the interactions between the observations. In this paper, we propose a new CRF-based algorithm for SAR image segmentation. We consider the statistical approach jointly in feature extraction and similarity measurement in the proposed conditional random field model. Using the benefit of the 2-D wavelet transform, we define the generalized Gaussian distribution (GGD) on the wavelet coefficients to extract texture-based features. Then, to improve the CRF potential functions a new unary function is proposed which exactly matches the statistical properties of the wavelet coefficients and produces more accurate parameters for different regions. As the advantage of this function, it is no longer necessary to apply the multinomial logistic regression (MLR) model used in previous CRFs. Moreover, using the Kullback–Leibler distance (KLD) between distribution functions, the similarity measure in our pairwise potential is proposed very effectively and efficiently. The superiority of this scheme is that the similarity measure can be entirely computed using the parameters of the GGD that are typically of small size compared with the feature vectors in the previous methods. Comprehensive experiments on both synthetic and real SAR images indicate that our proposed algorithm achieves accuracy improvement in SAR image segmentation. •A new statistical conditional random field is proposed for SAR image segmentation.•The generalized Gaussian distribution of wavelet coefficients is applied in the CRF.•The unary potential is constructed based on the generalized Gaussian distribution.•The Kullback–Leibler distance improves the pairwise potential results. Recently, the conditional random field (CRF) model has been greatly considered in synthetic aperture radar (SAR) image segmentation. This model not only directly considers the posterior distribution of the label field conditioned on images but also gives the interactions between the observations. In this paper, we propose a new CRF-based algorithm for SAR image segmentation. We consider the statistical approach jointly in feature extraction and similarity measurement in the proposed conditional random field model. Using the benefit of the 2-D wavelet transform, we define the generalized Gaussian distribution (GGD) on the wavelet coefficients to extract texture-based features. Then, to improve the CRF potential functions a new unary function is proposed which exactly matches the statistical properties of the wavelet coefficients and produces more accurate parameters for different regions. As the advantage of this function, it is no longer necessary to apply the multinomial logistic regression (MLR) model used in previous CRFs. Moreover, using the Kullback–Leibler distance (KLD) between distribution functions, the similarity measure in our pairwise potential is proposed very effectively and efficiently. The superiority of this scheme is that the similarity measure can be entirely computed using the parameters of the GGD that are typically of small size compared with the feature vectors in the previous methods. Comprehensive experiments on both synthetic and real SAR images indicate that our proposed algorithm achieves accuracy improvement in SAR image segmentation. |
| ArticleNumber | 114370 |
| Author | Golpardaz, Maryam Ghaffari, Reyhane Danyali, Habibollah Helfroush, Mohammad Sadegh |
| Author_xml | – sequence: 1 givenname: Maryam surname: Golpardaz fullname: Golpardaz, Maryam email: m.golpardaz@sutech.ac.ir – sequence: 2 givenname: Mohammad Sadegh orcidid: 0000-0001-9095-4913 surname: Helfroush fullname: Helfroush, Mohammad Sadegh email: ms_helfroush@sutech.ac.ir – sequence: 3 givenname: Habibollah surname: Danyali fullname: Danyali, Habibollah email: danyali@sutech.ca.ir – sequence: 4 givenname: Reyhane surname: Ghaffari fullname: Ghaffari, Reyhane email: r.ghaffari@sutech.ac.ir |
| BookMark | eNp9kE9LxDAUxIMouK5-AU8BLwp2TdI_acGLLK4KC8Ku4knCa_IqWbqNJlnFb29LPXnw9OAxv2Fmjsh-5zok5JSzGWe8uNrMMHzBTDDRP3iWSrZHJryUaVLIKt0nE1blMsm4zA7JUQgbxrhkTE7I62LXtt90HSHaEK2G9pK-wCe2GJMaAhqqXWdstK6DlnrojNvSxmJr6Pli_TJfLS5o4zxd36yo3cIb0oBvW-wGP9cdk4MG2oAnv3dKnhe3T_P7ZPl49zC_WSY6FWVMuE7zWjRQ1KKQjWbCaAF1XZa5gUoWErCSdVoBysboBkBkRQEVGlELOfRLp-Rs9H337mOHIaqN2_k-cVAiq0TK8yLPelU5qrR3IXhslLZjzujBtoozNYypNmoYUw1jqnHMHhV_0Hff1_Xf_0PXI4R99U-LXgVtsdNorEcdlXH2P_wHahyP3Q |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2022_118811 crossref_primary_10_1109_TGRS_2023_3301494 crossref_primary_10_1155_2023_4359133 crossref_primary_10_1080_01431161_2021_1899336 crossref_primary_10_1016_j_dsp_2025_105174 crossref_primary_10_1007_s11042_023_16205_z crossref_primary_10_1155_2021_1014017 crossref_primary_10_1016_j_jag_2023_103363 crossref_primary_10_1007_s12652_022_04231_y crossref_primary_10_3233_JIFS_210810 |
| Cites_doi | 10.3390/app8122576 10.1109/TPAMI.2008.105 10.1117/1.JRS.12.045006 10.3969/j.issn.1004-4132.2010.01.006 10.1109/TGRS.2007.907109 10.1109/TGRS.2016.2611060 10.1109/83.753747 10.3390/rs11212462 10.1109/MGRS.2017.2762307 10.3390/rs10060906 10.1109/JSTARS.2015.2492552 10.1109/GlobalSIP.2017.8308643 10.1080/01621459.1987.10478393 10.1109/TGRS.2012.2194787 10.1109/ACCESS.2019.2912174 10.1109/TGRS.2015.2413905 10.1016/j.patcog.2016.11.015 10.1080/0143116021000013322 10.1109/IKT.2015.7288780 10.1016/j.sigpro.2020.107623 10.1109/LGRS.2015.2478256 10.1109/TFUZZ.2018.2796074 10.1109/83.869185 10.1016/j.patrec.2016.03.032 10.1080/01431161.2019.1706202 10.3390/rs11050512 10.1109/TGRS.2013.2287273 10.1080/01431161.2016.1266104 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Apr 15, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Apr 15, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.114370 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_114370 S0957417420310484 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-1c35b2fa6b267fc02dc2abb885da9767ae97b39ae7fdcfaa2466a9ed2b2767933 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615903900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 09 05:40:29 EST 2025 Sat Nov 29 07:09:24 EST 2025 Tue Nov 18 22:23:08 EST 2025 Fri Feb 23 02:48:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Conditional Random Field (CRF) Generalized Gaussian Distributions (GGD) Synthetic Aperture Radar (SAR) image segmentation Kullback–Leibler Distance (KLD) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-1c35b2fa6b267fc02dc2abb885da9767ae97b39ae7fdcfaa2466a9ed2b2767933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9095-4913 |
| PQID | 2492315654 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2492315654 crossref_citationtrail_10_1016_j_eswa_2020_114370 crossref_primary_10_1016_j_eswa_2020_114370 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114370 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-15 |
| PublicationDateYYYYMMDD | 2021-04-15 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Wang, Wu, Zhang, Zhao, Li, Liao (b0120) 2014; 52 Zhou, Y., Shi, J., Yang, X., Wang, C., Kumar, D., Wei, S., & et al. (2019). Deep multi-scale recurrent network for synthetic aperture radar images despeckling. Remote Sensing 11, 2462. Sun, L., Meng, X., Xu, J., & Tian, Y. (2018). An image segmentation method using an active contour model based on improved SPF and LIF. Applied Sciences 8, 2576. Ma, F., Gao, F., Sun, J., Zhou, H., & Hussain, A. (2019). Weakly supervised segmentation of SAR imagery using superpixel and hierarchically adversarial CRF. Remote Sensing 11, 512. Golpardaz, Helfroush, Danyali (b0040) 2020; 174 Lei, Jia, Zhang, He, Meng, Nandi (b0055) 2018; 26 Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (b0155) 2017; 5 Akbarizadeh (b0005) 2012; 50 Wang, Wu, Li, Zhang, Zhang (b0115) 2017; 55 Yu, Zhang, Li (b0130) 2012; 8 Modava, Akbarizadeh (b0080) 2017; 38 Wouwer, G. V. de, Scheunders, P., & Dyck, D. V. (1999). Statistical texture characterization from discrete wavelet representations. IEEE Transactions on Image Processing 8, 592–598. Toyoda, Hasegawa (b0105) 2008; 30 Zhang, Li, Wu, Li (b0140) 2015; 53 Lei, Li, Zhao, Zhang (b0060) 2010; 21 Geng, Fan, Wang, Ma, Li, Chen (b0030) 2015; 12 Perez-Cruz (b0085) 2008 Comer, M. L., & Delp, E. J. (2000). The EM/MPM algorithm for segmentation of textured images: analysis and further experimental results. IEEE Transaction on Image Processing 9, 1731–1744. Ghaffari, Golpardaz, Helfroush, Danyali (b0035) 2020; 41 Duan, Tao, Han, Lu (b0025) 2017; 2017 Duan, Liu, Jiao, Zhao, Zhang (b0020) 2017; 64 . Zhang, Li, Wu, An, Jia (b0135) 2016; 78 Tirandaz, Akbarizadeh (b0095) 2016; 9 Dong, Y., Forster, B. C., & Milne, A. K. (2003). Comparison of radar image segmentation by Gaussian- and Gamma-Markov random field models. International Journal of Remote Sensing 24, 711–722. Liu, J., Wen, X., Meng, Q., Xu, H., Yuan, L., 2018. Synthetic aperture radar image segmentation with reaction diffusion level set evolution equation in an active contour model. Remote Sensing 10, 906. Han, Wu, Basu (b0045) 2019; 7 Viera, A. J., Garrett, J. M. (n.d.) Understanding interobserver agreement: The Kappa statistic. Family Medicine 4. Hu, H., Liu, B., Zhang, Z., Guo, W., & Yu, W. (2018). Superpixel generation for synthetic aperture radar imagery using edge-dominated local clustering. JARS 12, 045006. Zhong, Wang (b0145) 2007; 45 Tirandaz, Z., & Akbarizadeh, G. (2016b). Unsupervised texture-based SAR image segmentation using spectral regression and gabor filter bank. Marroquin, J., Mitter, S., & Poggio, T. (1987). Probabilistic solution of Ill-posed problems in computational vision. journal of the american statistical association 82, 76–89. Akbarizadeh (10.1016/j.eswa.2020.114370_b0005) 2012; 50 Duan (10.1016/j.eswa.2020.114370_b0025) 2017; 2017 Golpardaz (10.1016/j.eswa.2020.114370_b0040) 2020; 174 Modava (10.1016/j.eswa.2020.114370_b0080) 2017; 38 Duan (10.1016/j.eswa.2020.114370_b0020) 2017; 64 10.1016/j.eswa.2020.114370_b0065 Toyoda (10.1016/j.eswa.2020.114370_b0105) 2008; 30 10.1016/j.eswa.2020.114370_b0100 Zhong (10.1016/j.eswa.2020.114370_b0145) 2007; 45 10.1016/j.eswa.2020.114370_b0125 Yu (10.1016/j.eswa.2020.114370_b0130) 2012; 8 Zhang (10.1016/j.eswa.2020.114370_b0135) 2016; 78 Wang (10.1016/j.eswa.2020.114370_b0115) 2017; 55 Ghaffari (10.1016/j.eswa.2020.114370_b0035) 2020; 41 Lei (10.1016/j.eswa.2020.114370_b0060) 2010; 21 Wang (10.1016/j.eswa.2020.114370_b0120) 2014; 52 Lei (10.1016/j.eswa.2020.114370_b0055) 2018; 26 10.1016/j.eswa.2020.114370_b0090 10.1016/j.eswa.2020.114370_b0070 10.1016/j.eswa.2020.114370_b0050 Tirandaz (10.1016/j.eswa.2020.114370_b0095) 2016; 9 10.1016/j.eswa.2020.114370_b0150 Perez-Cruz (10.1016/j.eswa.2020.114370_b0085) 2008 10.1016/j.eswa.2020.114370_b0075 10.1016/j.eswa.2020.114370_b0010 10.1016/j.eswa.2020.114370_b0110 Han (10.1016/j.eswa.2020.114370_b0045) 2019; 7 Zhu (10.1016/j.eswa.2020.114370_b0155) 2017; 5 10.1016/j.eswa.2020.114370_b0015 Zhang (10.1016/j.eswa.2020.114370_b0140) 2015; 53 Geng (10.1016/j.eswa.2020.114370_b0030) 2015; 12 |
| References_xml | – volume: 7 start-page: 54522 year: 2019 end-page: 54532 ident: b0045 article-title: Adaptive active contour model based on weighted RBPF for SAR image segmentation publication-title: IEEE Access – volume: 55 start-page: 537 year: 2017 end-page: 550 ident: b0115 article-title: Adaptive hybrid conditional random field model for SAR image segmentation publication-title: IEEE Transactions on Geoscience and Remote Sensing – reference: Liu, J., Wen, X., Meng, Q., Xu, H., Yuan, L., 2018. Synthetic aperture radar image segmentation with reaction diffusion level set evolution equation in an active contour model. Remote Sensing 10, 906. – volume: 38 start-page: 355 year: 2017 end-page: 370 ident: b0080 article-title: Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method publication-title: International Journal of Remote Sensing – volume: 5 start-page: 8 year: 2017 end-page: 36 ident: b0155 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geoscience and Remote Sensing Magazine – volume: 2017 start-page: 254 year: 2017 end-page: 258 ident: b0025 article-title: Hierarchical multinomial latent model with G0 distribution for remote sensing image semantic segmentation publication-title: IEEE Global Conference on Signal and Information Processing (GlobalSIP) – volume: 9 start-page: 1244 year: 2016 end-page: 1264 ident: b0095 article-title: A two-phase algorithm based on kurtosis curvelet energy and unsupervised spectral regression for segmentation of SAR images publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – reference: Viera, A. J., Garrett, J. M. (n.d.) Understanding interobserver agreement: The Kappa statistic. Family Medicine 4. – volume: 52 start-page: 5193 year: 2014 end-page: 5205 ident: b0120 article-title: Unsupervised SAR image segmentation using higher order neighborhood-based triplet markov fields model publication-title: IEEE Transactions on Geoscience and Remote Sensing – reference: Ma, F., Gao, F., Sun, J., Zhou, H., & Hussain, A. (2019). Weakly supervised segmentation of SAR imagery using superpixel and hierarchically adversarial CRF. Remote Sensing 11, 512. – volume: 12 start-page: 2351 year: 2015 end-page: 2355 ident: b0030 article-title: High-resolution SAR image classification via deep convolutional autoencoders publication-title: IEEE Geoscience and Remote Sensing Letters – reference: Wouwer, G. V. de, Scheunders, P., & Dyck, D. V. (1999). Statistical texture characterization from discrete wavelet representations. IEEE Transactions on Image Processing 8, 592–598. – volume: 26 start-page: 3027 year: 2018 end-page: 3041 ident: b0055 article-title: Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Transactions on Fuzzy Systems – volume: 21 start-page: 31 year: 2010 end-page: 36 ident: b0060 article-title: Fast segmentation approach for SAR image based on simple Markov random field publication-title: Journal of Systems Engineering and Electronics – reference: Hu, H., Liu, B., Zhang, Z., Guo, W., & Yu, W. (2018). Superpixel generation for synthetic aperture radar imagery using edge-dominated local clustering. JARS 12, 045006. – reference: Sun, L., Meng, X., Xu, J., & Tian, Y. (2018). An image segmentation method using an active contour model based on improved SPF and LIF. Applied Sciences 8, 2576. – reference: Tirandaz, Z., & Akbarizadeh, G. (2016b). Unsupervised texture-based SAR image segmentation using spectral regression and gabor filter bank. – volume: 41 start-page: 3535 year: 2020 end-page: 3557 ident: b0035 article-title: A fast, weighted CRF algorithm based on a two-step superpixel generation for SAR image segmentation publication-title: International Journal of Remote Sensing – reference: Comer, M. L., & Delp, E. J. (2000). The EM/MPM algorithm for segmentation of textured images: analysis and further experimental results. IEEE Transaction on Image Processing 9, 1731–1744. – volume: 64 start-page: 255 year: 2017 end-page: 267 ident: b0020 article-title: SAR Image segmentation based on convolutional-wavelet neural network and markov random field publication-title: Pattern Recognition – volume: 174 start-page: 107623 year: 2020 ident: b0040 article-title: Nonsubsampled contourlet transform-based conditional random field for SAR images segmentation publication-title: Signal Processing – volume: 45 start-page: 3978 year: 2007 end-page: 3988 ident: b0145 article-title: A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images publication-title: IEEE Transactions on Geoscience and Remote Sensing – reference: . – volume: 78 start-page: 48 year: 2016 end-page: 55 ident: b0135 article-title: Unsupervised SAR image segmentation using high-order conditional random fields model based on product-of-experts publication-title: Pattern Recognition Letters – volume: 53 start-page: 4933 year: 2015 end-page: 4951 ident: b0140 article-title: Hierarchical conditional random fields model for semisupervised SAR image segmentation publication-title: IEEE Transactions on Geoscience and Remote Sensing – reference: Marroquin, J., Mitter, S., & Poggio, T. (1987). Probabilistic solution of Ill-posed problems in computational vision. journal of the american statistical association 82, 76–89. – volume: 8 start-page: 9055 year: 2012 end-page: 9064 ident: b0130 article-title: A review of estimating the shape parameter of generalized Gaussian distribution publication-title: Journal of Computer Information Systems – volume: 50 start-page: 4358 year: 2012 end-page: 4368 ident: b0005 article-title: A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images publication-title: IEEE Transactions on Geoscience and Remote Sensing – reference: Zhou, Y., Shi, J., Yang, X., Wang, C., Kumar, D., Wei, S., & et al. (2019). Deep multi-scale recurrent network for synthetic aperture radar images despeckling. Remote Sensing 11, 2462. – reference: Dong, Y., Forster, B. C., & Milne, A. K. (2003). Comparison of radar image segmentation by Gaussian- and Gamma-Markov random field models. International Journal of Remote Sensing 24, 711–722. – start-page: 1666 year: 2008 end-page: 1670 ident: b0085 article-title: Kullback-Leibler divergence estimation of continuous distributions publication-title: In 2008 IEEE international symposium on information theory. Presented at the 2008 IEEE international symposium on information theory – volume: 30 start-page: 1483 year: 2008 end-page: 1489 ident: b0105 article-title: Random field model for integration of local information and global information publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: 10.1016/j.eswa.2020.114370_b0090 doi: 10.3390/app8122576 – volume: 30 start-page: 1483 year: 2008 ident: 10.1016/j.eswa.2020.114370_b0105 article-title: Random field model for integration of local information and global information publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.105 – ident: 10.1016/j.eswa.2020.114370_b0050 doi: 10.1117/1.JRS.12.045006 – volume: 21 start-page: 31 year: 2010 ident: 10.1016/j.eswa.2020.114370_b0060 article-title: Fast segmentation approach for SAR image based on simple Markov random field publication-title: Journal of Systems Engineering and Electronics doi: 10.3969/j.issn.1004-4132.2010.01.006 – volume: 45 start-page: 3978 year: 2007 ident: 10.1016/j.eswa.2020.114370_b0145 article-title: A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2007.907109 – volume: 55 start-page: 537 issue: 1 year: 2017 ident: 10.1016/j.eswa.2020.114370_b0115 article-title: Adaptive hybrid conditional random field model for SAR image segmentation publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2016.2611060 – ident: 10.1016/j.eswa.2020.114370_b0125 doi: 10.1109/83.753747 – ident: 10.1016/j.eswa.2020.114370_b0150 doi: 10.3390/rs11212462 – volume: 8 start-page: 9055 issue: 21 year: 2012 ident: 10.1016/j.eswa.2020.114370_b0130 article-title: A review of estimating the shape parameter of generalized Gaussian distribution publication-title: Journal of Computer Information Systems – volume: 5 start-page: 8 year: 2017 ident: 10.1016/j.eswa.2020.114370_b0155 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geoscience and Remote Sensing Magazine doi: 10.1109/MGRS.2017.2762307 – ident: 10.1016/j.eswa.2020.114370_b0065 doi: 10.3390/rs10060906 – volume: 9 start-page: 1244 year: 2016 ident: 10.1016/j.eswa.2020.114370_b0095 article-title: A two-phase algorithm based on kurtosis curvelet energy and unsupervised spectral regression for segmentation of SAR images publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2015.2492552 – volume: 2017 start-page: 254 year: 2017 ident: 10.1016/j.eswa.2020.114370_b0025 article-title: Hierarchical multinomial latent model with G0 distribution for remote sensing image semantic segmentation publication-title: IEEE Global Conference on Signal and Information Processing (GlobalSIP) doi: 10.1109/GlobalSIP.2017.8308643 – ident: 10.1016/j.eswa.2020.114370_b0075 doi: 10.1080/01621459.1987.10478393 – volume: 50 start-page: 4358 year: 2012 ident: 10.1016/j.eswa.2020.114370_b0005 article-title: A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2012.2194787 – volume: 7 start-page: 54522 year: 2019 ident: 10.1016/j.eswa.2020.114370_b0045 article-title: Adaptive active contour model based on weighted RBPF for SAR image segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912174 – volume: 53 start-page: 4933 year: 2015 ident: 10.1016/j.eswa.2020.114370_b0140 article-title: Hierarchical conditional random fields model for semisupervised SAR image segmentation publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2015.2413905 – volume: 64 start-page: 255 year: 2017 ident: 10.1016/j.eswa.2020.114370_b0020 article-title: SAR Image segmentation based on convolutional-wavelet neural network and markov random field publication-title: Pattern Recognition doi: 10.1016/j.patcog.2016.11.015 – ident: 10.1016/j.eswa.2020.114370_b0015 doi: 10.1080/0143116021000013322 – ident: 10.1016/j.eswa.2020.114370_b0100 doi: 10.1109/IKT.2015.7288780 – ident: 10.1016/j.eswa.2020.114370_b0110 – volume: 174 start-page: 107623 year: 2020 ident: 10.1016/j.eswa.2020.114370_b0040 article-title: Nonsubsampled contourlet transform-based conditional random field for SAR images segmentation publication-title: Signal Processing doi: 10.1016/j.sigpro.2020.107623 – volume: 12 start-page: 2351 year: 2015 ident: 10.1016/j.eswa.2020.114370_b0030 article-title: High-resolution SAR image classification via deep convolutional autoencoders publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2015.2478256 – volume: 26 start-page: 3027 year: 2018 ident: 10.1016/j.eswa.2020.114370_b0055 article-title: Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2018.2796074 – start-page: 1666 year: 2008 ident: 10.1016/j.eswa.2020.114370_b0085 article-title: Kullback-Leibler divergence estimation of continuous distributions – ident: 10.1016/j.eswa.2020.114370_b0010 doi: 10.1109/83.869185 – volume: 78 start-page: 48 year: 2016 ident: 10.1016/j.eswa.2020.114370_b0135 article-title: Unsupervised SAR image segmentation using high-order conditional random fields model based on product-of-experts publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2016.03.032 – volume: 41 start-page: 3535 year: 2020 ident: 10.1016/j.eswa.2020.114370_b0035 article-title: A fast, weighted CRF algorithm based on a two-step superpixel generation for SAR image segmentation publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2019.1706202 – ident: 10.1016/j.eswa.2020.114370_b0070 doi: 10.3390/rs11050512 – volume: 52 start-page: 5193 issue: 8 year: 2014 ident: 10.1016/j.eswa.2020.114370_b0120 article-title: Unsupervised SAR image segmentation using higher order neighborhood-based triplet markov fields model publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2013.2287273 – volume: 38 start-page: 355 year: 2017 ident: 10.1016/j.eswa.2020.114370_b0080 article-title: Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2016.1266104 |
| SSID | ssj0017007 |
| Score | 2.4053395 |
| Snippet | •A new statistical conditional random field is proposed for SAR image segmentation.•The generalized Gaussian distribution of wavelet coefficients is applied in... Recently, the conditional random field (CRF) model has been greatly considered in synthetic aperture radar (SAR) image segmentation. This model not only... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114370 |
| SubjectTerms | Algorithms Conditional Random Field (CRF) Conditional random fields Distribution functions Feature extraction Generalized Gaussian Distributions (GGD) Image segmentation Kullback–Leibler Distance (KLD) Normal distribution Parameters Radar imaging Regression models Similarity Similarity measures Statistical analysis Synthetic aperture radar Synthetic Aperture Radar (SAR) image segmentation Two dimensional models Wavelet transforms |
| Title | Fully Statistical, Wavelet-based conditional random field (FSWCRF) for SAR image segmentation |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.114370 https://www.proquest.com/docview/2492315654 |
| Volume | 168 |
| WOSCitedRecordID | wos000615903900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKx4ELv9EGA_nAAVQytY4TJ8dqWhlITKgdWi8oeo6ddVPTTm03Vv4U_lr8bCftipgAiUsUpUlc-X2xn5_f9z1CXneiQoPOlVmbCBFwySCQSqqAgdIJj1IZ5coWmxBHR8lwmH5uNH5UXJirsZhMkuvr9OK_mtpcM8ZG6uxfmLt-qblgzo3RzdGY3Rz_yPC4qFxaJ9JqMFtB_9YJYIGJRYCTFvLYcKPaBQHNXKWmZctmsqG72Ruc7Pd7GCzABMRBt986KzGvZ65PS89TmtwI56NW8sIrQldcubVd8TrBZzpGZUf47hlCSyhXcdhxMZtezm2E59N0BGUJxg02djytg9UGnUtwVO5DkGcS4Vv_-H4ERQGOM9_XyxH4XAEfzWAd3JhxfE4XYqtoNqucJherNDjquHI-e9qN1IkIg1i48or1UO5K9PwyLbgIxfmenn9DrSlmJZJDV7FkQ257gI1hWwxFU3nC75AtJqI0aZKt7oeD4cd6j0q0HRm_-nOekuWyBzdb-p3bs-EAWK_m-CG575cjtOtg9Ig09OQxeVCV-qB-5H9CvlpU0TVUvaM3MEXXMEUdpqjFFH3jEPWWGjxRgydq8UTX8fSUfOkdHO8fBr4yR5CHLFkEnTyMJCsgliwWRd5mKmcgZZJECox_K0CnQoYpaFGovABgPI4h1YpJJtBm4TPSnEwnepvQUIftthaqUIJzlJ7iIedREvO0iCOAaId0qo7Lci9bj9VTxlmVn3ieYWdn2NmZ6-wd0qqfuXCiLbfeHVX2yLzb6dzJzMDn1ud2K-Nl_vufZ8wKHppVEn_-j699Qe6tPoxd0lzMLvVLcje_MvadvfIg_AnfLbL0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+Statistical%2C+Wavelet-based+conditional+random+field+%28FSWCRF%29+for+SAR+image+segmentation&rft.jtitle=Expert+systems+with+applications&rft.au=Golpardaz%2C+Maryam&rft.au=Helfroush%2C+Mohammad+Sadegh&rft.au=Danyali%2C+Habibollah&rft.au=Ghaffari%2C+Reyhane&rft.date=2021-04-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=168&rft_id=info:doi/10.1016%2Fj.eswa.2020.114370&rft.externalDocID=S0957417420310484 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |