Fast fuzzy subsequence matching algorithms on time-series

•Several techniques are used to accelerate computational time.•R*-tree is adopted to further prune unnecessary computations.•Three fuzzy subsequence matching algorithms are compared.•Experiments are conducted on synthetic and real data set. Subsequence matching algorithms have many applications on t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 116; s. 275 - 284
Hlavní autoři: Gong, Xueyuan, Fong, Simon, Si, Yain-Whar
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.02.2019
Elsevier BV
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Several techniques are used to accelerate computational time.•R*-tree is adopted to further prune unnecessary computations.•Three fuzzy subsequence matching algorithms are compared.•Experiments are conducted on synthetic and real data set. Subsequence matching algorithms have many applications on time-series, such as detecting specific patterns on Electrocardiogram (ECG) and temperature data. To the best of author’s knowledge, there are relatively few research studies on time-series fuzzy subsequence matching yet, which better expresses the logic in real life compared to exact subsequence matching. In this paper, we firstly propose Naive Fuzzy Subsequence Matching based on Euclidean Distance (NFSM-ED) and Dynamic Time Warping (NFSM-DTW) for solving fuzzy subsequence matching problem on time-series, which can be treated as a basic benchmark of efficiency and accuracy. Then we extend it to a novel approach called UCR Fuzzy Subsequence Matching (UFSM) algorithm, which is inspired by UCRSuite. Finally, we develop it to Improved Fuzzy Subsequence Matching by kd-tree (IFSM-kd) and R*-tree (IFSM-R*), which can efficiently and effectively perform fuzzy subsequence matching on time-series. Additionally, the experiment results show that IFSM-R* and IFSM-kd are much faster than NFSM-ED, NFSM-DTW and UFSM with nearly no extra memory space required. Furthermore, IFSM-R* supports inserting and deleting indexes compared to IFSM-kd.
AbstractList Subsequence matching algorithms have many applications on time-series, such as detecting specific patterns on Electrocardiogram (ECG) and temperature data. To the best of author’s knowledge, there are relatively few research studies on time-series fuzzy subsequence matching yet, which better expresses the logic in real life compared to exact subsequence matching. In this paper, we firstly propose Naive Fuzzy Subsequence Matching based on Euclidean Distance (NFSM-ED) and Dynamic Time Warping (NFSM-DTW) for solving fuzzy subsequence matching problem on time-series, which can be treated as a basic benchmark of efficiency and accuracy. Then we extend it to a novel approach called UCR Fuzzy Subsequence Matching (UFSM) algorithm, which is inspired by UCRSuite. Finally, we develop it to Improved Fuzzy Subsequence Matching by kd-tree (IFSM-kd) and R*-tree (IFSM-R*), which can efficiently and effectively perform fuzzy subsequence matching on time-series. Additionally, the experiment results show that IFSM-R* and IFSM-kd are much faster than NFSM-ED, NFSM-DTW and UFSM with nearly no extra memory space required. Furthermore, IFSM-R* supports inserting and deleting indexes compared to IFSM-kd.
•Several techniques are used to accelerate computational time.•R*-tree is adopted to further prune unnecessary computations.•Three fuzzy subsequence matching algorithms are compared.•Experiments are conducted on synthetic and real data set. Subsequence matching algorithms have many applications on time-series, such as detecting specific patterns on Electrocardiogram (ECG) and temperature data. To the best of author’s knowledge, there are relatively few research studies on time-series fuzzy subsequence matching yet, which better expresses the logic in real life compared to exact subsequence matching. In this paper, we firstly propose Naive Fuzzy Subsequence Matching based on Euclidean Distance (NFSM-ED) and Dynamic Time Warping (NFSM-DTW) for solving fuzzy subsequence matching problem on time-series, which can be treated as a basic benchmark of efficiency and accuracy. Then we extend it to a novel approach called UCR Fuzzy Subsequence Matching (UFSM) algorithm, which is inspired by UCRSuite. Finally, we develop it to Improved Fuzzy Subsequence Matching by kd-tree (IFSM-kd) and R*-tree (IFSM-R*), which can efficiently and effectively perform fuzzy subsequence matching on time-series. Additionally, the experiment results show that IFSM-R* and IFSM-kd are much faster than NFSM-ED, NFSM-DTW and UFSM with nearly no extra memory space required. Furthermore, IFSM-R* supports inserting and deleting indexes compared to IFSM-kd.
Author Si, Yain-Whar
Fong, Simon
Gong, Xueyuan
Author_xml – sequence: 1
  givenname: Xueyuan
  orcidid: 0000-0002-5025-8216
  surname: Gong
  fullname: Gong, Xueyuan
  email: yb47453@umac.mo, amoonfana@qq.com
– sequence: 2
  givenname: Simon
  orcidid: 0000-0002-1848-7246
  surname: Fong
  fullname: Fong, Simon
  email: ccfong@umac.mo
– sequence: 3
  givenname: Yain-Whar
  orcidid: 0000-0001-8468-6182
  surname: Si
  fullname: Si, Yain-Whar
  email: fstasp@umac.mo
BookMark eNp9kD1PwzAQhi1UJNrCH2CKxJzgi5PYllhQxZdUiQVmy3Hs1lETF9sBtb-eRGVi6HTL-7x39yzQrHe9RugWcAYYqvs20-FHZjkGlmGeYYALNAdGSVpRTmZojnlJ0wJocYUWIbQYA8WYzhF_liEmZjgeD0kY6qC_Bt0rnXQyqq3tN4ncbZy3cduFxPVJtJ1Og_ZWh2t0aeQu6Ju_uUSfz08fq9d0_f7ytnpcp4rkLKbASMEUMXVNicQ453XDjCk5JUBMwRpFm0aTkilQNS0b4JXkhtWqLpVmVaHIEt2devfejceFKFo3-H5cKXIgwHLOGB9T7JRS3oXgtRHKRhmt66OXdicAi0mUaMUkSkyiBOZiFDWi-T90720n_eE89HCC9Pj6t9VeBGUnc431WkXROHsO_wX9o4SQ
CitedBy_id crossref_primary_10_1111_2041_210X_13717
crossref_primary_10_1016_j_cie_2022_108039
crossref_primary_10_1007_s00521_023_09291_5
crossref_primary_10_1109_JPHOTOV_2020_2981833
crossref_primary_10_14778_3407790_3407827
Cites_doi 10.1007/s10115-004-0154-9
10.1016/j.ins.2010.11.031
10.1016/j.asoc.2015.10.012
10.1016/j.fss.2009.04.013
10.3390/rs10040654
10.1145/361002.361007
10.1007/s10618-012-0250-5
10.1109/TKDE.2013.8
10.1016/j.engappai.2014.12.015
10.1023/A:1024988512476
10.1016/j.eswa.2006.12.013
10.1093/bioinformatics/bty246
10.1007/s10115-004-0172-7
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Feb 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2018.09.011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 284
ExternalDocumentID 10_1016_j_eswa_2018_09_011
S0957417418305827
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-18348c3fbb73a0029bd8ff597313f48dc7dde358c1cb75d196a9f8bcb5ce864c3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449240500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Mon Jul 14 09:34:18 EDT 2025
Tue Nov 18 22:35:04 EST 2025
Sat Nov 29 06:14:29 EST 2025
Fri Feb 23 02:24:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords IFSM-kd
Fuzzy subsequence matching
Time-series
Subsequence matching
IFSM-R
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-18348c3fbb73a0029bd8ff597313f48dc7dde358c1cb75d196a9f8bcb5ce864c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1848-7246
0000-0001-8468-6182
0000-0002-5025-8216
PQID 2131829889
PQPubID 2045477
PageCount 10
ParticipantIDs proquest_journals_2131829889
crossref_citationtrail_10_1016_j_eswa_2018_09_011
crossref_primary_10_1016_j_eswa_2018_09_011
elsevier_sciencedirect_doi_10_1016_j_eswa_2018_09_011
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang, Kam, Xiao, Bowen, Chaovalitwongse (bib0029) 2016
Shokoohi-Yekta, Chen, Campana, Hu, Zakaria, Keogh (bib0026) 2015
Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., & Batista, G. (2015). The ucr time series classification archive. URL
Bock, Gumbsch, Moor, Rieck, Roqueiro, Borgwardt (bib0004) 2018; 34
Keogh, Kasetty (bib0014) 2003; 7
Bentley (bib0003) 1975; 18
Ravikumar, Devi (bib0023) 2013
Niennattrakul, Wanichsan, Ratanamahatana (bib0020) 2010
Ulanova, Begum, Keogh (bib0027) 2015
Petitjean, Forestier, Webb, Nicholson, Chen, Keogh (bib0021) 2014
Anand, Pal, Suganthan (bib0001) 2010
Beckmann, Kriegel, Schneider, Seeger (bib0002) 1990
Wang, Mueen, Ding, Trajcevski, Scheuermann, Keogh (bib0030) 2013; 26
Yang, He, Xu, Ni, Jones, Samatova (bib0031) 2018
Gong, Fong, Chan, Mohammed (bib0010) 2015
Cheng, Cheng, Wang (bib0007) 2008; 34
Liu, Zhan, Yang, Wang (bib0017) 2018; 10
Faloutsos, Ranganathan, Manolopoulos (bib0009) 1994
Yingchareonthawornchai, Sivaraks, Rakthanmanon, Ratanamahatana (bib0032) 2013
Keogh, Ratanamahatana (bib0013) 2005; 7
Kim (bib0015) 2014; 26
D’Urso, Maharaj (bib0008) 2009; 160
Mueen, Keogh, Zhu, Cash, Westover (bib0019) 2009; 9
Izakian, Pedrycz, Jamal (bib0011) 2015; 39
Rakthanmanon, Campana, Mueen, Batista, Westover, Zhu (bib0022) 2012
Rodpongpun, Niennattrakul, Ratanamahatana (bib0024) 2011; 5
Wan, Gong, Si (bib0028) 2016; 38
.
Lin, Keogh, Lonardi, Chiu (bib0016) 2003
Sakurai, Faloutsos, Yamamuro (bib0025) 2007
Keogh, Lin (bib0012) 2005; 8
Maharaj, D’Urso (bib0018) 2011; 181
Zakaria, Mueen, Keogh (bib0033) 2012
Calin (bib0005) 2016
Lin (10.1016/j.eswa.2018.09.011_bib0016) 2003
Wang (10.1016/j.eswa.2018.09.011_bib0030) 2013; 26
Ulanova (10.1016/j.eswa.2018.09.011_bib0027) 2015
Niennattrakul (10.1016/j.eswa.2018.09.011_bib0020) 2010
Kim (10.1016/j.eswa.2018.09.011_bib0015) 2014; 26
Bentley (10.1016/j.eswa.2018.09.011_bib0003) 1975; 18
Keogh (10.1016/j.eswa.2018.09.011_bib0014) 2003; 7
Wang (10.1016/j.eswa.2018.09.011_bib0029) 2016
Sakurai (10.1016/j.eswa.2018.09.011_bib0025) 2007
Cheng (10.1016/j.eswa.2018.09.011_bib0007) 2008; 34
Petitjean (10.1016/j.eswa.2018.09.011_bib0021) 2014
Yingchareonthawornchai (10.1016/j.eswa.2018.09.011_bib0032) 2013
Calin (10.1016/j.eswa.2018.09.011_bib0005) 2016
Rodpongpun (10.1016/j.eswa.2018.09.011_bib0024) 2011; 5
Anand (10.1016/j.eswa.2018.09.011_bib0001) 2010
Faloutsos (10.1016/j.eswa.2018.09.011_bib0009) 1994
Wan (10.1016/j.eswa.2018.09.011_bib0028) 2016; 38
Gong (10.1016/j.eswa.2018.09.011_bib0010) 2015
Mueen (10.1016/j.eswa.2018.09.011_bib0019) 2009; 9
Shokoohi-Yekta (10.1016/j.eswa.2018.09.011_bib0026) 2015
Keogh (10.1016/j.eswa.2018.09.011_bib0012) 2005; 8
Rakthanmanon (10.1016/j.eswa.2018.09.011_bib0022) 2012
Ravikumar (10.1016/j.eswa.2018.09.011_bib0023) 2013
Beckmann (10.1016/j.eswa.2018.09.011_bib0002) 1990
Izakian (10.1016/j.eswa.2018.09.011_bib0011) 2015; 39
Zakaria (10.1016/j.eswa.2018.09.011_bib0033) 2012
Bock (10.1016/j.eswa.2018.09.011_bib0004) 2018; 34
Liu (10.1016/j.eswa.2018.09.011_bib0017) 2018; 10
Maharaj (10.1016/j.eswa.2018.09.011_bib0018) 2011; 181
10.1016/j.eswa.2018.09.011_bib0006
Keogh (10.1016/j.eswa.2018.09.011_bib0013) 2005; 7
Yang (10.1016/j.eswa.2018.09.011_bib0031) 2018
D’Urso (10.1016/j.eswa.2018.09.011_bib0008) 2009; 160
References_xml – start-page: 322
  year: 1990
  end-page: 331
  ident: bib0002
  article-title: The R*-tree: an efficient and robust access method for points and rectangles
  publication-title: Proceedings of the 1990 ACM SIGMOD international conference on management of data SIGMOD ’90
– volume: 5
  start-page: 2
  year: 2011
  ident: bib0024
  article-title: Efficient subsequence search on streaming data based on time warping distance
  publication-title: Computer and Information Technology
– start-page: 1265
  year: 2013
  end-page: 1270
  ident: bib0032
  article-title: Efficient proper length time series motif discovery
  publication-title: IEEE 13th international conference on data mining
– volume: 34
  start-page: 1235
  year: 2008
  end-page: 1242
  ident: bib0007
  article-title: Multi-attribute fuzzy time series method based on fuzzy clustering
  publication-title: Expert Systems with Applications
– volume: 181
  start-page: 1187
  year: 2011
  end-page: 1211
  ident: bib0018
  article-title: Fuzzy clustering of time series in the frequency domain
  publication-title: Information Sciences
– start-page: 262
  year: 2012
  end-page: 270
  ident: bib0022
  article-title: Searching and mining trillions of time series subsequences under dynamic time warping
  publication-title: The 18th international conference on knowledge discovery and data mining
– start-page: 785
  year: 2012
  end-page: 794
  ident: bib0033
  article-title: Clustering time series using unsupervised-shapelets
  publication-title: 12th IEEE international conference on data mining
– start-page: 2
  year: 2003
  end-page: 11
  ident: bib0016
  article-title: A symbolic representation of time series, with implications for streaming algorithms
  publication-title: Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery
– start-page: 900
  year: 2015
  end-page: 908
  ident: bib0027
  article-title: Scalable clustering of time series with u-shapelets
  publication-title: Proceedings of the 2015 SIAM international conference on data mining
– volume: 26
  start-page: 426
  year: 2014
  end-page: 437
  ident: bib0015
  article-title: Probabilistic sequence translation-alignment model for time-series classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 1
  year: 2013
  end-page: 6
  ident: bib0023
  article-title: Fuzzy classification of time series data
  publication-title: IEEE international conference on fuzzy systems
– start-page: 1
  year: 2010
  end-page: 8
  ident: bib0001
  article-title: Integration of functional information of genes in fuzzy clustering of short time series gene expression data
  publication-title: Proceedings of the IEEE congress on evolutionary computation
– volume: 7
  start-page: 349
  year: 2003
  end-page: 371
  ident: bib0014
  article-title: On the need for time series data mining benchmarks: a survey and empirical demonstration
  publication-title: Data Mining and Knowledge Discovery
– start-page: 104
  year: 2018
  end-page: 118
  ident: bib0031
  article-title: An intelligent and hybrid weighted fuzzy time series model based on empirical mode decomposition for financial markets forecasting
  publication-title: Advances in data mining. applications and theoretical aspects - 18th industrial conference, ICDM
– volume: 39
  start-page: 235
  year: 2015
  end-page: 244
  ident: bib0011
  article-title: Fuzzy clustering of time series data using dynamic time warping distance
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 18
  start-page: 509
  year: 1975
  end-page: 517
  ident: bib0003
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Communications of the Acm
– volume: 34
  start-page: i438
  year: 2018
  end-page: i446
  ident: bib0004
  article-title: Association mapping in biomedical time series via statistically significant shapelet mining
  publication-title: Bioinformatics
– volume: 10
  start-page: 654
  year: 2018
  ident: bib0017
  article-title: Characterizing the spatio-temporal pattern of land surface temperature through time series clustering: Based on the latent pattern and morphology
  publication-title: Remote Sensing
– start-page: 156
  year: 2010
  end-page: 167
  ident: bib0020
  article-title: Accurate subsequence matching on data stream under time warping distance
  publication-title: New frontiers in applied data mining
– volume: 9
  start-page: 473
  year: 2009
  end-page: 484
  ident: bib0019
  article-title: Exact discovery of time series motifs
  publication-title: Proceedings of the 2015 SIAM international conference on data mining
– volume: 38
  start-page: 346
  year: 2016
  end-page: 359
  ident: bib0028
  article-title: Effect of segmentation on financial time series pattern matching
  publication-title: Applied Soft Computing
– volume: 26
  start-page: 275
  year: 2013
  end-page: 309
  ident: bib0030
  article-title: Experimental comparison of representation methods and distance measures for time series data
  publication-title: Data Mining and Knowledge Discovery
– start-page: 419
  year: 1994
  end-page: 429
  ident: bib0009
  article-title: Fast subsequence matching in time-series databases
  publication-title: Proceedings of the 1994 ACM SIGMOD international conference on management of data SIGMOD ’94
– start-page: 470
  year: 2014
  end-page: 479
  ident: bib0021
  article-title: Dynamic time warping averaging of time series allows faster and more accurate classification
  publication-title: IEEE international conference on data mining
– start-page: 2159
  year: 2016
  end-page: 2165
  ident: bib0029
  article-title: An efficient time series subsequence pattern mining and prediction framework with an application to respiratory motion prediction
  publication-title: Proceedings of the thirtieth conference on artificial intelligence (AAAI)
– start-page: 1
  year: 2015
  end-page: 25
  ident: bib0010
  article-title: Nspring: the spring extension for subsequence matching of time series supporting normalization
  publication-title: The Journal of Supercomputing
– start-page: 264
  year: 2016
  end-page: 271
  ident: bib0005
  article-title: Gesture recognition on kinect time series data using dynamic time warping and hidden markov models
  publication-title: 18th international symposium on symbolic and numeric algorithms for scientific computing, SYNASC
– reference: .
– volume: 160
  start-page: 3565
  year: 2009
  end-page: 3589
  ident: bib0008
  article-title: Autocorrelation-based fuzzy clustering of time series
  publication-title: Fuzzy Sets and Systems
– start-page: 1085
  year: 2015
  end-page: 1094
  ident: bib0026
  article-title: Discovery of meaningful rules in time series
  publication-title: Proceedings of the 21th international conference on knowledge discovery and data mining
– reference: Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., & Batista, G. (2015). The ucr time series classification archive. URL:
– volume: 8
  start-page: 154
  year: 2005
  end-page: 177
  ident: bib0012
  article-title: Clustering of time-series subsequences is meaningless: Implications for previous and future research
  publication-title: Knowledge and Information Systems
– volume: 7
  start-page: 358
  year: 2005
  end-page: 386
  ident: bib0013
  article-title: Exact indexing of dynamic time warping
  publication-title: Knowledge & Information Systems
– start-page: 1046
  year: 2007
  end-page: 1055
  ident: bib0025
  article-title: Stream monitoring under the time warping distance
  publication-title: Proceedings of the 23rd international conference on data engineering
– start-page: 785
  year: 2012
  ident: 10.1016/j.eswa.2018.09.011_bib0033
  article-title: Clustering time series using unsupervised-shapelets
– start-page: 2
  year: 2003
  ident: 10.1016/j.eswa.2018.09.011_bib0016
  article-title: A symbolic representation of time series, with implications for streaming algorithms
– start-page: 1046
  year: 2007
  ident: 10.1016/j.eswa.2018.09.011_bib0025
  article-title: Stream monitoring under the time warping distance
– start-page: 322
  year: 1990
  ident: 10.1016/j.eswa.2018.09.011_bib0002
  article-title: The R*-tree: an efficient and robust access method for points and rectangles
– volume: 7
  start-page: 358
  issue: 3
  year: 2005
  ident: 10.1016/j.eswa.2018.09.011_bib0013
  article-title: Exact indexing of dynamic time warping
  publication-title: Knowledge & Information Systems
  doi: 10.1007/s10115-004-0154-9
– volume: 181
  start-page: 1187
  issue: 7
  year: 2011
  ident: 10.1016/j.eswa.2018.09.011_bib0018
  article-title: Fuzzy clustering of time series in the frequency domain
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.11.031
– volume: 38
  start-page: 346
  year: 2016
  ident: 10.1016/j.eswa.2018.09.011_bib0028
  article-title: Effect of segmentation on financial time series pattern matching
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.10.012
– volume: 160
  start-page: 3565
  issue: 24
  year: 2009
  ident: 10.1016/j.eswa.2018.09.011_bib0008
  article-title: Autocorrelation-based fuzzy clustering of time series
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2009.04.013
– start-page: 104
  year: 2018
  ident: 10.1016/j.eswa.2018.09.011_bib0031
  article-title: An intelligent and hybrid weighted fuzzy time series model based on empirical mode decomposition for financial markets forecasting
– volume: 10
  start-page: 654
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2018.09.011_bib0017
  article-title: Characterizing the spatio-temporal pattern of land surface temperature through time series clustering: Based on the latent pattern and morphology
  publication-title: Remote Sensing
  doi: 10.3390/rs10040654
– volume: 9
  start-page: 473
  year: 2009
  ident: 10.1016/j.eswa.2018.09.011_bib0019
  article-title: Exact discovery of time series motifs
– start-page: 262
  year: 2012
  ident: 10.1016/j.eswa.2018.09.011_bib0022
  article-title: Searching and mining trillions of time series subsequences under dynamic time warping
– start-page: 1265
  year: 2013
  ident: 10.1016/j.eswa.2018.09.011_bib0032
  article-title: Efficient proper length time series motif discovery
– volume: 18
  start-page: 509
  issue: 9
  year: 1975
  ident: 10.1016/j.eswa.2018.09.011_bib0003
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Communications of the Acm
  doi: 10.1145/361002.361007
– start-page: 2159
  year: 2016
  ident: 10.1016/j.eswa.2018.09.011_bib0029
  article-title: An efficient time series subsequence pattern mining and prediction framework with an application to respiratory motion prediction
– start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2018.09.011_bib0010
  article-title: Nspring: the spring extension for subsequence matching of time series supporting normalization
  publication-title: The Journal of Supercomputing
– volume: 26
  start-page: 275
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2018.09.011_bib0030
  article-title: Experimental comparison of representation methods and distance measures for time series data
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-012-0250-5
– start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2018.09.011_bib0023
  article-title: Fuzzy classification of time series data
– volume: 5
  start-page: 2
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2018.09.011_bib0024
  article-title: Efficient subsequence search on streaming data based on time warping distance
  publication-title: Computer and Information Technology
– volume: 26
  start-page: 426
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2018.09.011_bib0015
  article-title: Probabilistic sequence translation-alignment model for time-series classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.8
– volume: 39
  start-page: 235
  year: 2015
  ident: 10.1016/j.eswa.2018.09.011_bib0011
  article-title: Fuzzy clustering of time series data using dynamic time warping distance
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2014.12.015
– ident: 10.1016/j.eswa.2018.09.011_bib0006
– volume: 7
  start-page: 349
  issue: 4
  year: 2003
  ident: 10.1016/j.eswa.2018.09.011_bib0014
  article-title: On the need for time series data mining benchmarks: a survey and empirical demonstration
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1024988512476
– start-page: 1085
  year: 2015
  ident: 10.1016/j.eswa.2018.09.011_bib0026
  article-title: Discovery of meaningful rules in time series
– volume: 34
  start-page: 1235
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2018.09.011_bib0007
  article-title: Multi-attribute fuzzy time series method based on fuzzy clustering
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.12.013
– start-page: 470
  year: 2014
  ident: 10.1016/j.eswa.2018.09.011_bib0021
  article-title: Dynamic time warping averaging of time series allows faster and more accurate classification
– start-page: 900
  year: 2015
  ident: 10.1016/j.eswa.2018.09.011_bib0027
  article-title: Scalable clustering of time series with u-shapelets
– volume: 34
  start-page: i438
  issue: 13
  year: 2018
  ident: 10.1016/j.eswa.2018.09.011_bib0004
  article-title: Association mapping in biomedical time series via statistically significant shapelet mining
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty246
– start-page: 264
  year: 2016
  ident: 10.1016/j.eswa.2018.09.011_bib0005
  article-title: Gesture recognition on kinect time series data using dynamic time warping and hidden markov models
– volume: 8
  start-page: 154
  issue: 2
  year: 2005
  ident: 10.1016/j.eswa.2018.09.011_bib0012
  article-title: Clustering of time-series subsequences is meaningless: Implications for previous and future research
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-004-0172-7
– start-page: 156
  year: 2010
  ident: 10.1016/j.eswa.2018.09.011_bib0020
  article-title: Accurate subsequence matching on data stream under time warping distance
– start-page: 1
  year: 2010
  ident: 10.1016/j.eswa.2018.09.011_bib0001
  article-title: Integration of functional information of genes in fuzzy clustering of short time series gene expression data
– start-page: 419
  year: 1994
  ident: 10.1016/j.eswa.2018.09.011_bib0009
  article-title: Fast subsequence matching in time-series databases
SSID ssj0017007
Score 2.2930322
Snippet •Several techniques are used to accelerate computational time.•R*-tree is adopted to further prune unnecessary computations.•Three fuzzy subsequence matching...
Subsequence matching algorithms have many applications on time-series, such as detecting specific patterns on Electrocardiogram (ECG) and temperature data. To...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 275
SubjectTerms Algorithms
Euclidean geometry
Fuzzy logic
Fuzzy subsequence matching
IFSM-kd
IFSM-R
Matching
Neural networks
Subsequence matching
Time series
Title Fast fuzzy subsequence matching algorithms on time-series
URI https://dx.doi.org/10.1016/j.eswa.2018.09.011
https://www.proquest.com/docview/2131829889
Volume 116
WOSCitedRecordID wos000449240500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZg44EXfiMGA-WBt8pTEiex8zihVYDQhNQB5cmyHZulWtMpSWHbX885dpJ2iAmQeIkqq3Ec3-Xz2ffdHUKvM0NVXBiCifW0JkpJLFSmsCziFKyFWJEuHcPnD_T4mM3n-UdPa266cgK0qtjFRX7-X0UNbSBsGzr7F-IeOoUG-A1ChyuIHa5_JPipaNqJWV9dXU4aQAVPlZ6AZepok-Ls26ou29OlcxSUS43tuDyXcDFQ83Td-jzPfQTchq97oO14Ru98rS_Xo6JNffOsXI5u_llHHPgqygp_ORX15nmDDXHa4m4MgTAj68idJlKcRK7gzoF2WMoowRl1BRAHsI224NJVTfErb-yKxf0C6u58YXGgmx82U1TEusy0HqO3k2XP7EDsOACpwpTF9DbahYfkANm7h--O5u8HDxMNXSh9P3AfUOW4f9ef9Duj5dry3dkkJw_QPb-ZCA6dEjxEt3T1CN3vC3UEHrcfo9zqRNDpRLChE0GvE8GoE8GqCjZ04gn6ND06efMW-5oZWJGYtRjeO2GKGCkpEdblKgtmTGoLlBGTsEJRWM9IylSkJE0LwF-RGyaVTJVmWaLIU7RTrSr9DAWxoUanImSSRImMpIStBHQSikwoChuJPRT1k8KVTyhv65qc8Z45uOB2IrmdSB7mHCZyD02Ge85dOpUb_532c829QegMPQ6qceN9-71guP8yGx5HsHzFOWP583_s9gW6O34Q-2inrdf6JbqjvrdlU7_yCvYTudyQIg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+fuzzy+subsequence+matching+algorithms+on+time-series&rft.jtitle=Expert+systems+with+applications&rft.au=Gong%2C+Xueyuan&rft.au=Fong%2C+Simon&rft.au=Si%2C+Yain-Whar&rft.date=2019-02-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=116&rft.spage=275&rft.epage=284&rft_id=info:doi/10.1016%2Fj.eswa.2018.09.011&rft.externalDocID=S0957417418305827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon