Life prediction of lithium-ion batteries based on stacked denoising autoencoders

•Introduce the CFS clustering model for feature selection.•Using the SDAE for life prediction at early life stage.•Extracting the original features using discharge capacity and temperature only. Accurate life prediction of lithium-ion batteries is important to help assess battery quality in advance,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety Jg. 208; S. 107396
Hauptverfasser: Xu, Fan, Yang, Fangfang, Fei, Zicheng, Huang, Zhelin, Tsui, Kwok-Leung
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Barking Elsevier Ltd 01.04.2021
Elsevier BV
Schlagworte:
ISSN:0951-8320, 1879-0836
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Introduce the CFS clustering model for feature selection.•Using the SDAE for life prediction at early life stage.•Extracting the original features using discharge capacity and temperature only. Accurate life prediction of lithium-ion batteries is important to help assess battery quality in advance, improve long-term battery planning, and subsequently guarantee the safety and reliability of battery operations. In this study, a deep learning-based stacked denoising autoencoder (SDAE) method is proposed to directly predict battery life by extracting various battery features. In general, the SDAE contains autoencoders and uses a deep network architecture to learn the complex nonlinear input-output relationship in a layer-by-layer fashion. Many features enabling the life prediction of lithium-ion batteries are extracted from discharge temperature and voltage curves. As redundancies in these features may result in poor prediction accuracy, a clustering by fast search (CFS) method is adopted to filter and select essential features. The CFS selects effective features by aggregating the types of battery features into clusters. All selected features are then fed into the SDAE to predict battery life cycle. Key hyperparameters are investigated, such as the number of iterations, the learning rate, and the denoising rate of the SDAE network. Experimental results show that the proposed selected-features-based deep learning method can provide more accurate and efficient battery life predictions with less fluctuation than the method without feature selection.
AbstractList •Introduce the CFS clustering model for feature selection.•Using the SDAE for life prediction at early life stage.•Extracting the original features using discharge capacity and temperature only. Accurate life prediction of lithium-ion batteries is important to help assess battery quality in advance, improve long-term battery planning, and subsequently guarantee the safety and reliability of battery operations. In this study, a deep learning-based stacked denoising autoencoder (SDAE) method is proposed to directly predict battery life by extracting various battery features. In general, the SDAE contains autoencoders and uses a deep network architecture to learn the complex nonlinear input-output relationship in a layer-by-layer fashion. Many features enabling the life prediction of lithium-ion batteries are extracted from discharge temperature and voltage curves. As redundancies in these features may result in poor prediction accuracy, a clustering by fast search (CFS) method is adopted to filter and select essential features. The CFS selects effective features by aggregating the types of battery features into clusters. All selected features are then fed into the SDAE to predict battery life cycle. Key hyperparameters are investigated, such as the number of iterations, the learning rate, and the denoising rate of the SDAE network. Experimental results show that the proposed selected-features-based deep learning method can provide more accurate and efficient battery life predictions with less fluctuation than the method without feature selection.
Accurate life prediction of lithium-ion batteries is important to help assess battery quality in advance, improve long-term battery planning, and subsequently guarantee the safety and reliability of battery operations. In this study, a deep learning-based stacked denoising autoencoder (SDAE) method is proposed to directly predict battery life by extracting various battery features. In general, the SDAE contains autoencoders and uses a deep network architecture to learn the complex nonlinear input-output relationship in a layer-by-layer fashion. Many features enabling the life prediction of lithium-ion batteries are extracted from discharge temperature and voltage curves. As redundancies in these features may result in poor prediction accuracy, a clustering by fast search (CFS) method is adopted to filter and select essential features. The CFS selects effective features by aggregating the types of battery features into clusters. All selected features are then fed into the SDAE to predict battery life cycle. Key hyperparameters are investigated, such as the number of iterations, the learning rate, and the denoising rate of the SDAE network. Experimental results show that the proposed selected-features-based deep learning method can provide more accurate and efficient battery life predictions with less fluctuation than the method without feature selection.
ArticleNumber 107396
Author Yang, Fangfang
Huang, Zhelin
Fei, Zicheng
Xu, Fan
Tsui, Kwok-Leung
Author_xml – sequence: 1
  givenname: Fan
  surname: Xu
  fullname: Xu, Fan
  organization: School of Automation, China University of Geosciences, Wuchang, Wuhan, Hubei, 430072, PR China
– sequence: 2
  givenname: Fangfang
  surname: Yang
  fullname: Yang, Fangfang
  email: fangfang2-c@my.cityu.edu.hk
  organization: School of Data Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
– sequence: 3
  givenname: Zicheng
  surname: Fei
  fullname: Fei, Zicheng
  organization: School of Data Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
– sequence: 4
  givenname: Zhelin
  surname: Huang
  fullname: Huang, Zhelin
  organization: Department of Statistics, School of Economics, Shenzhen University, Shenzhen 518061, PR China
– sequence: 5
  givenname: Kwok-Leung
  surname: Tsui
  fullname: Tsui, Kwok-Leung
  organization: Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, 225 Durham Hall, 1145 Perry Street Blacksburg, VA 24061, Unites States
BookMark eNp9kEtLAzEQgINUsK3-AU8LnrfmsY8EvEjxBQU96Dlkk4lmbTc1SQX_vVnWk4ee5sF8M8y3QLPBD4DQJcErgklz3a8CxLiimI6NlonmBM0Jb0WJOWtmaI5FTUrOKD5Dixh7jHEl6naOXjbOQrEPYJxOzg-Ft8XWpQ932JVj2amUIDiIOYtgityKSenPnBoYvItueC_UIXkYtDcQ4jk6tWob4eIvLtHb_d3r-rHcPD88rW83pWaUp5JQwYwimgNvasOMZriuOtOSTlHeGt6JTtS2to1h2tpW86oxFTBsO4yh0ZQt0dW0dx_81wFikr0_hCGflLTGlFJOBM9TdJrSwccYwMp9cDsVfiTBcjQnezmak6M5OZnLEP8HaZfUaCcF5bbH0ZsJhfz6t4Mgo3ZZTdYbQCdpvDuG_wLxW4yx
CitedBy_id crossref_primary_10_1016_j_energy_2023_128092
crossref_primary_10_1016_j_ress_2024_110485
crossref_primary_10_1016_j_energy_2024_131700
crossref_primary_10_1016_j_engappai_2023_107698
crossref_primary_10_1155_2021_6618708
crossref_primary_10_1080_02533839_2025_2474083
crossref_primary_10_1016_j_est_2024_110771
crossref_primary_10_1016_j_ress_2022_108433
crossref_primary_10_1016_j_est_2022_104936
crossref_primary_10_1016_j_jpowsour_2022_230975
crossref_primary_10_1016_j_ress_2021_108033
crossref_primary_10_1016_j_ress_2023_109361
crossref_primary_10_1016_j_energy_2022_124725
crossref_primary_10_1016_j_est_2023_109308
crossref_primary_10_1016_j_xcrp_2025_102543
crossref_primary_10_1016_j_probengmech_2023_103481
crossref_primary_10_1149_1945_7111_ad24c1
crossref_primary_10_1016_j_energy_2024_131816
crossref_primary_10_1007_s10845_021_01822_y
crossref_primary_10_1016_j_ress_2022_108947
crossref_primary_10_3390_en18112887
crossref_primary_10_1109_TTE_2022_3166967
crossref_primary_10_1016_j_ress_2022_108821
crossref_primary_10_3390_batteries10080283
crossref_primary_10_1016_j_ress_2022_108944
crossref_primary_10_1177_1748006X221080345
crossref_primary_10_1016_j_jpowsour_2022_232466
crossref_primary_10_1016_j_ress_2024_110539
crossref_primary_10_1149_1945_7111_adcc5a
crossref_primary_10_1016_j_energy_2025_134992
crossref_primary_10_1016_j_procs_2025_04_108
crossref_primary_10_1016_j_est_2024_110711
crossref_primary_10_1016_j_ress_2022_108818
crossref_primary_10_1016_j_rser_2023_113576
crossref_primary_10_1088_1361_6501_ac9709
crossref_primary_10_1016_j_est_2023_109285
crossref_primary_10_1016_j_est_2024_112330
crossref_primary_10_1016_j_ress_2023_109107
crossref_primary_10_1016_j_ress_2022_108897
crossref_primary_10_1016_j_ress_2023_109185
crossref_primary_10_1007_s12206_022_0102_1
crossref_primary_10_1016_j_est_2022_105058
crossref_primary_10_1016_j_joule_2023_07_021
crossref_primary_10_1016_j_ress_2022_108804
crossref_primary_10_1016_j_compeleceng_2024_109167
crossref_primary_10_3390_en17122797
crossref_primary_10_1016_j_ress_2021_107932
crossref_primary_10_1016_j_est_2023_108587
crossref_primary_10_3390_batteries10050152
crossref_primary_10_3390_s24134185
crossref_primary_10_3390_electronics13081423
crossref_primary_10_1002_est2_70133
crossref_primary_10_1007_s11814_023_1476_1
crossref_primary_10_1016_j_eswa_2023_122041
crossref_primary_10_1016_j_ress_2024_110166
crossref_primary_10_1016_j_cpc_2025_109500
crossref_primary_10_1007_s13391_024_00518_8
crossref_primary_10_1016_j_est_2024_110575
crossref_primary_10_7717_peerj_cs_795
crossref_primary_10_1109_ACCESS_2025_3573683
crossref_primary_10_1088_1361_6501_ad123c
crossref_primary_10_1016_j_ress_2022_108878
crossref_primary_10_1016_j_energy_2023_127633
crossref_primary_10_3390_electronics14020400
crossref_primary_10_1109_TIE_2024_3387115
crossref_primary_10_1016_j_measurement_2022_112093
crossref_primary_10_1016_j_energy_2021_120205
crossref_primary_10_1007_s11581_025_06156_w
crossref_primary_10_1002_est2_70118
crossref_primary_10_1016_j_est_2022_104984
crossref_primary_10_1016_j_est_2023_106903
crossref_primary_10_1016_j_est_2023_108083
crossref_primary_10_1016_j_ress_2021_107675
crossref_primary_10_1016_j_ress_2021_108126
crossref_primary_10_1002_ente_202201510
crossref_primary_10_1016_j_etran_2024_100378
crossref_primary_10_1016_j_ress_2021_108082
crossref_primary_10_1016_j_est_2023_107868
crossref_primary_10_1016_j_rser_2022_112282
crossref_primary_10_1016_j_xcrp_2025_102618
crossref_primary_10_1016_j_est_2022_104399
crossref_primary_10_1109_TVT_2025_3529734
crossref_primary_10_1109_JIOT_2024_3433460
crossref_primary_10_1016_j_renene_2023_119907
crossref_primary_10_1002_eom2_12213
crossref_primary_10_1016_j_ress_2021_108257
crossref_primary_10_3390_wevj15090381
crossref_primary_10_1016_j_energy_2022_123973
crossref_primary_10_1016_j_ress_2022_108978
crossref_primary_10_3390_ma15093331
crossref_primary_10_1016_j_est_2024_114153
crossref_primary_10_1109_TIM_2022_3154003
crossref_primary_10_1016_j_ress_2022_109025
crossref_primary_10_1016_j_est_2023_109647
crossref_primary_10_1016_j_etran_2023_100286
crossref_primary_10_1109_TTE_2023_3264438
crossref_primary_10_1016_j_eswa_2021_116075
crossref_primary_10_1016_j_pnsc_2022_12_002
crossref_primary_10_3390_batteries10030089
crossref_primary_10_1016_j_est_2023_110065
crossref_primary_10_1186_s10033_024_01055_z
crossref_primary_10_1016_j_ress_2023_109315
crossref_primary_10_1016_j_ress_2023_109398
crossref_primary_10_1016_j_est_2023_108421
crossref_primary_10_1109_TTE_2025_3539853
crossref_primary_10_1088_1742_6596_2083_2_022100
crossref_primary_10_1016_j_jpowsour_2025_236507
crossref_primary_10_1109_TVT_2021_3134312
Cites_doi 10.1016/j.ress.2018.02.022
10.1016/j.energy.2017.12.144
10.1109/TPWRS.2016.2628873
10.1016/j.asoc.2018.09.037
10.1016/j.ijhydene.2018.04.160
10.1016/j.energy.2019.01.083
10.1109/TIFS.2020.3039697
10.1016/j.jpowsour.2016.04.119
10.1109/TII.2012.2222650
10.1109/TSMC.2015.2389757
10.1016/j.sigpro.2016.07.028
10.1016/j.jpowsour.2012.11.146
10.1093/bioinformatics/bty424
10.1109/TIM.2016.2534258
10.1016/j.ymssp.2015.10.025
10.1126/science.1242072
10.1007/s11277-018-5466-2
10.1016/j.jpowsour.2018.03.015
10.1007/s12205-018-1244-7
10.1038/s41560-019-0356-8
10.1149/2.0411904jes
10.1002/cem.2912
10.1016/j.microrel.2017.02.002
10.1109/TIFS.2019.2908481
10.1149/2.026302jes
10.1016/j.jpowsour.2016.07.065
10.1109/TIFS.2015.2493888
10.1109/TIE.2013.2279374
10.1038/s41560-018-0107-2
10.1016/j.jpowsour.2017.05.004
10.1109/TVT.2018.2805189
10.1016/j.apenergy.2020.114817
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Apr 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 2021
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2020.107396
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2020_107396
S0951832020308838
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-1293da1c8e865d3dc3054bd71ba287d8b9b95f5f6d3cff7c846d4e30fb00e6c23
ISICitedReferencesCount 125
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613176700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 06:09:53 EDT 2025
Sat Nov 29 07:07:49 EST 2025
Tue Nov 18 21:21:04 EST 2025
Fri Feb 23 02:45:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Life prediction
Lithium-ion battery
LSTM
Stacked denoising autoencoder
DAE
SVM
RMSE
SOH
BP
Deep learning
MAE
CFS
Clustering by fast search
SDAE
RF
SAE
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-1293da1c8e865d3dc3054bd71ba287d8b9b95f5f6d3cff7c846d4e30fb00e6c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2502228198
PQPubID 2045406
ParticipantIDs proquest_journals_2502228198
crossref_primary_10_1016_j_ress_2020_107396
crossref_citationtrail_10_1016_j_ress_2020_107396
elsevier_sciencedirect_doi_10_1016_j_ress_2020_107396
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yang, Wang, Zhao, Tsui, Bae (bib0005) 2018; 145
Dong (bib47) 2020
Nuhic, Terzimehic, Soczka-Guth, Buchholz, Dietmayer (bib0014) 2013; 239
Rodriguez, Laio (bib0034) 2014; 344
Xiang, Chen (bib0032) 2018; 103
Lv, Wen, Liu, Bao (bib0030) 2017; 31
Yang, Song, Dong, Tsui (bib0008) 2019; 171
Cheng, Song, Wang, Lu, Zerhouni (bib0018) 2020; 266
Dai, Cai, White (bib0007) 2013; 160
Kong (bib41) 2019; 14
Yang, Wang, Xin, Tsui (bib0004) 2017; 70
Zhou, Huang, Chen, Tao (bib0016) 2016; 321
Cheng, Zerhouni, Lu (bib0006) 2018; 43
Wang, Yang, Tsui, Zhou, Bae (bib0009) 2016; 65
Yu (bib0013) 2018; 174
Lai (bib38) 2020; 11
Dong (bib44) 2020
Huang (bib46) 2019
Lai (bib39) 2021; 17
Wang, Zhang, Chen (bib0031) 2017; 32
Kong (bib40) 2016; 11
Xu, Peter, Tse (bib0036) 2018; 73
Peng, Lu, Xie, Liu, Liao (bib0015) 2016
Liu, Zhou, Liao, Peng, Peng (bib0017) 2015; 45
Severson, Attia, Jin, Perkins, Jiang (bib0023) 2019; 4
Richardson, Osborne, Howey (bib0010) 2017; 357
Schmuch, Wagner, Hörpel, Placke, Winter (bib0003) 2018; 3
Kong (bib42) 2021
Lu, Wang, Qin, Ma (bib0027) 2017; 130
Lin, Liang, Chen (bib0011) 2013; 9
Lai (bib37) 2019; 15
Hu, Jiang, Cao, Egardt (bib0001) 2016; 63
Wu (bib43) 2019
Zhang, Rui Xiong, He, Pecht (bib0026) 2018; 67
Feng, Lei, Lin, Zhou, Lu (bib0024) 2016; 72-73
Kashkooli, Fathiannasab, Mao, Chen (bib0021) 2019; 166
Vincent, Larochelle, Lajoie (bib0028) 2010; 11
Yang, Zhang, Pan, Wang, Chen (bib0012) 2018; 384
Wu, Wang, Zhang, Chen (bib0020) 2016; 327
Zhang, Sun, Li, Cabera, Long, Bai (bib0022) 2019
Khumprom, Yodo (bib0025) 2019
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0029) 2008
Tang (bib45) 2019; 259
Wen, Cong, Zhang, Lu, Li (bib0033) 2018; 34
Mohsen, Vie, Ulleberg (bib0019) 2018
Gao, Chen, Zhou, Niu, Liu (bib0035) 2019; 23
Lu, Sun, Guerrero, Vasquez, Huang (bib0002) 2014; 61
Yang (10.1016/j.ress.2020.107396_bib0005) 2018; 145
Khumprom (10.1016/j.ress.2020.107396_bib0025) 2019
Dong (10.1016/j.ress.2020.107396_bib47) 2020
Wu (10.1016/j.ress.2020.107396_bib0020) 2016; 327
Wang (10.1016/j.ress.2020.107396_bib0009) 2016; 65
Lai (10.1016/j.ress.2020.107396_bib39) 2021; 17
Xu (10.1016/j.ress.2020.107396_bib0036) 2018; 73
Cheng (10.1016/j.ress.2020.107396_bib0018) 2020; 266
Nuhic (10.1016/j.ress.2020.107396_bib0014) 2013; 239
Wang (10.1016/j.ress.2020.107396_bib0031) 2017; 32
Xiang (10.1016/j.ress.2020.107396_bib0032) 2018; 103
Feng (10.1016/j.ress.2020.107396_bib0024) 2016; 72-73
Lai (10.1016/j.ress.2020.107396_bib37) 2019; 15
Yang (10.1016/j.ress.2020.107396_bib0008) 2019; 171
Severson (10.1016/j.ress.2020.107396_bib0023) 2019; 4
Richardson (10.1016/j.ress.2020.107396_bib0010) 2017; 357
Dong (10.1016/j.ress.2020.107396_bib44) 2020
Wen (10.1016/j.ress.2020.107396_bib0033) 2018; 34
Huang (10.1016/j.ress.2020.107396_bib46) 2019
Hu (10.1016/j.ress.2020.107396_bib0001) 2016; 63
Zhang (10.1016/j.ress.2020.107396_bib0026) 2018; 67
Vincent (10.1016/j.ress.2020.107396_bib0028) 2010; 11
Lai (10.1016/j.ress.2020.107396_bib38) 2020; 11
Peng (10.1016/j.ress.2020.107396_bib0015) 2016
Yu (10.1016/j.ress.2020.107396_bib0013) 2018; 174
Gao (10.1016/j.ress.2020.107396_bib0035) 2019; 23
Kashkooli (10.1016/j.ress.2020.107396_bib0021) 2019; 166
Kong (10.1016/j.ress.2020.107396_bib41) 2019; 14
Kong (10.1016/j.ress.2020.107396_bib42) 2021
Liu (10.1016/j.ress.2020.107396_bib0017) 2015; 45
Lu (10.1016/j.ress.2020.107396_bib0002) 2014; 61
Kong (10.1016/j.ress.2020.107396_bib40) 2016; 11
Cheng (10.1016/j.ress.2020.107396_bib0006) 2018; 43
Zhang (10.1016/j.ress.2020.107396_bib0022) 2019
Lv (10.1016/j.ress.2020.107396_bib0030) 2017; 31
Lin (10.1016/j.ress.2020.107396_bib0011) 2013; 9
Mohsen (10.1016/j.ress.2020.107396_bib0019) 2018
Yang (10.1016/j.ress.2020.107396_bib0004) 2017; 70
Zhou (10.1016/j.ress.2020.107396_bib0016) 2016; 321
Schmuch (10.1016/j.ress.2020.107396_bib0003) 2018; 3
Wu (10.1016/j.ress.2020.107396_bib43) 2019
Vincent (10.1016/j.ress.2020.107396_bib0029) 2008
Lu (10.1016/j.ress.2020.107396_bib0027) 2017; 130
Tang (10.1016/j.ress.2020.107396_bib45) 2019; 259
Rodriguez (10.1016/j.ress.2020.107396_bib0034) 2014; 344
Dai (10.1016/j.ress.2020.107396_bib0007) 2013; 160
Yang (10.1016/j.ress.2020.107396_bib0012) 2018; 384
References_xml – volume: 70
  start-page: 70
  year: 2017
  end-page: 78
  ident: bib0004
  article-title: Prognostics of Li(NiMnCo)O
  publication-title: Microelectron Reliab
– year: 2016
  ident: bib0015
  article-title: Lithium-ion battery remaining useful life estimation based on ensemble learning with LS-SVM algorithm
  publication-title: Adv Battery Manuf Serv Manage Syst
– volume: 14
  start-page: 3151
  year: 2019
  end-page: 3159
  ident: bib41
  article-title: Robust Beamforming and Jamming for Enhancing the Physical Layer Security of Full Duplex Radios
  publication-title: IEEE Transactions on Information Forensics and Security
– start-page: 1
  year: 2019
  end-page: 11
  ident: bib46
  article-title: Convolutional Gated Recurrent Unit–Recurrent Neural Network for State-of-Charge Estimation of Lithium-Ion Batteries
  publication-title: IEEE Access
– volume: 72-73
  start-page: 303
  year: 2016
  end-page: 315
  ident: bib0024
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech Syst Signal Process
– volume: 384
  start-page: 387
  year: 2018
  end-page: 395
  ident: bib0012
  article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
  publication-title: J Power Sources
– volume: 239
  start-page: 680
  year: 2013
  end-page: 688
  ident: bib0014
  article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods
  publication-title: J Power Sources
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib0028
  article-title: Stacked de-noising auto-encoders: learning useful representations in a deep network with a local de-noising criterion
  publication-title: J Mach Learn Res
– volume: 34
  start-page: 3781
  year: 2018
  end-page: 3787
  ident: bib0033
  article-title: DeepMirTar: a deep-learning approach for predicting human miRNA targets
  publication-title: Bioinformatics
– volume: 23
  start-page: 556
  year: 2019
  end-page: 566
  ident: bib0035
  article-title: A fast clustering method for identifying rock discontinuity sets
  publication-title: KSCE J Civ Eng
– year: 2019
  ident: bib0022
  article-title: Deep hybrid state network with feature reinforcement for intelligent fault diagnosis of delta 3D printers
  publication-title: IEEE Trans Ind Inform
– volume: 130
  start-page: 377
  year: 2017
  end-page: 388
  ident: bib0027
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process
– volume: 11
  start-page: 2746
  year: 2020
  end-page: 2759
  ident: bib38
  article-title: Stochastic distributed secondary control for ac microgrids via event-triggered communication
  publication-title: IEEE Trans Smart Grid
– volume: 145
  start-page: 486
  year: 2018
  end-page: 495
  ident: bib0005
  article-title: A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries
  publication-title: Energy
– volume: 321
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0016
  article-title: A novel health indicator for on-line lithium-ion batteries remaining useful life prediction
  publication-title: J Power Sources
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib0029
  article-title: Extracting and composing robust features with de-noising auto-encoders
  publication-title: Int Conf
– volume: 61
  start-page: 2804
  year: 2014
  end-page: 2815
  ident: bib0002
  article-title: State-of charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications
  publication-title: IEEE Trans Ind Electron
– volume: 43
  start-page: 12314
  year: 2018
  end-page: 12327
  ident: bib0006
  article-title: A hybrid remaining useful life prognostic method for proton exchange membrane fuel cell
  publication-title: Int J Hydrog Energy
– volume: 32
  start-page: 2645
  year: 2017
  end-page: 2656
  ident: bib0031
  article-title: Short-term electricity price forecasting with stacked denoising autoencoders
  publication-title: IEEE Trans Power Syst
– volume: 171
  start-page: 1173
  year: 2019
  end-page: 1182
  ident: bib0008
  article-title: A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries
  publication-title: Energy
– volume: 174
  start-page: 82
  year: 2018
  end-page: 95
  ident: bib0013
  article-title: State of health prediction of lithium-ion batteries: multiscale logic regression and Gaussian process regression ensemble
  publication-title: Reliab Eng Syst Saf
– volume: 63
  start-page: 2645
  year: 2016
  end-page: 2656
  ident: bib0001
  article-title: Battery health prognosis for electric vehicles using sample entropy and sparse bayesian predictive modeling
  publication-title: IEEE Trans. Ind Electron
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0025
  article-title: Data-driven prognostic model of Li-ion battery with deep learning algorithm
  publication-title: 2019 Annual reliability and maintainability symposium (RAMS)
– volume: 259
  year: 2019
  ident: bib45
  article-title: Suppressionstrategy of short-term and long-term environmental disturbances formaritime photovoltaic system
  publication-title: Appl Energy
– volume: 65
  start-page: 1282
  year: 2016
  end-page: 1291
  ident: bib0009
  article-title: Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter
  publication-title: IEEE Trans Instrum Meas
– volume: 103
  start-page: 625
  year: 2018
  end-page: 638
  ident: bib0032
  article-title: Traffic state estimation of signalized intersections based on stacked denoising auto-encoder model
  publication-title: Wirel Personal Commun
– volume: 15
  start-page: 5906
  year: 2019
  end-page: 5918
  ident: bib37
  article-title: Cluster-oriented distributed cooperative control for multiple ac microgrids
  publication-title: IEEE Trans Ind Infor
– volume: 166
  start-page: A605
  year: 2019
  end-page: A615
  ident: bib0021
  article-title: Application of artificial intelligence to state of charge and state-of-health estimation of calendar-aged lithium-ion pouch cells
  publication-title: J Electrochem Soc
– volume: 11
  year: 2016
  ident: bib40
  article-title: Iterative Distributed Minimum Total MSE Approach for Secure Communications in MIMO Interference Channels
  publication-title: IEEE Transactions on Information Forensics and Security
– year: 2021
  ident: bib42
  article-title: Precoder Design for Securing Cognitive Millimeter Wave Networks
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 266
  year: 2020
  ident: bib0018
  article-title: An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation
  publication-title: Appl Energy
– volume: 3
  start-page: 267
  year: 2018
  end-page: 278
  ident: bib0003
  article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries
  publication-title: Nat Energy
– volume: 17
  start-page: 219
  year: 2021
  end-page: 229
  ident: bib39
  article-title: Nonlinear mean-square power sharing control for ac microgrids under distributed event detection
  publication-title: IEEE Trans Ind Infor
– volume: 4
  start-page: 383
  year: 2019
  end-page: 391
  ident: bib0023
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat Energy
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: bib0034
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 67
  start-page: 5695
  year: 2018
  end-page: 5705
  ident: bib0026
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans Veh Technol
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0019
  article-title: Cycling lifetime prediction model for lithium-ion batteries based on artificial neural networks
  publication-title: 2018 IEEE PES innovative smart grid technologies conference europe (ISGT-Europe)
– year: 2020
  ident: bib47
  article-title: A Framework for Modeling and Structural Vulnerability Analysis of Spatial Cyber-Physical Power Systems From an Attack–Defense Perspective
  publication-title: IEEE Syst J
– volume: 9
  start-page: 679
  year: 2013
  end-page: 685
  ident: bib0011
  article-title: Estimation of battery state of health using probabilistic neural network
  publication-title: IEEE Trans Ind Inform
– volume: 45
  start-page: 915
  year: 2015
  end-page: 928
  ident: bib0017
  article-title: A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics
  publication-title: IEEE Trans Syst Man Cybern
– volume: 73
  start-page: 898
  year: 2018
  end-page: 913
  ident: bib0036
  article-title: Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath-Geva clustering algorithm without principal component analysis and data label
  publication-title: Appl Soft Comput
– volume: 160
  start-page: A182
  year: 2013
  end-page: A190
  ident: bib0007
  article-title: Capacity fade model for spinel LiMn
  publication-title: J Electrochem Soc
– volume: 327
  start-page: 457
  year: 2016
  end-page: 464
  ident: bib0020
  article-title: A novel state of health estimation method of Li-ion battery using group method of data handling
  publication-title: J Power Sources
– start-page: 1
  year: 2020
  end-page: 12
  ident: bib44
  article-title: Improving the robustness of spatial networks by link addition: more and dispersed links perform better
  publication-title: Nonlinear Dynamics
– volume: 31
  start-page: 1
  year: 2017
  end-page: 16
  ident: bib0030
  article-title: Weighted time series fault diagnosis based on a stacked sparse auto-encoder
  publication-title: J Chemom
– year: 2019
  ident: bib43
  article-title: Crowdsourcing model for energy efficiencyretrofit and mixed-integer equilibrium analysis
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 357
  start-page: 209
  year: 2017
  end-page: 219
  ident: bib0010
  article-title: Gaussian process regression for forecasting battery state of health
  publication-title: J Power Sources
– start-page: 1
  year: 2020
  ident: 10.1016/j.ress.2020.107396_bib44
  article-title: Improving the robustness of spatial networks by link addition: more and dispersed links perform better
  publication-title: Nonlinear Dynamics
– volume: 174
  start-page: 82
  year: 2018
  ident: 10.1016/j.ress.2020.107396_bib0013
  article-title: State of health prediction of lithium-ion batteries: multiscale logic regression and Gaussian process regression ensemble
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.02.022
– volume: 145
  start-page: 486
  year: 2018
  ident: 10.1016/j.ress.2020.107396_bib0005
  article-title: A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.144
– volume: 32
  start-page: 2645
  issue: 4
  year: 2017
  ident: 10.1016/j.ress.2020.107396_bib0031
  article-title: Short-term electricity price forecasting with stacked denoising autoencoders
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2016.2628873
– volume: 73
  start-page: 898
  year: 2018
  ident: 10.1016/j.ress.2020.107396_bib0036
  article-title: Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath-Geva clustering algorithm without principal component analysis and data label
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.09.037
– start-page: 1
  year: 2018
  ident: 10.1016/j.ress.2020.107396_bib0019
  article-title: Cycling lifetime prediction model for lithium-ion batteries based on artificial neural networks
– start-page: 1096
  year: 2008
  ident: 10.1016/j.ress.2020.107396_bib0029
  article-title: Extracting and composing robust features with de-noising auto-encoders
  publication-title: Int Conf
– volume: 43
  start-page: 12314
  issue: 27
  year: 2018
  ident: 10.1016/j.ress.2020.107396_bib0006
  article-title: A hybrid remaining useful life prognostic method for proton exchange membrane fuel cell
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2018.04.160
– volume: 171
  start-page: 1173
  year: 2019
  ident: 10.1016/j.ress.2020.107396_bib0008
  article-title: A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.083
– volume: 17
  start-page: 219
  issue: 1
  year: 2021
  ident: 10.1016/j.ress.2020.107396_bib39
  article-title: Nonlinear mean-square power sharing control for ac microgrids under distributed event detection
  publication-title: IEEE Trans Ind Infor
– year: 2021
  ident: 10.1016/j.ress.2020.107396_bib42
  article-title: Precoder Design for Securing Cognitive Millimeter Wave Networks
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2020.3039697
– volume: 321
  start-page: 1
  year: 2016
  ident: 10.1016/j.ress.2020.107396_bib0016
  article-title: A novel health indicator for on-line lithium-ion batteries remaining useful life prediction
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.04.119
– volume: 9
  start-page: 679
  issue: 2
  year: 2013
  ident: 10.1016/j.ress.2020.107396_bib0011
  article-title: Estimation of battery state of health using probabilistic neural network
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2012.2222650
– volume: 45
  start-page: 915
  issue: 6
  year: 2015
  ident: 10.1016/j.ress.2020.107396_bib0017
  article-title: A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.2015.2389757
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.ress.2020.107396_bib0028
  article-title: Stacked de-noising auto-encoders: learning useful representations in a deep network with a local de-noising criterion
  publication-title: J Mach Learn Res
– start-page: 1
  year: 2019
  ident: 10.1016/j.ress.2020.107396_bib0025
  article-title: Data-driven prognostic model of Li-ion battery with deep learning algorithm
– volume: 130
  start-page: 377
  year: 2017
  ident: 10.1016/j.ress.2020.107396_bib0027
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2016.07.028
– volume: 239
  start-page: 680
  year: 2013
  ident: 10.1016/j.ress.2020.107396_bib0014
  article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.11.146
– start-page: 1
  year: 2019
  ident: 10.1016/j.ress.2020.107396_bib46
  article-title: Convolutional Gated Recurrent Unit–Recurrent Neural Network for State-of-Charge Estimation of Lithium-Ion Batteries
  publication-title: IEEE Access
– volume: 34
  start-page: 3781
  issue: 22
  year: 2018
  ident: 10.1016/j.ress.2020.107396_bib0033
  article-title: DeepMirTar: a deep-learning approach for predicting human miRNA targets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty424
– volume: 65
  start-page: 1282
  issue: 6
  year: 2016
  ident: 10.1016/j.ress.2020.107396_bib0009
  article-title: Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2016.2534258
– volume: 72-73
  start-page: 303
  year: 2016
  ident: 10.1016/j.ress.2020.107396_bib0024
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.10.025
– volume: 259
  year: 2019
  ident: 10.1016/j.ress.2020.107396_bib45
  article-title: Suppressionstrategy of short-term and long-term environmental disturbances formaritime photovoltaic system
  publication-title: Appl Energy
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.ress.2020.107396_bib0034
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– year: 2020
  ident: 10.1016/j.ress.2020.107396_bib47
  article-title: A Framework for Modeling and Structural Vulnerability Analysis of Spatial Cyber-Physical Power Systems From an Attack–Defense Perspective
  publication-title: IEEE Syst J
– year: 2016
  ident: 10.1016/j.ress.2020.107396_bib0015
  article-title: Lithium-ion battery remaining useful life estimation based on ensemble learning with LS-SVM algorithm
  publication-title: Adv Battery Manuf Serv Manage Syst
– volume: 103
  start-page: 625
  issue: 1
  year: 2018
  ident: 10.1016/j.ress.2020.107396_bib0032
  article-title: Traffic state estimation of signalized intersections based on stacked denoising auto-encoder model
  publication-title: Wirel Personal Commun
  doi: 10.1007/s11277-018-5466-2
– year: 2019
  ident: 10.1016/j.ress.2020.107396_bib43
  article-title: Crowdsourcing model for energy efficiencyretrofit and mixed-integer equilibrium analysis
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 384
  start-page: 387
  year: 2018
  ident: 10.1016/j.ress.2020.107396_bib0012
  article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.03.015
– volume: 23
  start-page: 556
  issue: 2
  year: 2019
  ident: 10.1016/j.ress.2020.107396_bib0035
  article-title: A fast clustering method for identifying rock discontinuity sets
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-018-1244-7
– volume: 4
  start-page: 383
  year: 2019
  ident: 10.1016/j.ress.2020.107396_bib0023
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0356-8
– volume: 11
  start-page: 2746
  issue: 4
  year: 2020
  ident: 10.1016/j.ress.2020.107396_bib38
  article-title: Stochastic distributed secondary control for ac microgrids via event-triggered communication
  publication-title: IEEE Trans Smart Grid
– volume: 166
  start-page: A605
  year: 2019
  ident: 10.1016/j.ress.2020.107396_bib0021
  article-title: Application of artificial intelligence to state of charge and state-of-health estimation of calendar-aged lithium-ion pouch cells
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0411904jes
– volume: 31
  start-page: 1
  issue: 9
  year: 2017
  ident: 10.1016/j.ress.2020.107396_bib0030
  article-title: Weighted time series fault diagnosis based on a stacked sparse auto-encoder
  publication-title: J Chemom
  doi: 10.1002/cem.2912
– volume: 70
  start-page: 70
  year: 2017
  ident: 10.1016/j.ress.2020.107396_bib0004
  article-title: Prognostics of Li(NiMnCo)O2-based lithium-ion batteries using a novel battery degradation model
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2017.02.002
– volume: 14
  start-page: 3151
  issue: 12
  year: 2019
  ident: 10.1016/j.ress.2020.107396_bib41
  article-title: Robust Beamforming and Jamming for Enhancing the Physical Layer Security of Full Duplex Radios
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2019.2908481
– volume: 160
  start-page: A182
  issue: 1
  year: 2013
  ident: 10.1016/j.ress.2020.107396_bib0007
  article-title: Capacity fade model for spinel LiMn2O4 electrode
  publication-title: J Electrochem Soc
  doi: 10.1149/2.026302jes
– volume: 327
  start-page: 457
  year: 2016
  ident: 10.1016/j.ress.2020.107396_bib0020
  article-title: A novel state of health estimation method of Li-ion battery using group method of data handling
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.07.065
– volume: 11
  issue: 3
  year: 2016
  ident: 10.1016/j.ress.2020.107396_bib40
  article-title: Iterative Distributed Minimum Total MSE Approach for Secure Communications in MIMO Interference Channels
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2015.2493888
– volume: 61
  start-page: 2804
  issue: 6
  year: 2014
  ident: 10.1016/j.ress.2020.107396_bib0002
  article-title: State-of charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2013.2279374
– volume: 15
  start-page: 5906
  issue: 11
  year: 2019
  ident: 10.1016/j.ress.2020.107396_bib37
  article-title: Cluster-oriented distributed cooperative control for multiple ac microgrids
  publication-title: IEEE Trans Ind Infor
– volume: 3
  start-page: 267
  year: 2018
  ident: 10.1016/j.ress.2020.107396_bib0003
  article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries
  publication-title: Nat Energy
  doi: 10.1038/s41560-018-0107-2
– volume: 63
  start-page: 2645
  issue: 4
  year: 2016
  ident: 10.1016/j.ress.2020.107396_bib0001
  article-title: Battery health prognosis for electric vehicles using sample entropy and sparse bayesian predictive modeling
  publication-title: IEEE Trans. Ind Electron
– volume: 357
  start-page: 209
  year: 2017
  ident: 10.1016/j.ress.2020.107396_bib0010
  article-title: Gaussian process regression for forecasting battery state of health
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.05.004
– volume: 67
  start-page: 5695
  issue: 7
  year: 2018
  ident: 10.1016/j.ress.2020.107396_bib0026
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2018.2805189
– volume: 266
  year: 2020
  ident: 10.1016/j.ress.2020.107396_bib0018
  article-title: An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114817
– year: 2019
  ident: 10.1016/j.ress.2020.107396_bib0022
  article-title: Deep hybrid state network with feature reinforcement for intelligent fault diagnosis of delta 3D printers
  publication-title: IEEE Trans Ind Inform
SSID ssj0004957
Score 2.6199908
Snippet •Introduce the CFS clustering model for feature selection.•Using the SDAE for life prediction at early life stage.•Extracting the original features using...
Accurate life prediction of lithium-ion batteries is important to help assess battery quality in advance, improve long-term battery planning, and subsequently...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107396
SubjectTerms Battery cycles
Clustering
Clustering by fast search
Computer architecture
Deep learning
Feature extraction
Life cycles
Life prediction
Lithium
Lithium-ion batteries
Lithium-ion battery
Noise reduction
Predictions
Product safety
Quality assessment
Rechargeable batteries
Reliability engineering
Stacked denoising autoencoder
Title Life prediction of lithium-ion batteries based on stacked denoising autoencoders
URI https://dx.doi.org/10.1016/j.ress.2020.107396
https://www.proquest.com/docview/2502228198
Volume 208
WOSCitedRecordID wos000613176700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWg5QAHxKfaUpAP3KKgxEk29rFCRaWqqkoUaekl8ifdqs1W3Q1q_z0ztrOJFlEBEpdo15vEK8_z-Hk8fibkveVF5qzlqZWZS8uSqVQKxdLMZU4LJ2tTGn_YRH18zKdTcRJThxb-OIG6bfntrbj-r6aGMjA2bp39C3OvXgoF8BmMDlcwO1z_yPBHM4ebn3ABpmeDQLXPZ91Vil-VF9SE-XGCA5jBxQIgiNCXTQIuaD7zsQPZLeeocGlifnxPXzGBOQh73yV2UDL0-Ama0MlCuigtgnacdp4dDxD8FuPTUPTdyThseirq0wrOMDN1KD3o4u1n57hvfhyiYPkos8XHzfq9M0OiUghA5in4k7AqY4P75bXwetlj_8y88MOvvj6EHS4-YFgCJvoMi-pCrAlr-6H6C1aGdTGU5-EFf0g2WV0JcIObe5_3p4fDVloRxGH7Pxf3WYWUwPWafsdl1kZ1T1VOn5GncY5B9wI2npMHtn1BnoyUJ1-SE0QJHVBC546OUEJXKKEeJRSKIkroCiV0jJJX5Oun_dOPB2k8XCPVBePLFHmekbnmlk8qUxgNjr9Ups6VhEm04UooUbnKTUyhnas18FRTWujY4KftRLPiNdlo563dIrSyQspcAZeVZSmYVVnpcqVhMp9bB5R3m-R9MzU6Ks_jASiXTZ9ieNFg0zbYtE1o2m2SrJ65Dror995d9a3fROYYGGEDYLn3ud3eVE3swvB7hUEQYMp85x9f-4Y8HrrBLtlY3nT2LXmkfyxni5t3EXI_ARk_n48
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+prediction+of+lithium-ion+batteries+based+on+stacked+denoising+autoencoders&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Xu%2C+Fan&rft.au=Yang%2C+Fangfang&rft.au=Fei%2C+Zicheng&rft.au=Huang%2C+Zhelin&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=208&rft_id=info:doi/10.1016%2Fj.ress.2020.107396&rft.externalDocID=S0951832020308838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon