Comparison Fletcher-Reeves and Polak-Ribiere ANN Algorithm for Forecasting Analysis

Each method and algorithm ANN has different performances depending on the algorithm used and the parameters given. The purpose of this research is to obtain the best algorithm information from the two algorithms that will be compared based on the performance value or the smallest / lowest MSE value...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series Vol. 2394; no. 1; pp. 12008 - 12013
Main Authors: Hasibuan, Eka Hayana, Hendraputra, Surya, Achmad Daengs, GS, Saragih, Liharman
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.12.2022
Subjects:
ISSN:1742-6588, 1742-6596
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Each method and algorithm ANN has different performances depending on the algorithm used and the parameters given. The purpose of this research is to obtain the best algorithm information from the two algorithms that will be compared based on the performance value or the smallest / lowest MSE value so that it can be used as a reference and information for solving forecasting problems. The ANN algorithms compared were Conjugate Gradient Fletcher-Reeves and Conjugate Gradient Polak-Ribiere. The conjugate gradient algorithm can solve unlimited optimization problems and is much more efficient than gradient descent-based algorithms because of its faster turnaround time and less iteration. The research data used for the forecasting analysis of the two algorithms are data on the number of rural poor people in Sumatra, Indonesia. 6-10-1, 6-15-1, and 6-20-1 architectural analysis. The results showed that the Polak-Ribiere Conjugate Gradient algorithm with the 6-10-1 architecture has the best performance results and the smallest / lowest MSE value compared to the Fletcher-Reeves algorithm and two other architectures. So it can be concluded that the 6-10-1 architectural architecture with the Conjugate Gradient Polak-Ribiere algorithm can be used to solve forecasting problems because the training time to achieve convergence is not too long, and the resulting performance is quite good.
AbstractList Each method and algorithm ANN has different performances depending on the algorithm used and the parameters given. The purpose of this research is to obtain the best algorithm information from the two algorithms that will be compared based on the performance value or the smallest / lowest MSE value so that it can be used as a reference and information for solving forecasting problems. The ANN algorithms compared were Conjugate Gradient Fletcher-Reeves and Conjugate Gradient Polak-Ribiere. The conjugate gradient algorithm can solve unlimited optimization problems and is much more efficient than gradient descent-based algorithms because of its faster turnaround time and less iteration. The research data used for the forecasting analysis of the two algorithms are data on the number of rural poor people in Sumatra, Indonesia. 6-10-1, 6-15-1, and 6-20-1 architectural analysis. The results showed that the Polak-Ribiere Conjugate Gradient algorithm with the 6-10-1 architecture has the best performance results and the smallest / lowest MSE value compared to the Fletcher-Reeves algorithm and two other architectures. So it can be concluded that the 6-10-1 architectural architecture with the Conjugate Gradient Polak-Ribiere algorithm can be used to solve forecasting problems because the training time to achieve convergence is not too long, and the resulting performance is quite good.
Author Hasibuan, Eka Hayana
Achmad Daengs, GS
Hendraputra, Surya
Saragih, Liharman
Author_xml – sequence: 1
  givenname: Eka Hayana
  surname: Hasibuan
  fullname: Hasibuan, Eka Hayana
  organization: Universitas Battuta , Indonesia
– sequence: 2
  givenname: Surya
  surname: Hendraputra
  fullname: Hendraputra, Surya
  organization: Politeknik Ganesha , Indonesia
– sequence: 3
  givenname: GS
  surname: Achmad Daengs
  fullname: Achmad Daengs, GS
  organization: Universitas 45 Surabaya , Indonesia
– sequence: 4
  givenname: Liharman
  surname: Saragih
  fullname: Saragih, Liharman
  organization: Universitas Simalungun , Indonesia
BookMark eNqNkFtLwzAUx4MouE0_gwXfhNpcekkffCjDeWHMselzSNJ0y-yamnTCvr0tlYki6Hk5B87_fy6_ITiuTKUAuEDwGkFKA5SE2I-jNA4wScMABRBhCOkRGBw6x4ea0lMwdG4DIWkjGYDl2GxrbrUzlTcpVSPXyvoLpd6V83iVe3NT8ld_oYVWVnnZbOZl5cpY3ay3XmGsNzFWSe4aXa28rOLl3ml3Bk4KXjp1_plH4GVy-zy-96dPdw_jbOpLgin1c0GwIkkY5lgpKCCOcU5TKUKE0yQtaAhVIXhOC4kFF4SKSEqaiwIncQQJKsgIXPZza2vedso1bGN2tj3CMZxElNAwwbBV3fQqaY1zVhVM6oY32lSN5bpkCLKOI-sIsY4W6zgyxHqOrT_54a-t3nK7_4fzqndqU3-d9jgfL78LWZ13z5BfxH-t-AD4s5Ts
CitedBy_id crossref_primary_10_1016_j_rineng_2025_106818
Cites_doi 10.1088/1742-6596/930/1/012018
10.1016/j.measurement.2018.08.052
10.1038/s41567-019-0554-0
10.1088/1742-6596/1255/1/012023
10.1016/j.neucom.2020.07.061
10.1038/s41567-019-0648-8
10.1007/s00521-020-05131-y
10.1088/1742-6596/1255/1/012013
10.1007/s10462-019-09738-z
10.3390/app8020228
10.3390/electronics9122193
10.1038/s42256-020-0146-9
10.1088/1757-899X/835/1/012055
10.1088/1742-6596/1255/1/012043
10.3934/jimo.2018149
10.1088/1742-6596/1255/1/012003
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2394/1/012008
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2394_1_012008
JPCS_2394_1_012008
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3288-db32e3744d2ee0b0262d89cb412979f840efbad8fc2bab38b5cc8dbf2765031f3
IEDL.DBID P5Z
ISSN 1742-6588
IngestDate Sun Nov 09 08:22:46 EST 2025
Tue Nov 18 21:41:33 EST 2025
Sat Nov 29 02:51:26 EST 2025
Wed Aug 21 03:32:04 EDT 2024
Wed Dec 28 05:30:59 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3288-db32e3744d2ee0b0262d89cb412979f840efbad8fc2bab38b5cc8dbf2765031f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2758384720?pq-origsite=%requestingapplication%
PQID 2758384720
PQPubID 4998668
PageCount 6
ParticipantIDs proquest_journals_2758384720
crossref_citationtrail_10_1088_1742_6596_2394_1_012008
crossref_primary_10_1088_1742_6596_2394_1_012008
iop_journals_10_1088_1742_6596_2394_1_012008
PublicationCentury 2000
PublicationDate 20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221201
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Yang (JPCS_2394_1_012008bib11) 2020; 415
Tinambunan (JPCS_2394_1_012008bib18) 2020; 835
Chen (JPCS_2394_1_012008bib7) 2020; 7
Yan (JPCS_2394_1_012008bib10) 2020; 53
Dolara (JPCS_2394_1_012008bib1) 2018; 8
Wang (JPCS_2394_1_012008bib2) 2021
Wanto (JPCS_2394_1_012008bib15) 2017; 930
Li (JPCS_2394_1_012008bib17) 2020; 16
Cong (JPCS_2394_1_012008bib3) 2019; 15
García-Ródenas (JPCS_2394_1_012008bib9) 2020; 33
Berisha (JPCS_2394_1_012008bib12) 2014; 4
Bhawika (JPCS_2394_1_012008bib20) 2019; 1255
Siregar (JPCS_2394_1_012008bib22) 2019; 1255
Novickis (JPCS_2394_1_012008bib5) 2020; 9
Keshtegar (JPCS_2394_1_012008bib16) 2019; 131
Wahyuningsih (JPCS_2394_1_012008bib8) 2020; 14
Wanto (JPCS_2394_1_012008bib21) 2019; 1255
Statistik (JPCS_2394_1_012008bib19) 2020
Abubakar (JPCS_2394_1_012008bib14) 2019; 7
Wanto (JPCS_2394_1_012008bib24) 2019; 1255
Cichos (JPCS_2394_1_012008bib6) 2020; 2
Sormin (JPCS_2394_1_012008bib23) 2019; 1255
Mishra (JPCS_2394_1_012008bib13) 2021; 2021
Rem (JPCS_2394_1_012008bib4) 2019; 15
References_xml – volume: 930
  start-page: 1
  year: 2017
  ident: JPCS_2394_1_012008bib15
  article-title: Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves in the Predicting Process
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/930/1/012018
– volume: 14
  start-page: 1419
  year: 2020
  ident: JPCS_2394_1_012008bib8
  article-title: Scoring model using stunting cards for toddlers
  publication-title: Pakistan J. Med. Heal. Sci.
– volume: 131
  start-page: 35
  year: 2019
  ident: JPCS_2394_1_012008bib16
  article-title: A novel nonlinear modeling for the prediction of blast-induced airblast using a modified conjugate FR method
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2018.08.052
– volume: 15
  start-page: 917
  year: 2019
  ident: JPCS_2394_1_012008bib4
  article-title: Identifying quantum phase transitions using artificial neural networks on experimental data
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0554-0
– volume: 1255
  year: 2019
  ident: JPCS_2394_1_012008bib22
  article-title: Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1255/1/012023
– volume: 415
  start-page: 295
  year: 2020
  ident: JPCS_2394_1_012008bib11
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 1255
  start-page: 1
  year: 2019
  ident: JPCS_2394_1_012008bib23
  article-title: Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias
  publication-title: J. Phys. Conf. Ser.
– volume: 15
  start-page: 1273
  year: 2019
  ident: JPCS_2394_1_012008bib3
  article-title: Quantum convolutional neural networks
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0648-8
– volume: 33
  start-page: 2561
  year: 2020
  ident: JPCS_2394_1_012008bib9
  article-title: Memetic algorithms for training feedforward neural networks: an approach based on gravitational search algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05131-y
– volume: 7
  start-page: 1
  year: 2019
  ident: JPCS_2394_1_012008bib14
  article-title: A Modified Fletcher–Reeves Conjugate Gradient Method for Monotone Nonlinear Equations with Some Applications
  publication-title: Mathematics
– volume: 1255
  start-page: 1
  year: 2019
  ident: JPCS_2394_1_012008bib21
  article-title: Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of Origin
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1255/1/012013
– volume: 7
  start-page: 1
  year: 2020
  ident: JPCS_2394_1_012008bib7
  article-title: Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning
  publication-title: Adv. Sci.
– volume: 4
  start-page: 193
  year: 2014
  ident: JPCS_2394_1_012008bib12
– volume: 53
  start-page: 2453
  year: 2020
  ident: JPCS_2394_1_012008bib10
  article-title: Comparison of support vector machine, back propagation neural network and extreme learning machine for syndrome element differentiation
  publication-title: Artif Intell. Rev.
  doi: 10.1007/s10462-019-09738-z
– volume: 2021
  start-page: 1
  year: 2021
  ident: JPCS_2394_1_012008bib13
  article-title: A q-Polak-Ribiere-Polyak conjugate gradient algorithm for unconstrained optimization problems
  publication-title: J. Inequalities Appl.
– volume: 8
  year: 2018
  ident: JPCS_2394_1_012008bib1
  article-title: Comparison of training approaches for photovoltaic forecasts by means of machine learning
  publication-title: Appl. Sci.
  doi: 10.3390/app8020228
– start-page: 91
  year: 2021
  ident: JPCS_2394_1_012008bib2
– volume: 9
  start-page: 2193
  year: 2020
  ident: JPCS_2394_1_012008bib5
  article-title: An Approach of Feed-Forward Neural Network
  publication-title: Electronics
  doi: 10.3390/electronics9122193
– volume: 2
  start-page: 94
  year: 2020
  ident: JPCS_2394_1_012008bib6
  article-title: Machine learning for active matter
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0146-9
– volume: 835
  start-page: 1
  year: 2020
  ident: JPCS_2394_1_012008bib18
  article-title: Conjugate Gradient Polak Ribiere in Improving Performance in Predicting Population Backpropagation
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/835/1/012055
– volume: 1255
  start-page: 1
  year: 2019
  ident: JPCS_2394_1_012008bib20
  article-title: Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1255/1/012043
– volume: 16
  start-page: 245
  year: 2020
  ident: JPCS_2394_1_012008bib17
  article-title: A three term polak-ribiere-polyak conjugate gradient method close to the memoryless BFGS Quasi-Newton method
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2018149
– year: 2020
  ident: JPCS_2394_1_012008bib19
  article-title: Jumlah Penduduk Miskin Menurut Provinsi (Ribu Jiwa)
– volume: 1255
  start-page: 1
  year: 2019
  ident: JPCS_2394_1_012008bib24
  article-title: Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1255/1/012003
SSID ssj0033337
Score 2.327589
Snippet Each method and algorithm ANN has different performances depending on the algorithm used and the parameters given. The purpose of this research is to obtain...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12008
SubjectTerms Algorithms
Conjugate gradient method
Forecasting
Optimization
Physics
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86FXzxW5xOCeijdW3SNunjGA7xYY5NcW-h-agO5zbWub_fSz8mRUQE-9SHuza5XHK_I_eB0FWgwCyB6XICW3fWp9JzIkYChygtDQs1KJLKmk2wbpcPh1ElF2Y6K47-G3jNCwXnIiwC4ngTMDRxwiAKm7atd9Nr2vxPm--7QTlYc9DpB_pcnsYUHpYnRVomzssYr58_VLFQ6zCKb8d0Zns6u_8x6j20UyBP3Mo59tGamRygrSwCVKWHaNBedSTE5WI6fWOWJsXxROMe-MBvTn8kwY4a3Op2cWv8Mp2PFq_vGIAvtj0-VZzaKGpcVjo5Qk-d28f2nVN0XHAUJbBltKTEUOb7mhjjSvDPiOaRkj6gAhYl4AyaRMaaJ4rIWFIuA6W4lglhAPSol9BjVJtMJ-YEYZVI4ivqujFxfRUCkACkFLCEU26YlEEdhaWUhSrKkduuGGORXYtzLqzEhJWYsBITnsglVkfuinGWV-T4neUalkUUuzP9nfyyQn7faw-qFGKmkzpqlFrxRQpThAn6jLinf_vnGdomNrEiC5RpoNpi_mHO0aZaLkbp_CJT6U-t8Osc
  priority: 102
  providerName: IOP Publishing
Title Comparison Fletcher-Reeves and Polak-Ribiere ANN Algorithm for Forecasting Analysis
URI https://iopscience.iop.org/article/10.1088/1742-6596/2394/1/012008
https://www.proquest.com/docview/2758384720
Volume 2394
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-tfEi8bAOG6NZVltjjrKZ2UidPqKuKtkmEqGwa7MWKPwIVrO1I4e_fXZrA0KTxQB6dsxL5Z9-Hfb4fwIfIollC08UjqjsbStPniRIRF9YZrwYOJ5KtyCZUmsZnZ0lWb7iVdVploxMrRe3mlvbIe0LRAV-oRHC4-M2JNYpOV2sKjRasU5UEom7Iop-NJpb4qNWFSMHR0sZNfhcGfXVbMugRN3iv36NLpMQx-Zd1ak3ni39UdGV3jl49949fw8va42TD1RTZhhd-tgObVeanLXfhdHTPRMgaEPnE-ztfsnzmWIax7xWfTA3aT8-GacqG1xf4meXlL4YOLyNuT5uXlD3Nmgonb-D70fjb6DOvmRa4lQKXijNSeKnC0AnvA4NxmXBxYk2I3oBKCgwCfWFyFxdWmNzI2ETWxs4UQqGDJ_uF3IO12Xzm94HZwojQyiDIRRDaAToQ6CFFqsCh8MqYqA2DZoS1rcuQExvGta6Ow-NYEzSaoNEEje7rFTRtCO47LlaVOJ7u8hEh1PWqLJ8WP3gk_jUbnT6W0AtXtKHTwP0g-oD12_-_fgdbgi5QVAkxHVhb3tz697Bh75bT8qYL65_GaTbpQutE_uhWkxnbsi_H2fkfDL7yTg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7B0qpcSp_qtlAstb3V2qydrJNDVa0WEFsgioBK9OTGj8CqsLslC6h_qr-RcRLzUCU4cWiOyThS7M_ziGfmA_gYaTRLaLpo5PrOhlx1aSJYRJk2yoqeQSDpimxCpGl8cJBkc_DX18K4tEqvEytFbSba_SPvMOEO-ELBgq_T39SxRrnTVU-hUcNiy_65wJCt_DJcw_X9xNjG-v5gkzasAlRzhrAwijPLRRgaZm2gMAZhJk60CtHyiaTAgMcWKjdxoZnKFY9VpHVsVMEEOjO8W3B87zwshA7sLVjIhjvZD6_7OV6iLsFkFG177DPKMMxs7iW9jmMj73Q7rmzVsVresIfzo8n0H6NQWbqNpf9tjp7B08anJv16EzyHOTt-AY-r3FZdvoS9wRXXIvEwpbvWntuS5GNDMozuf9HdkUIPwZJ-mpL-8SF-1uzohKBLTxx7qc5Llx9OfA-XV_D9Qb7oNbTGk7F9A0QXioWaB0HOglD30EVCHzASBU69FUpFbej5FZW6abTu-D6OZXXgH8fSQUE6KEgHBdmVNRTaEFwNnNa9Ru4f8hkhIxu9U94v_uGW-LdssHdbQk5N0YZlD69r0Wtsvb378So82dzf2Zbbw3TrHSwyVy5Spf8sQ2t2emZX4JE-n43K0_fN5iHw86GxeAnu1k2b
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED_xLV5gfIlubLPEHglJ7SR2HqtuFWxTqGAI3qz4I1BR2qrp-Pt3zkdRhSaERJ7ycJfY57Pvd_J9AHyLNJolNF1e5OrOhky1vYTTyKPaKMtjg4qky2YTPE3F7W3SX4LePBdmPKmP_lN8rQoFVyKsA-KEjxiaenGUxL5r6-23fZf_GQh_YvJlWHXlSpx2X7Cb5kRm-PAqMdIxCtHEef3_YwtWahlH8uKoLu1Pb_u9Rv4BtmoESjoV1w4s2dEurJeRoLrYg6vuvDMhaRbVu7T2yRYkGxnSR1_4wbscKLSnlnTSlHSGd-PpYHb_SBAAE9frU2eFi6YmTcWTfbju_fjTPfPqzgueZhS3jlGMWsbD0FBrA4V-GjUi0SpEdMCTHJ1Cm6vMiFxTlSkmVKS1MCqnHAEfa-fsAFZG45E9BKJzRUPNgiCjQahjBBSImCKeCyYsVypqQdxIWuq6LLnrjjGU5fW4ENJJTTqpSSc12ZaV1FoQzBknVWWO11lOcGlkvUuL18mPF8h_9rtXixQSV64FR41mPJPiFHGCIafBx7f98yts9L_35O_z9Ncn2KQu16KMnTmCldn0r_0Ma_ppNiimX0oN_wfbyfCE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+Fletcher-Reeves+and+Polak-Ribiere+ANN+Algorithm+for+Forecasting+Analysis&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Hasibuan%2C+Eka+Hayana&rft.au=Hendraputra%2C+Surya&rft.au=GS+Achmad+Daengs&rft.au=Saragih%2C+Liharman&rft.date=2022-12-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2394&rft.issue=1&rft.spage=012008&rft_id=info:doi/10.1088%2F1742-6596%2F2394%2F1%2F012008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon