Comparison Fletcher-Reeves and Polak-Ribiere ANN Algorithm for Forecasting Analysis
Each method and algorithm ANN has different performances depending on the algorithm used and the parameters given. The purpose of this research is to obtain the best algorithm information from the two algorithms that will be compared based on the performance value or the smallest / lowest MSE value...
Uloženo v:
| Vydáno v: | Journal of physics. Conference series Ročník 2394; číslo 1; s. 12008 - 12013 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
IOP Publishing
01.12.2022
|
| Témata: | |
| ISSN: | 1742-6588, 1742-6596 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Each method and algorithm ANN has different performances depending on the algorithm used and the parameters given. The purpose of this research is to obtain the best algorithm information from the two algorithms that will be compared based on the performance value or the smallest / lowest MSE value so that it can be used as a reference and information for solving forecasting problems. The ANN algorithms compared were Conjugate Gradient Fletcher-Reeves and Conjugate Gradient Polak-Ribiere. The conjugate gradient algorithm can solve unlimited optimization problems and is much more efficient than gradient descent-based algorithms because of its faster turnaround time and less iteration. The research data used for the forecasting analysis of the two algorithms are data on the number of rural poor people in Sumatra, Indonesia. 6-10-1, 6-15-1, and 6-20-1 architectural analysis. The results showed that the Polak-Ribiere Conjugate Gradient algorithm with the 6-10-1 architecture has the best performance results and the smallest / lowest MSE value compared to the Fletcher-Reeves algorithm and two other architectures. So it can be concluded that the 6-10-1 architectural architecture with the Conjugate Gradient Polak-Ribiere algorithm can be used to solve forecasting problems because the training time to achieve convergence is not too long, and the resulting performance is quite good. |
|---|---|
| AbstractList | Each method and algorithm ANN has different performances depending on the algorithm used and the parameters given. The purpose of this research is to obtain the best algorithm information from the two algorithms that will be compared based on the performance value or the smallest / lowest MSE value so that it can be used as a reference and information for solving forecasting problems. The ANN algorithms compared were Conjugate Gradient Fletcher-Reeves and Conjugate Gradient Polak-Ribiere. The conjugate gradient algorithm can solve unlimited optimization problems and is much more efficient than gradient descent-based algorithms because of its faster turnaround time and less iteration. The research data used for the forecasting analysis of the two algorithms are data on the number of rural poor people in Sumatra, Indonesia. 6-10-1, 6-15-1, and 6-20-1 architectural analysis. The results showed that the Polak-Ribiere Conjugate Gradient algorithm with the 6-10-1 architecture has the best performance results and the smallest / lowest MSE value compared to the Fletcher-Reeves algorithm and two other architectures. So it can be concluded that the 6-10-1 architectural architecture with the Conjugate Gradient Polak-Ribiere algorithm can be used to solve forecasting problems because the training time to achieve convergence is not too long, and the resulting performance is quite good. |
| Author | Hasibuan, Eka Hayana Achmad Daengs, GS Hendraputra, Surya Saragih, Liharman |
| Author_xml | – sequence: 1 givenname: Eka Hayana surname: Hasibuan fullname: Hasibuan, Eka Hayana organization: Universitas Battuta , Indonesia – sequence: 2 givenname: Surya surname: Hendraputra fullname: Hendraputra, Surya organization: Politeknik Ganesha , Indonesia – sequence: 3 givenname: GS surname: Achmad Daengs fullname: Achmad Daengs, GS organization: Universitas 45 Surabaya , Indonesia – sequence: 4 givenname: Liharman surname: Saragih fullname: Saragih, Liharman organization: Universitas Simalungun , Indonesia |
| BookMark | eNqNkFtLwzAUx4MouE0_gwXfhNpcekkffCjDeWHMselzSNJ0y-yamnTCvr0tlYki6Hk5B87_fy6_ITiuTKUAuEDwGkFKA5SE2I-jNA4wScMABRBhCOkRGBw6x4ea0lMwdG4DIWkjGYDl2GxrbrUzlTcpVSPXyvoLpd6V83iVe3NT8ld_oYVWVnnZbOZl5cpY3ay3XmGsNzFWSe4aXa28rOLl3ml3Bk4KXjp1_plH4GVy-zy-96dPdw_jbOpLgin1c0GwIkkY5lgpKCCOcU5TKUKE0yQtaAhVIXhOC4kFF4SKSEqaiwIncQQJKsgIXPZza2vedso1bGN2tj3CMZxElNAwwbBV3fQqaY1zVhVM6oY32lSN5bpkCLKOI-sIsY4W6zgyxHqOrT_54a-t3nK7_4fzqndqU3-d9jgfL78LWZ13z5BfxH-t-AD4s5Ts |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2025_106818 |
| Cites_doi | 10.1088/1742-6596/930/1/012018 10.1016/j.measurement.2018.08.052 10.1038/s41567-019-0554-0 10.1088/1742-6596/1255/1/012023 10.1016/j.neucom.2020.07.061 10.1038/s41567-019-0648-8 10.1007/s00521-020-05131-y 10.1088/1742-6596/1255/1/012013 10.1007/s10462-019-09738-z 10.3390/app8020228 10.3390/electronics9122193 10.1038/s42256-020-0146-9 10.1088/1757-899X/835/1/012055 10.1088/1742-6596/1255/1/012043 10.3934/jimo.2018149 10.1088/1742-6596/1255/1/012003 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1088/1742-6596/2394/1/012008 |
| DatabaseName | Institute of Physics Open Access Journal Titles (WRLC) IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles (WRLC) url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_2394_1_012008 JPCS_2394_1_012008 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c3288-db32e3744d2ee0b0262d89cb412979f840efbad8fc2bab38b5cc8dbf2765031f3 |
| IEDL.DBID | O3W |
| ISSN | 1742-6588 |
| IngestDate | Sun Nov 09 08:22:46 EST 2025 Tue Nov 18 21:41:33 EST 2025 Sat Nov 29 02:51:26 EST 2025 Wed Aug 21 03:32:04 EDT 2024 Wed Dec 28 05:30:59 EST 2022 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3288-db32e3744d2ee0b0262d89cb412979f840efbad8fc2bab38b5cc8dbf2765031f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/2394/1/012008 |
| PQID | 2758384720 |
| PQPubID | 4998668 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_2758384720 crossref_citationtrail_10_1088_1742_6596_2394_1_012008 crossref_primary_10_1088_1742_6596_2394_1_012008 iop_journals_10_1088_1742_6596_2394_1_012008 |
| PublicationCentury | 2000 |
| PublicationDate | 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221201 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2022 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Yang (JPCS_2394_1_012008bib11) 2020; 415 Tinambunan (JPCS_2394_1_012008bib18) 2020; 835 Chen (JPCS_2394_1_012008bib7) 2020; 7 Yan (JPCS_2394_1_012008bib10) 2020; 53 Dolara (JPCS_2394_1_012008bib1) 2018; 8 Wang (JPCS_2394_1_012008bib2) 2021 Wanto (JPCS_2394_1_012008bib15) 2017; 930 Li (JPCS_2394_1_012008bib17) 2020; 16 Cong (JPCS_2394_1_012008bib3) 2019; 15 García-Ródenas (JPCS_2394_1_012008bib9) 2020; 33 Berisha (JPCS_2394_1_012008bib12) 2014; 4 Bhawika (JPCS_2394_1_012008bib20) 2019; 1255 Siregar (JPCS_2394_1_012008bib22) 2019; 1255 Novickis (JPCS_2394_1_012008bib5) 2020; 9 Keshtegar (JPCS_2394_1_012008bib16) 2019; 131 Wahyuningsih (JPCS_2394_1_012008bib8) 2020; 14 Wanto (JPCS_2394_1_012008bib21) 2019; 1255 Statistik (JPCS_2394_1_012008bib19) 2020 Abubakar (JPCS_2394_1_012008bib14) 2019; 7 Wanto (JPCS_2394_1_012008bib24) 2019; 1255 Cichos (JPCS_2394_1_012008bib6) 2020; 2 Sormin (JPCS_2394_1_012008bib23) 2019; 1255 Mishra (JPCS_2394_1_012008bib13) 2021; 2021 Rem (JPCS_2394_1_012008bib4) 2019; 15 |
| References_xml | – volume: 930 start-page: 1 year: 2017 ident: JPCS_2394_1_012008bib15 article-title: Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves in the Predicting Process publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/930/1/012018 – volume: 14 start-page: 1419 year: 2020 ident: JPCS_2394_1_012008bib8 article-title: Scoring model using stunting cards for toddlers publication-title: Pakistan J. Med. Heal. Sci. – volume: 131 start-page: 35 year: 2019 ident: JPCS_2394_1_012008bib16 article-title: A novel nonlinear modeling for the prediction of blast-induced airblast using a modified conjugate FR method publication-title: Meas. J. Int. Meas. Confed. doi: 10.1016/j.measurement.2018.08.052 – volume: 15 start-page: 917 year: 2019 ident: JPCS_2394_1_012008bib4 article-title: Identifying quantum phase transitions using artificial neural networks on experimental data publication-title: Nat. Phys. doi: 10.1038/s41567-019-0554-0 – volume: 1255 year: 2019 ident: JPCS_2394_1_012008bib22 article-title: Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1255/1/012023 – volume: 415 start-page: 295 year: 2020 ident: JPCS_2394_1_012008bib11 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume: 1255 start-page: 1 year: 2019 ident: JPCS_2394_1_012008bib23 article-title: Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias publication-title: J. Phys. Conf. Ser. – volume: 15 start-page: 1273 year: 2019 ident: JPCS_2394_1_012008bib3 article-title: Quantum convolutional neural networks publication-title: Nat. Phys. doi: 10.1038/s41567-019-0648-8 – volume: 33 start-page: 2561 year: 2020 ident: JPCS_2394_1_012008bib9 article-title: Memetic algorithms for training feedforward neural networks: an approach based on gravitational search algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05131-y – volume: 7 start-page: 1 year: 2019 ident: JPCS_2394_1_012008bib14 article-title: A Modified Fletcher–Reeves Conjugate Gradient Method for Monotone Nonlinear Equations with Some Applications publication-title: Mathematics – volume: 1255 start-page: 1 year: 2019 ident: JPCS_2394_1_012008bib21 article-title: Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of Origin publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1255/1/012013 – volume: 7 start-page: 1 year: 2020 ident: JPCS_2394_1_012008bib7 article-title: Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning publication-title: Adv. Sci. – volume: 4 start-page: 193 year: 2014 ident: JPCS_2394_1_012008bib12 – volume: 53 start-page: 2453 year: 2020 ident: JPCS_2394_1_012008bib10 article-title: Comparison of support vector machine, back propagation neural network and extreme learning machine for syndrome element differentiation publication-title: Artif Intell. Rev. doi: 10.1007/s10462-019-09738-z – volume: 2021 start-page: 1 year: 2021 ident: JPCS_2394_1_012008bib13 article-title: A q-Polak-Ribiere-Polyak conjugate gradient algorithm for unconstrained optimization problems publication-title: J. Inequalities Appl. – volume: 8 year: 2018 ident: JPCS_2394_1_012008bib1 article-title: Comparison of training approaches for photovoltaic forecasts by means of machine learning publication-title: Appl. Sci. doi: 10.3390/app8020228 – start-page: 91 year: 2021 ident: JPCS_2394_1_012008bib2 – volume: 9 start-page: 2193 year: 2020 ident: JPCS_2394_1_012008bib5 article-title: An Approach of Feed-Forward Neural Network publication-title: Electronics doi: 10.3390/electronics9122193 – volume: 2 start-page: 94 year: 2020 ident: JPCS_2394_1_012008bib6 article-title: Machine learning for active matter publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0146-9 – volume: 835 start-page: 1 year: 2020 ident: JPCS_2394_1_012008bib18 article-title: Conjugate Gradient Polak Ribiere in Improving Performance in Predicting Population Backpropagation publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/835/1/012055 – volume: 1255 start-page: 1 year: 2019 ident: JPCS_2394_1_012008bib20 article-title: Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1255/1/012043 – volume: 16 start-page: 245 year: 2020 ident: JPCS_2394_1_012008bib17 article-title: A three term polak-ribiere-polyak conjugate gradient method close to the memoryless BFGS Quasi-Newton method publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2018149 – year: 2020 ident: JPCS_2394_1_012008bib19 article-title: Jumlah Penduduk Miskin Menurut Provinsi (Ribu Jiwa) – volume: 1255 start-page: 1 year: 2019 ident: JPCS_2394_1_012008bib24 article-title: Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1255/1/012003 |
| SSID | ssj0033337 |
| Score | 2.3276823 |
| Snippet | Each method and algorithm ANN has different performances depending on the algorithm used and the parameters given. The purpose of this research is to obtain... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12008 |
| SubjectTerms | Algorithms Conjugate gradient method Forecasting Optimization Physics |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZ4Slx4LCDKS5bY41pNHbexT6iqQGi1qirYXaG9WLE9ZqstbSGF389MmvAQ0nIgx2SsRPk8L3s8H2NflfEphrFKoB55odouCOdQ3SMQi3SuE1Ou6f7-kfX7-vraDKoFt6Iqq6xtYmmow8TTGnlTZrTBpzKZnE7vBLFG0e5qRaGxyJapSwJRNwzaf2pLnOKVzQ9ESoGeVtf1XZj0VfdMp0nc4M1Wkw6REsfkK--0OJxM35no0u-cb3z2izfZehVx8u58imyxBRh_Yatl5acvttlV75mJkNcgikuARyh4Pg58gLnvP3E5dOg_gXf7fd4d3eBrZn9vOQa8nLg9fV5Q9TSvO5zssF_nZz97F6JiWhA-lagqwaUS0kypIAESh3mZDNp4pzAayEzEJBCiy4OOXrrcpdq1vdfBRZlhgJe2YrrLlsaTMewx7nMjY9AYJYFTMSiTdJwBAHSKgNFZ1mCd-g9bX7UhJzaMkS23w7W2BI0laCxBY1t2Dk2DJc8Dp_NOHB8P-YYQ2kori4_FT96Ifx_0rt5K2GmIDXZYw_0i-oL1_v8fH7A1SQcoyoKYQ7Y0u3-AI7biH2fD4v64nL5PwKju4A priority: 102 providerName: ProQuest |
| Title | Comparison Fletcher-Reeves and Polak-Ribiere ANN Algorithm for Forecasting Analysis |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/2394/1/012008 https://www.proquest.com/docview/2758384720 |
| Volume | 2394 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles (WRLC) customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rT9swELcYMGlfeIyhlZcswceFprbb2B-7CrRNEKKyB_DFiu0zVGNt1RT-_p3zAFXThCYtH6Iououts8_3c3wPQo6EshxhrIhQj2wkusZFxqC6ewhVpHMZq_Kf7vezJE3l1ZVaiIWZTOul_xgfq0TBlQhrhzjZRgzNol5X9dqhrHe70w7xnyHed4VLtOY4py_4j2Y15nglVVBkYJKy8fH6-4cWLNQr7MUfy3Rpe07X_0evN8hajTxpv-LYJEswfktelx6gttgil4OnioS0GcxoCPAIBc3Hjma4B_4ZDUcG7SjQfprS_v3tZDaa3_2iCHxpqPFp8yJ4UdMm08k78u305OvgU1RXXIgsZ6gyznAGPBHCMYDY4P6MOamsEYgKEuVxMwje5E56y0xuuDRda6UzniUI9HjH822yPJ6M4T2hNlfMO4loCYzwTqi4ZxQAoHEERGlJi_QaKWtbpyMPVTHudXksLqUOEtNBYjpITHd0JbEWiZ8Yp1VGjpdZPuCw6Fo7i5fJDxfIv2SDy0UKPXW-RfaaWfFMypJwDC0SFu_8W5u75A0LgRWlo8weWZ7PHmCfrNrH-aiYHZCVjydpNjwopzbes-4Nvss-n2fXvwGJPvBA |
| linkProvider | IOP Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7aOhC8cEcUBlgC3rCaOl5jPyBUFaaVdVG0DbQ9mfgGFaMtSxniT_EbOU7ijQmJPe2BPCbHkRJ_52af4w_gOZcmxTCWU9QjQ_mGtlRrVHfvAot0KRJZr-l-mGR5Lg4OZLECv2IvTCirjDaxNtR2bsIaeY9lYYOPZyx5vfhGA2tU2F2NFBoNLLbdzx-YslWvxm9wfl8wtvl2f7RFW1YBalKGsLA6ZS7NOLfMuURjDsKskEZz9HyZ9JjwOK9LK7xhutSp0BvGCKs9yzCYSfs-xfeuwhoPYO_AWjHeKQ6j7U_xypoWTEbRt4tYUYZpZntPDnqBjbzX74W21cBq-Yc_XJ3OF385hdrTbd783_7RLbjRxtRk2CjBbVhxsztwta5tNdVd2Budci2SCFO669yJq0g5s6TA7P4L3Z1qjBAcGeY5GR59ws9afv5KMKQngb3UlFWoDyfxDJd78P5Svug-dGbzmXsAxJSSeSswDnSae8tlMtDSOYdu32H8mXVhEGdUmfag9cD3caTqDX8hVICCClBQAQqqrxoodCE5Hbhozhq5eMhLhIxq7U51sfizc-LvitHeeQm1sL4L6xFeZ6Jn2Hr478dP4drW_s5ETcb59iO4zkK7SF3-sw6d5fF39xiumJPltDp-0ioPgY-XjcXfxcROcw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZbxMxEB615RAv5SoiUMASPLLsxnay9mOUNuKolqjl6Ju1tscQUZIoG_r7Ge8RFFWoQmKf9mFm15rxeD7bcwC8ktoJgrEyITtyiRxYn1hL5h4wdpEuVabrM90vJ3lRqPNzPd2BySYXZrFsl_439NoUCm5E2AbEqZQwNE-GAz1MY1vvtJ_G_M9MpUsfduFGLFcSZ_dH8bVbkQU9eZMYGRmV6uK8_v6xLS-1SyO5slTX_mdy93-N_B7stwiUjRqu-7CD8wdwq44EddVDOBtvOhOyTqnJKeIlVqycezalvfCP5HRmyZ8iGxUFG118W6xm6-8_GQFgFnt9urKK0dSsq3hyAJ8nx5_Gb5O280LiBCfT8VZwFLmUniNmlvZp3CvtrCR0kOtAm0IMtvQqOG5LK5QdOKe8DTwnwCf6QTyCvflijo-BuVLz4BWhJrQyeKmzodWISE4SCa3lPRh2kjauLUseu2NcmPp6XCkTpWai1EyUmumbRmo9yDaMy6Yyx_Usr0k1prXS6nryl1vk76fjs20KQ5rrwWE3M_6Q8jxeR8ucZ0_-7Z8v4Pb0aGJO3hUfnsIdHnMt6tiZQ9hbr37hM7jpLtezavW8nuG_AUvN8Vw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+Fletcher-Reeves+and+Polak-Ribiere+ANN+Algorithm+for+Forecasting+Analysis&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Hasibuan%2C+Eka+Hayana&rft.au=Hendraputra%2C+Surya&rft.au=Achmad+Daengs%2C+GS&rft.au=Saragih%2C+Liharman&rft.date=2022-12-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2394&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2394%2F1%2F012008&rft.externalDocID=JPCS_2394_1_012008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |