Improving the quality of meshes for the simulation of semiconductor devices using Lepp-based algorithms
This paper discusses a new post‐process algorithm for generating valid Delaunay meshes for the Box‐method (finite‐volume method) as required in semiconductor device simulation. In such an application, the following requirements must be considered: (i) in critical zones of the device, edges aligned w...
Uloženo v:
| Vydáno v: | International journal for numerical methods in engineering Ročník 58; číslo 2; s. 333 - 347 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester, UK
John Wiley & Sons, Ltd
14.09.2003
|
| Témata: | |
| ISSN: | 0029-5981, 1097-0207 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper discusses a new post‐process algorithm for generating valid Delaunay meshes for the Box‐method (finite‐volume method) as required in semiconductor device simulation. In such an application, the following requirements must be considered: (i) in critical zones of the device, edges aligned with the flow of the current (anisotropic meshes) are needed; (ii) boundary and interface triangles with obtuse angles opposite to the boundary/interfaces are forbidden; (iii) large obtuse angles in the interior of the device must be destroyed and (iv) interior vertices with high vertex‐edge connectivity should be avoided. By starting from a fine Delaunay mesh that satisfies condition (i), the algorithm produces a Delaunay mesh that fully satisfies condition (ii) and satisfies conditions (iii) and (iv) according to input tolerance parameters γ and c, where γ is a maximum angle tolerance value and c is a maximum vertex‐edge connectivity tolerance value. Both to destroy any target interior obtuse triangle t and any target high vertex‐edge connectivity, a Lepp–Delaunay algorithm is used. The elimination of obtuse angles opposite to the boundary and/or interfaces is done either by longest edge bisection or by the generation of isosceles triangles. The Lepp–Delaunay algorithm allows a natural improvement of the input mesh by inserting a few points in some existing edges of the current triangulation. Examples of the use of the algorithm over Delaunay constrained meshes generated by a normal offsetting approach will be shown. A comparison with an orthogonal refinement method followed by Voronoi point insertion is also included. Copyright © 2003 John Wiley & Sons, Ltd. |
|---|---|
| Bibliografie: | Fondecyt - No. 1981033 istex:9F8AFAD721A2357D924385ECC04CD8B1DE5F0762 ArticleID:NME767 ark:/67375/WNG-93V80G8D-W Magic-Feat Project ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0029-5981 1097-0207 |
| DOI: | 10.1002/nme.767 |